Structural and electronic properties of α-Te tubular nanostructures: a first-principles study

Yanrong Guo1, Songyou Wang1,2, Yu Jia3 and Wan-Sheng Su4,*

1Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai 200433, China
2Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai 200433, China
3International Laboratory for Quantum Functional Materials of Henan, School of Physics and Engineering, Zhengzhou University, Zhengzhou 450001, China
4National Taiwan Science Education Center, Taipei 11165, Taiwan

* E-mail: wssu@mail.ntsec.gov.tw

We employed density functional theory to investigate the structural and electronic properties of α-Te tubular nanostructures. These α-Te tube-like structures, similar to that of carbon nanotubes, in armchair and zigzag types are semiconductors with moderate band gaps. The nanotubes in armchair configurations have an indirect-to-direct band gap transition as tube diameter is decreased to a specific critical tube size, while those in zigzag configurations are always semiconductors with direct gap independent of the tube diameter. The calculated projected density of states reveal that such an indirect-to-direct band gap transition found in armchair nanotube can be attributed to the contributions of the different p-orbitals near the VBM edges. These findings are not only helpful for better understanding the physical characteristics of α-Te nanotubes, but also will open up the possibility of its use in device applications.