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1 HW Lecture1
1 Derive Euler-Lagrange eq. for L = 1

2∂µφ∂
µφ− m2

2 φ
2 − λ

4!φ
4

Solution)

S =
∫
d4xL(φ, ∂µφ)

δS =
∫
d4x

[
∂L
∂φ

δφ+ ∂L
∂(∂µφ)δ(∂µφ)

]

=
∫
d4x

[{
∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

}
δφ+ ∂µ

{
∂L

∂(∂µφ)δφ
}]

so, as the total derivative term vanishes on the boundaries with δφ = 0

∂L
∂φ
− ∂µ

∂L
∂(∂µφ) = 0

then, we can write

∂µ∂
µφ+m2φ+ 1

3!λφ
3 = 0

(�+m2)φ+ 1
3!λφ

3 = 0

�

2 Where are the field from? [Research "Representation of Lorentz group"]
Solution)
The Lorentz algebra could be written as SO(3, 1) that is same with SU(2)L × SU(2)R. It is a
kind of Lie algebra. The Lorentz algebra is defined as

J± = J± iK
2

where J is a generator of rotation and K is a generator of boost. Their representation is labeled
by angular momentum, j, where j = 0, 1

2 , 1,
3
2 , · · · . And the dimension of the representation

(j−, j+) is (2j− + 1)(2j+ + 1). And if considering the scalar field, we get the values of j− and
j+ could be both 0 since the dimension is 1 and spin is equal to zero. Thus that is labeled by
(0, 0). In the same way, Dirac field is four-dimension and its spin is 1

2 and its representation is
a direct sum of (1

2 , 0) and (0, 1
2), which is called The Weyl spinor representation(the left-handed

Weyl spinor and the right-handed Weyl spinor, respectively). Vector field having spin-1 belongs
to the (1

2 ,
1
2) representation, which is also called as the gauge field.

�

3 Why "δS=0" gives the Largest Contribution when ~→0 limit?
Solution)
From the path integral formulation, the probability amplitude is provided by the formula

Prob =
∑

all possible paths
e
i
~S

This problem is highly related to stationary phase method. Here is the simple review of this.
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Consider,

I = lim
λ→∞

∫ ∞
−∞

dx e−λf(x)

when f(x) has a global minimum at x = x0, i.e f ′(x0) = 0.
Then the dominant contributions to the above integral, as λ→∞ will come from the integration
region around x0, since it the largest value on the integral region, and the value exponentially
decays on the other region.
Formally, we may expand f(x) about this point:

f(x) = f(x0) + f ′(x0)(x− x0) + 1
2f
′′(x0)(x− x0)2 + · · ·

Since f ′(x0) = 0, this becomes:

f(x) ≈ f(x0) + 1
2f
′′(x0)(x− x0)2

Inserting the expansion into the expression for I gives

lim
λ→∞

e−λf(x0)
∫ ∞
−∞

dx e−
λ
2 f
′′(x0)(x−x0)2 = lim

λ→∞

[ 2π
λf ′′(x0)

]1/2
e−λf(x0)

This approximation is known as the stationary phase or saddle point approximation. This
formula also holds for the imaginary case,

I =
∫
dx eiλf(x)

since when λ is very large, phases change very rapidly as the value of exponent is large, hence
they will add incoherently, varying between constructive and destructive addition at different
times.
Our case is a trivial application of this formula, which is f(x) replaced with S, and λ replaced
with 1/~.

�
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Figure 1: Homework 1.3 reference(Schwartz "Quantum field theory and Standard model")

2 HW Lecture2
1 Show ∫ ∞

−∞
· · ·
∫ ∞
−∞

dq1 . . . dqNe
− 1

2 qAq+Jq =
(

(2π)N

det(A)

)1/2

e
1
2JA

−1J

Solution)
Let’s look at the 1 dimensional case, which is expressed as∫ ∞

−∞
dx e−

1
2ax

2+Jx

This is a simple Gaussian integral, which can be evaluated as∫ ∞
−∞

dx e−
1
2ax

2+Jx =
∫ ∞
−∞

dx e−
a
2 (x−Ja )2

e
J2
2a =

(2π
a

) 1
2
e
J2
2a

Now, if we expand this to an N ×N matrix, the exponent in the integral takes the form

−1
2qiAijqj + Jiqi
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Using the same analogy with the 1D case, we get

−1
2
(
qi −

(
A−1J

)
i

)
Aij

(
qj −

(
A−1J

)
j

)
+ 1

2JiA
−1
ij Jj

By introducing ˜̃q ≡ q̃ −A−1q, we can evaluate −1
2 q̃iAij q̃j as,

−1
2 q̃

TAq̃ =− 1
2 q̃

TST
(
SAST

)
Sq̃

=− 1
2
˜̃qTD˜̃q

=1
2
(
d1˜̃q2

1 + d2˜̃q2
2 + · · ·+ dN ˜̃q2

N

)
Where S is an orthogonal transformation matrix, and D is the diagonalized matrix. As the
matrix is diagonalized, we get the following relation

det(A) = d1 · · · dN
Hence, we get ∫ ∞

−∞
· · ·
∫ ∞
−∞

dq1 · · · dqNe−
1
2 q
TAq+Jq =

[
(2π)N

d1 · · · dN

] 1
2

e−
1
2J
−1A−1J

=
[

(2π)N

det(A)

