Particle Physics Winter School 2017 winter

Homework & Solution

Prof. Lee, Hyun Min

Contributors
- Park, Ye Ji(yeji.park@yonsei.ac.kr)
- Lee, Sung Mook(smilingsm0919@gmail.com)
- Cheong, Dhong Yeon(dhongyeoncheong@gmail.com )
- Ban, Ka Young(ban94gy@yonsei.ac.kr)

- Ro, Tae Gyu(shxorb234@gmail.com)



Particle Physics Winter School 2017 winter

1 HW Lecturel

1 Derive Euler-Lagrange eq. for £ = %@gb@“gb — m72¢2 — %qb‘l

Solution)

S = / d'2L($,0,0)

) or
55_/dx[a¢5¢+a@¢)5(aﬂ¢)]

e |JOE gy 0L oL
ok H %~ 50,0 } S {@wm M’H

so, as the total derivative term vanishes on the boundaries with d¢ = 0

oL oL

26~ 80,0 "

then, we can write
m 2 Ly
68¢+m¢>+—')\¢ =0

O+ m?)6+ 3:06° =0

2 Where are the field from? [Research "Representation of Lorentz group'|

Solution)

The Lorentz algebra could be written as SO(3,1) that is same with SU(2)p, x SU(2)r. It is a
kind of Lie algebra. The Lorentz algebra is defined as

J+iK

Ji
2

where J is a generator of rotation and K is a generator of boost. Their representation is labeled

by angular momentum, j, where j = 0, %, 1, %, -+, And the dimension of the representation

(j—,j+) is (2j— + 1)(2j+ + 1). And if considering the scalar field, we get the values of j_ and

Jj+ could be both 0 since the dimension is 1 and spin is equal to zero. Thus that is labeled by

(0,0). In the same way, Dirac field is four-dimension and its spin is % and its representation is

a direct sum of (3, 0) and (0, 3), which is called The Weyl spinor representation(the left-handed
Weyl spinor and the right-handed Weyl spinor, respectively). Vector field having spin-1 belongs

to the (%, %) representation, which is also called as the gauge field.

3 Why "dS=0" gives the Largest Contribution when 2 —0 limit?

Solution)

From the path integral formulation, the probability amplitude is provided by the formula

Prob = Z e%s

all possible paths

This problem is highly related to stationary phase method. Here is the simple review of this.
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Consider,

A—00

I = lim / de e M @)

when f(z) has a global minimum at x = x¢, i.e f'(z9) = 0.

Then the dominant contributions to the above integral, as A — oo will come from the integration
region around xg, since it the largest value on the integral region, and the value exponentially
decays on the other region.

Formally, we may expand f(z) about this point:

F(@) = (o) + 1/ (o) (& — m0) + 51" (z0) (@ — 70)* + -

Since f'(z0) = 0, this becomes:

£() ~ f(zo) + 5" (o) @ — m0)?

Inserting the expansion into the expression for I gives

oo 1/2
 —Af(wo) —A (@) (@—w0)? _ |; 2 ] — (o)
,\hjgo € /,oo dre 2 /\lgr;o L\f”(xo) €

This approximation is known as the stationary phase or saddle point approximation. This
formula also holds for the imaginary case,

I = /d:r M (@)

since when A is very large, phases change very rapidly as the value of exponent is large, hence
they will add incoherently, varying between constructive and destructive addition at different
times.

Our case is a trivial application of this formula, which is f(x) replaced with S, and X replaced
with 1/h.
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14.2.4 Classical limit

As a first check on the path integral, we can take the classical limit. To do that, we need to
put back %, which can be done by dimensional analysis. Since A has dimensions of action,
it appears as

(0:t5|0;:t;) = N/Di)(;i:’, t)enSI®l (14.31)

Using the method of stationary phase we see that, in the limit 7 — 0, this integral is
dominated by the value of ® for which S[®] has an extremum. But 6S = 0 is precisely
the condition that determines the Euler—Lagrange equations which a classical field satis-
fies. Therefore, the only configuration that contributes in the classical limit is the classical
solution to the equations of motion.

In case you are not familiar with the method of stationary phase (also known as the
method of steepest descent), it is easy to understand. The quickest way is to start with the
same integral without the i:

/D@ (Z,t)e~ ®512], (14.32)

In this case, the integral would clearly be dominated by the ®, where S|®] has a minimum;
everything else would give a bigger S[®] and be infinitely more suppressed as i — 0. Now,
when we put the ¢ back in, the same thing happens, not because the non-minimal terms are
zero, but because away from the minimum you have to sum over phases swirling around
infinitely fast. When you sum infinitely swirling phases, you also get something that goes
to zero when compared to something with a constant phase. Another way to see it is to
use the more intuitive case with ¢~ #5[%]_ Since we expect the answer to be well defined,
it should be an analytic function of @;. So we can take i — 0 in the imaginary direction,
showing that the integral is still dominated by S[®].

