
Hofstadter’s Butterfly

The quantum mechanical system of an electron moving in a two-dimensional pe-
riodic potential in a constant magnetic field transverse to the plane of motion has
attracted a great deal of interest. In particular, it has interesting connections to the
quantum Hall effect and to the mean-field theory of the Hubard model.

The Hamiltonian of our interest is given by

H =
1

2m

[
−i~~∇− e

c
~A
]2

+ V (~x) (1)

with B = ∂xAy − ∂yAx constant. The potential V (~x) is periodic with

V (~x+~l) = V (~x) , (2)

where ~l = n~e1 +m~e2 (n,m ∈ Z) and ~e1,2 form a basis for the two-dimensional lattice.
We will restrict ourselves to a square lattice determined by a simple potential

V (~x) = −V0
[

cos (2πx/a) + cos (2πy/a)− 2
]

with V0 ≥ 0 . (3)

[1] Since the system is invariant under finite translations by the basis vectors of the
lattice, we expect that the spectrum consists of Bloch bands parameterized by the
eigenvalues of translation operators. However, one can show that naive expressions
of translation operators below

U (0)
x = eipxa/~

U (0)
y = eipya/~ (4)

do not commute with the Hamiltonian (1).

(a) Choosing the Landau gauge ~A = (−By, 0), construct correct translation oper-
ators Ux and Uy commuting with the Hamiltonian (1).

(b) Show that Ux and Uy no longer commute with each other;

UxUy = e2πiαUyUx , (5)

where 2πα = eBa2

~c . The phase factor e2πiα can be understood as the Aharonov-
Bohm phase.
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(c) Since Ux and Uy do not commute with each other, one cannot find eigenstates
diagonalizing two translation operators Ux and Uy simultaneously. However,
when

α =
p

q
(6)

with p, q integers, one can show that[
U q
x , Uy

]
= 0 . (7)

One can then construct Bloch wave-functions on the magnetic lattice, which
are eigenstates of the Hamiltonian (1) as well as of the magnetic translation
operators U q

x and Uy.

In the absence of tunneling, we have approximate possible ground states local-
ized at minima of the potential (3), denoted by pairs of integers∣∣~n〉 ≡ ∣∣(nx, ny)〉 . (8)

Using (8), construct q different approximate ground states,∣∣~θ = (θx, θy), j
〉

(j = 0, 1, .., q − 1) , (9)

that are eigenvectors of U q
x and Uy with eigenvalues eiθx and eiθy .

Let us now consider the matrix element〈
~θ, j
∣∣e−HT/~∣∣~θ′, j′〉 . (10)

Since H commute with U q
x and Uy, this matrix element will be diagonal in ~θ, but

we expect that there will be mixing between states labeled by different j due to
tunneling. This implies that there exist q different lowest bands.

[2] In the present work, let us propose to use the dilute-instanton-gas sum to com-
pute the energy of q different lowest bands in the semi-classical limit. We have
learned that the transition amplitudes between two approximate ground states can
be described as 〈

(nx, ny)
∣∣e−HT/~∣∣(0, 0)

〉
∝ lim

T→∞

∫
D~x(τ) e−SE[~x(τ)]/~ , (11)

subject to the boundary conditions

~x(−T/2) = (0, 0) , ~x(+T/2) = (nx, ny) . (12)

In the semi-classical limit, the above path-integral is dominated by the stationary
points of the Euclidean action SE, called the instanton configurations.
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(a) Show that the instanton equations of motion are given by

d2

dξ2
x̄ = g2

[
−i d
dξ
ȳ + 2π sin (2πx̄)

]
,

d2

dξ2
ȳ = g2

[
+i

d

dξ
x̄+ 2π sin (2πȳ)

]
, (13)

where x̄ = x/a, ȳ = y/a, and ξ = tE/τ with τ = 2πα~/V0. Note that g is the
ratio of the cyclotron frequency, ωc = eB

mc
, to the frequency of oscillation about

a minimum of the potential V, ωo = 2π
a

√
V0
m

, i.e., g = 2πωc/ωo.

(b) First, we are looking for solutions to (13) that start at the bottom of one
well, (x, y) = (nx, ny) and travel to the bottom of an adjacent well along the
x-direction, (x, y) = (nx ± 1, ny).

Since the terms related to the magnetic field (13) are imaginary, we cannot find
real solutions. Instead, we look for a complex solution that takes the following
from

x̄(ξ) = nx + xR(ξ) , ȳ(ξ) = ny + iyI(ξ) , (14)

with xR(−∞) = 0, xR(+∞) = ±1 and yI(±∞) = 0. Explain why the above
ansatz is legitimate to choose.