] 1
2

e−
1
2J
−1A−1J

�

2 From

φ(x) =
∫

d3p

(2π)3 (ape−ip·x + (a†peip·x)),with [a~p, a†~p] = (2π)3δ3(~p− ~p′)

a~p |0〉 = 0, 〈0 |a†~p = 0.

Show
〈0|T (φ(x)φ(y)|0〉 =

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y)

Solution)
Free field operator

φ0(~x, t) =
∫

d3

(2π)3
1√
2ωk

[ak(t)e−ikx + a†k(t)e
ikx]

〈0|φ0(x1)φ0(x2)|0〉 =
∫

d3k1
(2π)3

d3k2
(2π)3

1√
2ω1

1√
2ω2
〈0|ak1a

†
k2
|0〉ei(k2x2−k1x1)

=
∫

d3k1
(2π)3

d3k2
(2π)3

1√
2ω1

1√
2ω2

(2π)3δ3( ~k1 − ~k2)ei(k2x2−k1x1)

=
∫

d3k

(2π)3
1

2ωk
eik(x2−x1)

〈0|T{φ0(x1)φ0(x2)}|0〉 = 〈0|φ0(x1)φ0(x2)|0〉θ(t1 − t2) + 〈0|φ0(x2)φ0(x1)|0〉θ(t2 − t1)

=
∫

d3k

(2π)3
1

2ωk
[eik(x2−x1)θ(t1 − t2) + eik(x1−x2)θ(t2 − t1)]

=
∫

d3k

(2π)3
1

2ωk
[ei~k( ~x1− ~x2)e−iωkτθ(τ) + e−i

~k( ~x1− ~x2)eiωkτθ(−τ)]

=
∫

d3k

(2π)3
1

2ωk
e−i

~k( ~x1− ~x2)[eiωkτθ(−τ) + e−iωkτθ(τ)]

- 5 -



Particle Physics Winter School 2017 winter

Lemma

eiωkτθ(−τ) + e−iωkτθ(τ) = lim
ε→0

−2ωk
2πi

∫ ∞
−∞

dω

ω2 − ω2
k + iε

eiωτ

Proof.

1
ω2 − ω2

k + iε
= 1

[ω − (ωk − iε)][ω − (−ωk + iε)]

= 1
2ωk

[ 1
ω − (ωk − iε)

− 1
ω − (−ωk + iε)

]

∫ ∞
−∞

dω

ω − (ωk − iε)
eiωτ = −2πieiωkτθ(−τ) +O(ε)∫ ∞

−∞

dω

ω − (−ωk + iε)e
iωτ = 2πie−iωkτθ(τ) +O(ε)

Putting it together, we find

lim
ε→0

∫
d3k

(2π)3
1

2ωk
e−

~k( ~x1− ~x2)−2ωk
2πi

∫ ∞
−∞

dω

ω2 − ω2
k + iε

eiωτ

�

Remark

. k0 6=
√
~k2 +m2. The propagating field can be off-shell.

. This is a classical Green’s function for the Klein-Gordon equation :
(�+m2)DF (x, y) = −iδ4(x− y)

3 HW Lecture3
1 Show that the Dirac equation, (iγµ∂µ −m)ψ = 0 implies the Klein-Gordon equation,(
�+m2)ψ = 0
Solution)

(iγν∂ν +m)(iγµ∂µ −m)ψ = −(γµγν∂µ∂ν +m2)ψ = 0

Note that

γµγν∂µ∂ν = 1
2γ{γ

µ, γν} = 1
22gµν∂µ∂ν = ∂µ∂

µ = �

Therefore, each compoents of ψ solves the Klein-Gordon equation,

(�+m2)ψ = 0

�

2 Using the following relations F 0i = −Ei, F ij = −εijkBk construct the Maxwell equations (note
that the Bianchi identity is ∂[µFλν] = 0).
Solution)
By Bianchi identity,

∂iFjk + ∂jFki + ∂kFij = 0
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– i = 0)

∂0Fjk + ∂jFk0 + ∂kF0j = 0
∂0F jk + ∂jF k0 + ∂kF 0j = 0

(using ηγαFα = F γ)
∂0εjkmBm + ∂jEk − ∂kEj = 0

(using εabcεabd = 2δdc )
2∂0δmn Bm + εjkn(∂jEk − ∂kEj) = 0

then, we can find

2∂0δmn Bm = −εjkn(∂jEk − ∂kEj)
2∂0δmn Bm = 2εjkn∂kEj

∂0Bn = εjkn∂
kEj

this equation means,

−∂B
∂t

= O×E : Faraday’s Law

– i, j, k 6= 0)
let i = 1, j = 2, k = 3

∂iFjk + ∂jFki + ∂kFij = 0
∂iεjkaBa + ∂jεkiaBa + ∂kεijaBa = 0
∂1ε23aBa + ∂2ε23aBa + ∂3ε12aBa = 0