Figure 1: Homework 1.3 reference(Schwartz "Quantum field theory and Standard model")

2 HW Lecture2

1 Show

0 o N 1/2
. —39Aq+Jq _ (2m) LyA-1g
Lo [ o dae (det(A) ¢

Solution)

Let’s look at the 1 dimensional case, which is expressed as
—00

This is a simple Gaussian integral, which can be evaluated as

1
o0 12 o0 a J\2 g2 2m\2 J2
/ dr e 29% +Jz :/ dx 6—5(‘”—3) e%2a = [ — e2a
oo o a

Now, if we expand this to an N x N matrix, the exponent in the integral takes the form

1
—56Aiq + Jii

4.
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Using the same analogy with the 1D case, we get

1 1 1 1 .
3 (%’ - (A J)) Aij <Qj - (A J)j) + 5']%'14@']' Jj
By introducing EE g — A~ 'q, we can evaluate —%[]}Aijcfj as,

—%~TA5 —— 1~T5T (s457) sq

—— -3 D
54 Da

~2 ~2 ~2
=3 (d1Q1 +d2gy + -+ dNQN)

Where S is an orthogonal transformation matrix, and D is the diagonalized matrix. As the
matrix is diagonalized, we get the following relation

det(A) =dy -~ dy

N 73

o o 2 _ _
/ / dql...que*%qTAquJq - [d( W)d ] o—3d AT
— 0 —0 1 "anN

Hence, we get

I=

NI

det(A)
n
2 From
s . . .
6(w) = [ Goyaape™ " + (ae), with [y af) = (2m)"6°(5 )
az10) =0,(0 \aﬁ: 0.
Show i .
p i —ip (2-)
OT@)6WI0) = [ G e
Solution)

Free field operator

3 . .
oo(Z,t) = /(Qdﬂ-)?)Qlwf[ak(t)e_lkm+a2(t)elkm]
Bk Pky 11
Oloa)oo(210) = [ 55 G
/d3k:1 dky 1 1

<0|ak1ak |O> i(koxo—kiz1)

(277)353(1{3_1 o k_é)ei(kszfklxl)

(2m)3 /2w /2ws
_ / Pk 1 k(o)
271')3 2wk

(O]T{po(z1)Po(x2)}]0) = (0|do(z1)Po(x2)|0)0(t1 — t2) + (O|po(2)Po(71)[0)0(t2 — t1)
3k 1
- 27T 3 ka

[eFmmm00(ty — ty) + eIty — 1))

d ko1 tk(21—22) ,—twgT —ik (@ —2%) JiwT
:/(27r)32wk[6 k(a1 2) oW 0(1) + e k(21 —a3) giwk 0(—7)]

dSk 1 z_‘ T —T5 W T — W T

-5-
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. . -9 eS] d .
ezwm’g(_T) + eiMkTQ(T) _ lin% 5 wk / 5 "‘; — W
=0 270 J oo w? —wp + i€

Proof.
1 1

—wltie  [w— (wg —i€)][w — (—w + i€)]

w2

R - !
2w lw— (wp —d€)  w— (—wg + ie)

[e.e] . .
/ W e onidenTg(—r) 4 Ofe)

—oo W — (wg — i€)

/OO d—w.eiWT = 2mie (1) + O(e)
—oo W — (—Wk + ZE)
O
Putting it together, we find
hm/ &’k ie—ﬁ(ﬁ—ﬁ) —2wp, /Oo dw oW
e—0J) (27)3 2wy, 21t J oo w? — wi + e
[ |
Remark
. ko # \/ k2 + m?2. The propagating field can be off-shell.
. This is a classical Green’s function for the Klein-Gordon equation :
(O +m?)Dp(z,y) = —id*(z — y)
3 HW Lecture3
1 Show that the Dirac equation, (iy#0, —m) = 0 implies the Klein-Gordon equation,
(O+m?) =0
Solution)
(19" 0y + m) (i — m)p = —(44" 00y + m*)p = 0
Note that
1 1
17" 0u0y = 5y 7"} = 529"0,0, = 6,0" =11
Therefore, each compoents of ¢ solves the Klein-Gordon equation,
(O+m?)y =0
[ |
2 Using the following relations F% = —E? F'J = —¢%* By construct the Maxwell equations (note

that the Bianchi identity is J),F),) = 0).