Substituting (14) into (13), the instanton equations become purely real:

d2

dξ2
xR = g2

[
d

dξ
yI + 2π sin (2πxR)

]
,

d2

dξ2
yI = g2

[
d

dξ
xR + 2π sinh (2πyI)

]
. (15)

Show that the Euclidean action for such a complex instanton solution in the x
direction (15) is given by

SEx/~ = Re
[
SEx/~

]
+ iIm

[
SEx/~

]
(16)

with

Re
[
SEx/~

]
=2πα

∫ +∞

−∞
dξ

[
1

2g2

{(dxR
dξ

)2 − (dyI
dξ

)2}− yI dxR
dξ

−
{

cos (2πxR) + cosh (2πyI)− 2
}]

, (17)

and

Im
[
SEx/~

]
= 2παny∆xR (∆xR ≡ xR(+∞)− xR(−∞) = ±1) .. (18)
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(c) It is also interesting to consider a regime where the magnetic field is large
compared to the strength of the potential, i.e., g2 → ∞. This is the regime
where one can compare the path-integral calculation we are pursuing with a
perturbative calculation of the splitting of the lowest Landau level.

Show that, in this limit g2 →∞,

±2πxR(ξ) ' 2 tan−1(
√

2 sinh(4π2ξ)) + π ,

2πyI(ξ) ' − cosh−1(1 + 2sech(8π2ξ)) . (19)

and

Re
[
SEx/~

]
= α

∫ 1

0

dxR cosh−1
[
2− cos(2πxR)

]
' (7.32772)

α

2π
. (20)

(d) Next, let us consider solutions to (13) that start at the bottom of one well,
(x, y) = (nx, ny) and travel to the bottom of an adjacent well along the y-
direction, (x, y) = (nx, ny ± 1).

Choosing a reasonable ansatz for such a complex instanton solution in y-direction,
show that the corresponding Euclidean action SEy has no imaginary part, and
agrees with the real part of SEx obtained above.

(e) One can show that the contribution to the path-integral from each instanton in
the ±x direction is ∫

dt Kxe
−SE/~e−2πiαnyδxR , (21)

while each instanton in the ±y direction contributes∫
dt Kye

−SE/~ , (22)

where SE = Re[SEx] = SEy, and two factors Kx and Ky are due to the Gaus-
sian integrals around the classical instanton solutions in the x and y directions
respectively. More precisely, Kx and Ky are proportional to

Kx = Ky ∝

√
det
[
D + V ′′(~l)

]
det′

[
D + V ′′(~xinst)

] , (23)

where the operators D and V ′′(~x) are given by

D = m

(
− d2

dt2E
−iωc d

dtE

+iωc
d
dtE

− d2

dt2E

)
, (24)
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and

V ′′(~x) =

(
∂2V
∂x2

∂2V
∂x∂y

∂2V
∂y∂x

∂2V
∂y2

)
. (25)

For later convenience, show that, for large T ,

det
[
D + V ′′(~l)

]−1/2 ∝ e−
1
2

√
ω2
c+4ω2

0T , (26)

where ~l = (nx, ny) denotes the each lattice site.

[3] We are ready to evaluate the path-integral for the transition amplitude in the
dilute-gas approximation. This is accomplished by summing over all classical paths
in which the particle travels from one minimum of the potential to another minimum
along adjoining instanton paths. We assume that the only significant contribution is
due to instantons traveling between two adjacent minima, discussed in [2].

Sprinkling instantons in the ±x and ±y directions, the dilute-gas sum then be-
comes〈
(nx, ny)

∣∣e−HT/~∣∣(0, 0)
〉
∝ e−

1
2

√
ω2
c+4ω2

0T
∑

all possible
paths

∫ T/2

−T/2
dt1

∫ t1

−T/2
dt2 · · ·

∫ tM+N−1

−T/2
dtM+N

(
Ke−SE/~

)M+N
exp

[
− 2πiα

M+N∑
k=1

(yk∆xk)/a
2
]
, (27)

where the sum is performed over all instanton paths from ~xi = (0, 0) to ~xf = a(nx, ny).
For each path, M and N are the total number of instantons in the ±x and ± di-
rections. yk denotes the initial y coordinate of the k-th instanton and ∆xk is the
distance it travels in the x direction.

To evaluate the dilute-gas sum, it is convenient to parameterize the paths as
follows; Divide a given path into N + 1 intervals labeled from 0 to N . During the ith
interval, except the first one, the particle first takes one step in the y direction. We
define a number ni = ±1 to described the distance aniŷ traveled in the ith interval.
The particle then takes Mi steps in the x direction. To described each of these Mi

steps we require the set of numbers (mi1,mi2, ..,miMi
) with mia = ±1 so that amiax̂

is the total distance traveled on the ath step during the ith interval.

In terms of these parameters, one can write the total number of steps taken in
the x direction as

M =
N∑
i=0

Mi , (28)
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and the total distance traveled as

~xf − ~xi = a
( N∑
i=0

Mi∑
a=1

mia,
N∑
i=1

ni
)
. (29)

(a) Show that, using the above parametrization, the dilute-gas sum can be ex-
pressed as

e−
1
2

√
ω2
c+4ω2

0T

∞∑
N=0

·
N∏
i=0

{ ∞∑
Mi=0

}
·
N∏
j=1

{ ∑
nj=±1

}
·
N∏
k=0

Mk∏
a=1

{ ∑
mka=±1

}[
δny−

∑N
r=1 nr

×

δnx−
∑N
s=0

∑Ms
c=1msc

· 1

(M +N)!