∂αBα = ∂αB
α = 0

likewise, explicitly calculate other cases, then we can find,

O ·B = 0

�

There is similar problem in "An introduction to quantum field theory Ch.2 pb.2.(a) (Peskin
Schroeder)"

3 Classical electromagnetism (with no sources) follows from the action

S =
∫
d4x

(
−1

4FµνF
µν
)
, where Fµν = ∂µAν − ∂νAµ

Derive Maxwells equations as the Euler-Lagrange equations of this action, treat ing the com-
ponents Aµ(x) as the dynamical variables. Write the equations in standard form by identifying
Ei = −F 0i and εijkBk = −F ij

Solution)

L = −1
4FµνF

µν

= −1
4∂µAν − ∂νAµ∂νAµ − ∂µAν

= −1
2(∂µAν)(∂µAν) + 1

2(∂µAµ)2
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So, let’s derive a equation of motion.
∂L
∂µAν

= 0

and,
∂L

∂(∂µAν)
= −(∂µAν) + (∂αAα)ηµν

Lemma

∂

∂(∂µAν)
(∂αAα) = ∂

∂µAν
(∂βAα)ηαβ

= δµρ δ
ν
αη

αβ

= ηµν

using this lemma, we can get

∂µ
∂L

∂(∂µAν)
= −∂µ∂µAν + ∂µ∂

αAαηµν

= −∂µ∂µAν + ∂ν∂αAα

= −∂µ∂µAν + ∂ν∂µA
µ

= −∂µ(∂µAν − ∂νAµ)
= −∂µFµν

so,
∂µ

∂L
∂(∂µAν)

= ∂L
∂µAν

−→ ∂µF
µν = 0

1. µ = i, ν = 0,

∂iF
i0 = 0 −→ ∂iE

i = 0
−→ O ·E = 0

2. µ = µ, ν = j,

0 = ∂µF
µi

= ∂0F
0i + ∂jF

ji

= −∂E
i

∂t
− ∂jεjikBk

= −∂E
i

∂t
+ ∂jε

ijkBk

= −∂E
∂t

+ O×B

�
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4 Calculate the amplitudeM of the following diagrams using Feynman rules.

p1 p2

k k

p1

p3

k1

k1 − p1 + p3

p2

p4

p1 p2

k1 k1 − p1 − p2

p3 p4

p1

p4

k1

k1 − p1 + p4

p2

p3

[Diagram 3-1] [Diagram 3-2] [Diagram 3-3] [Diagram 3-4]

Solution)
Diagram 3-1)
The S-matrix in the momentum space is written as,

S = iM(2π)4δ(4)(p1 − p2)

Then using the Feynman rules, one can evaluate the matrix element M, which is actually the
amplitude.

iM =
∫

d4k

(2π)4
i

k2 −m2︸ ︷︷ ︸(−iλ)(2π)4δ(4)(p1 − p2)

integral of large k part

∼
∫
k3dk × 1

k2 = k2
∣∣∣∣∞
0

=∞

Therefore the amplitute goes to infinity, the mass renormalization is needed.

Diagram 3-2)

iM =(−iλ)2

2

∫
d4k2
(2π)4

d4k1
(2π)4

i

k2
1 −m2 + iε

i

k2
2 −m2 + iε

× (2π)4δ(4)(k2 + p4 − k1 − p2)(2π)4δ(4)(p3 + k1 − p1 − k2)

=(−iλ)2

2

∫
d4k1
(2π)4

i

k2
1 −m2 + iε

i

(k1 + p3 − p1)2 −m2 + iε
δ(4)(p3 + p4 − p1 − p2)

By evaluating the large k1 integral part, one can get

M∼
∫
k3

1dk1 ×
1
k4

1

= log(k)
∣∣∣∣∞
k=0

=∞

Diagram 3-3)

iM = (−iλ)2

2

∫
d4k1
(2π)4

i

k2
1 −m2 + iε

i

(k1 − p1 − p2)2 −m2 + iε
δ(4)(p3 + p4 − p1 − p2)
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Diagram 3-4)

iM = (−iλ)2

2

∫
d4k1
(2π)4

i

k2
1 −m2 + iε

i

(k1 − p1 − p4)2 −m2 + iε
δ(4)(p3 + p4 − p1 − p2)

Clearly, this digerves. Therfore, we need to introduce the renormalization of quartic coupling
lambda. Using the same method and summing up all contributions, we could get the total λ2

ordered amplitude.

�
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