Solution)

By Bianchi identity,
82F]k + 8iji + 8kFZ'j =0

-6 -
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—i=0)

80 F i + 0 Fyo + O Foj = 0
OFIk L g M 1 9FF% = 0
(using n"*F, = F7)
eFmp, + PEF —FET =0
(using €qpee®® = 269)
20°67 By, + €1 (P EF — 9" ET) = 0

then, we can find

20°67" By, = —¢jgn (Y EX — OV E7)
20°67 By, = 2€ 30" E’
B, = ¢k, 0" EI

this equation means,

B
_8675 =V x E : Faraday’s Law

leti=1,j=2k=3

O;F o + 0; Fys + 0uFy; = 0
Oi€jkaBa + Oj€riaBa + Ok€ijaBa = 0
O1€230 By + O2€230 By + O3€124 By = 0

OqBy = 0,B* =0

likewise, explicitly calculate other cases, then we can find,
v-B=0

There is similar problem in "An introduction to quantum field theory Ch.2 pb.2.(a) (Peskin
Schroeder)"

3 Classical electromagnetism (with no sources) follows from the action
1
S= / d'z <4FWF‘“’>, where Fy, = 9,4, — 8,4,

Derive Maxwells equations as the Euler-Lagrange equations of this action, treat ing the com-
ponents A, (x) as the dynamical variables. Write the equations in standard form by identifying
E' = —F% and é9*B;, = —F%

Solution)

1
4

1
= _Ea‘uAV - ayAuayAlu, - alu,AI/

L=—"F,F"

1 1
= 500" A,) + 5 (0" 4,)°

-7
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So, let’s derive a equation of motion.

oL
oA, "
and,
oL
— (O AY Q@ A pHY
0, Av) (0" A”) 4 (0%A%)n
0 0
ozAa — ﬂAa af
Aop ) O M) = 53, (0 Aain
= ohoyn™?
= g
using this lemma, we can get
oL
- = ,LLAV aAa yg
8“8((9“141,) 0,0 + 9,0 i
= —0,0"A” + 0V 0“ A”
= —0,0"A” + 00, A"
= _8u(auAV - 3,,14“)
= —0,F"
S0,
oL oL

0

_ 9, F" — 0
FOOuA) | oA, O

1. p=1, v=0,

(%FiO:O — &-Ei:O
— V-E=0

2. p=p, v=y,

0=0,F"
= 0y F" + 0;F"
= aalzi — 9;€"* By,
_ _aaEt‘i +8j€ijkBk
= —%—]f + VvV xB
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4 Calculate the amplitude M of the following diagrams using Feynman rules.

‘\pg p4/’

k1 —p1+ps
p3 D4
kT l k — P2
—
pP1 Kk P2 p1 P2
2B -
k1 —p1+pa
[Diagram 3-1] [Diagram 3-2] [Diagram 3-3] [Diagram 3-4]
Solution)

Diagram 3-1)
The S-matrix in the momentum space is written as,
S = iM(27)*™W (p1 — po)

Then using the Feynman rules, one can evaluate the matrix element M, which is actually the
amplitude.

d*k i , 4e(d
iM= [ G CNED 6o~ )

integral of large k part
o0

N/H%x—_ﬁ =00
0

Therefore the amplitute goes to infinity, the mass renormalization is needed.

Diagram 3-2)

M =

(—i)? / d*koy d*ky i i
2 (2m)* (2m)* k2 — m2 + ie k3 — m? + ie
x (2m) "6 (kg + pa — k1 — p2) (2m) 6™ (p3 + k1 — p1 — ko)

(—iX)? / d*ky i i "
pr— 6 - -
2 e =2 fic (it ps—pr)f —m2 ic’ WPz pLop2)

By evaluating the large ki integral part, one can get

1
M~ / kidky x —
kl
=log(k)| =00
k=0
Diagram 3-3)
. (—iX)? / d4ky i i @
= 6 . _
M 2 (2m)* k2 — m2 +ie (ky — p1 — p2)? — m? + i€ (p3 + P4 —p1—p2)

9.
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Diagram 3-4)

: (—iA)? / d'ky i i @)
— 6 _ _
M 2 (2m)* k¥ —m? + ie (k1 — p1 — pa)? — m? + e (ps +pa —p1 = p2)

Clearly, this digerves. Therfore, we need to introduce the renormalization of quartic coupling
lambda. Using the same method and summing up all contributions, we could get the total A2
ordered amplitude.

- 10 -