(
KTe−SE/~

)M+N · exp
(
− 2πiα

N∑
l=0

Ml∑
b=1

mlb

l∑
t=1

nt

)]
,

(30)

where
∑0

i=1 ni is defined to be 0.

(b) Verify that performing the sums over mia and Mi can reduce (30) down to a
sum over one-dimensional random walks,

〈
(nx, ny)

∣∣e−HT/~∣∣(0, 0)
〉
∝ e−

1
2

√
ω2
c+4ω2

0T

∫ 2π

0

dθ1
2π

∫ 2π

0

dθ1
2π

∫ 2π

0

dν

2π

e−iθ1nxe−iθ2ny · eTeiν ·G(θ1, θ2, ν) (31)

with

G(θ1, θ2, ν) =
∞∑
N=0

·
N∏
i=1

{ ∑
ni=±1

}[
e−iνN ·

(
KE−SE/~

)N · eiθ2 ∑N
j=1 nj×

N∏
k=0

{
1− 2KE−SE/~e−iν cos

(
2πα

k∑
t=1

nt − θ1
)}−1]

. (32)

(c) When α = p/q, (32) implies that the continuum of ground states can be labeled
by two angles θ1 and θ2, and that we only need to know the values of

∑k
t=1 nt

(k = 0, 1, .., N) modulo q. We will see shortly that these two facts will lead to
the existence of the q different lowest energy bands.

For each path of N steps, let us define ls (s = 0, 1, .., q − 1) as the number of
times the particle landing on a site congruent to s modulo q. The total number
of steps is then N =

∑(q−1)
s=0 ls.
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Show that, with the above definition, (32) can be expressed as

G(θ1, θ2, ν) =
1

1− 2(Ke−SE/~)z−1 cos θ1

∞∑
N=0

·
N∏
i=1

{ ∑
ni=±1

}
eiθ2

∑N
j=1 nj

q−1∏
s=0

tlss , (33)

where z = eiν and

ts =
Ke−SE/~

z − 2(Ke−SE/~) cos
(
2παs− θ1

) . (34)

(d) To sum the epxression (33) further, let us define the q-dimensional vector

Fs(N) =
N∏
i=1

{ ∑
ni=±1

} [
eiθ2

∑N
j=1 nj

q−1∏
s=0

tlss · δs−∑N
k=1 nk

]
, (s = 0, 1, .., q − 1) (35)

where the Kronecker delta has to be evaluated modulo q.

Show that, after working out the recursive relation for ~F (N),

~F (N) = A · ~F (0) , (36)

where A is a q by q matrix given by

A =



0 t0e
−iθ2 0 0 · · · t0e

+iθ2

t1e
+iθ2 0 t1e

−iθ2 0 · · · 0

0 t2e
+iθ2 0 t2e

−iθ2 ...
...

. . .

0 · · · tq−2e
+iθ2 0 tq−2e

−iθ2

tq−1e
−iθ2 0 · · · tq−1e

+iθ2 0


(37)

and the q-dimensional vector ~F (0) describes the starting configuration below

~F (0) =


1
0
...
0

 . (38)

Using the equation (36), verify that the function G(θ1, θ2, ν) can be expressed
as

G(θ1, θ2, ν) =
1

1− 2(Ke−SE/~)z−1 cos θ1

(
1 1 · · · 1

)
· 1

1q −A
·


1
0
...
0

 , (39)

where 1q denotes the q-dimensional identity matrix.
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[4] Substituting (39) into (31), show that the energy levels of q different lowest
bands are given by

E =
~
2

√
ω2
c + 4ω2

o − ~E(θ1, θ2, s;α) , (40)

where E(θ1, θ2, s;α) are the eigenvalues of the q by q matrix H below

H = (Ke−SE/~)



r0 e−iθ2 0 0 · · · e+iθ2

e+iθ2 r1 e−iθ2 0 · · · 0

0 e+iθ2 r2 e−iθ2
...

...
. . .

0 · · · e+iθ2 rq−2 e−iθ2

e−iθ2 0 · · · e+iθ2 rq−1


(41)

with rs = 2 cos(2παs − θ1) (s = 0, 1, 2.., q − 1). Componentwise, the eigenvalue
equation can be expressed as

e−iθ2g(s+ 1) + e+iθ2g(s− 1) + 2 cos(2παs− θ1)g(s) =
E

Ke−SE/~
g(s) (42)

with g(s+ q) = g(s). (42) is the well-known Harper’s equation.

The spectrum of the Harper equation was analyzed mainly by Hofstadter using
trasnfer-matrix techniques. In particular, Hofstadter’s work emphasized the fractal
and self-similar structure of the resulting spectrum. Figure 1 shows the graph of the
spectrum of Harper’s equation as a function of α. Can you see a butterfly there?
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