Gravitational waves from phase transitions: an analytic approach

Ryusuke Jinno (IBS-CTPU)

Based on arXiv:1605.01403 (PRD95, 024009) & 1707.03111 with Masahiro Takimoto (Weizmann Institute) Jan. 8, 2018, High 1 workshop

Introduction

ERA OF GRAVITATIONAL WAVES

Detection of GWs from BH & NS binaries \rightarrow GW astronomy has started

- Black hole binary $36M\odot + 29M\odot \rightarrow 62M\odot$
- Frequency ~ 35 to 250 Hz
- Significance > 5.1 σ

ERA OF GRAVITATIONAL WAVES

Next will be GW cosmology with space interferometers

ERA OF GRAVITATIONAL WAVES

Sensitivity curves for current & future experiments

ROUGH SKETCH OF PHASE TRANSITION & GW PRODUCTION

How thermal first-order phase transition produces GWs

ROUGH SKETCH OF PHASE TRANSITION & GW PRODUCTION

How thermal first-order phase transition produces GWs

ROUGH SKETCH OF PHASE TRANSITION & GW PRODUCTION

GWs just redshift as non-interacting radiation after production

0.1-1 Hz detectors sensitive to EW, TeV, PeV physics

TALK PLAN

Ø. Introduction

- I. Bubble dynamics in first-order phase transitions
- 2. Analytic approach to GW production
- 3. Future prospects

Two main players : scalar field & plasma [e.g. Espinosa et al., JCAP06(2010)028]

- Walls (where the scalar field value changes) want to expand ("pressure")
- Walls are pushed back by plasma ("friction")

• Walls make thermal plasma motion : <u>Case I</u> $v_w \gtrsim 1/\sqrt{3}$ (Detonation)

plasma bulk motion

Two main players : scalar field & plasma [e.g. Espinosa et al., JCAP06(2010)028]

- Walls (where the scalar field value changes) want to expand ("pressure")
- Walls are pushed back by plasma ("friction")
- Walls make thermal plasma motion : <u>Case 2</u> $v_w \lesssim 1/\sqrt{3}$ (Deflagration)

plasma bulk motion

 $\rightarrow v_w$

Bubbles start to nucleate

- Nucleation rate (per unit time & vol)

$$\Gamma(t) \propto e^{\beta t}$$

Bubbles collide

- Scalar field damps soon after collision
- Plasma bulk motion continues to propagate
 "sound waves"

 $\left(\partial_t^2 - c_s^2 \nabla^2\right) u^i = 0$ u^i : fluid velocity field

<u>Note</u> velocity changes from v_w to c_s

- Thickness of the bulk motion is fixed

at the time of collision

Turbulence develops

- Nonlinear effect appears at late times

"turbulence"

THREE SOURCES OF GWS

GWs $\Box h_{ij} \sim T_{ij}$

2 7 7

[e.g. Caprini et al., JCAP 1604(2016)]

I.Walls (energetically subdominant)

collide and damp soon

"bubble collision"

2. Plasma bulk motion continues to propagate

"sound waves"

3.At late times,

sound waves develop into nonlinear regime

"turbulence"

NECESSITY OF ANALYTIC APPROACH

What we do when we predict GWs in particle physics models

Why ? Imagine any successful field of physics e.g. CMB, lattice QCD, ...

TALK PLAN

Ø. Introduction

- V. Bubble dynamics in first-order phase transitions
- 2. Analytic approach to GW production
- 3. Future prospects

THE SYSTEM WE WANT TO UNDERSTAND

Let us solve the following system

THE SYSTEM WE WANT TO UNDERSTAND

Let us solve the following system

- Cosmic expansion neglected
- Bubbles nucleate with rate Γ (Typically $\Gamma \sim e^{\beta t}$ in thermal transitions)
- Bubble shells

(parametrizing both scalar & plasma bulk motion) are approximated to be thin

THE SYSTEM WE WANT TO UNDERSTAND

Let us solve the following system

- Shells become more and more energetic

 $T_{ij} \propto (bubble radius)$

- They lose energy & momentum after first collision $T_{ij} \propto T_{ij}$ @ collision × $\frac{(\text{bubble radius @ collision})^2}{(\text{bubble radius})^2}$

× (arbitrary damping func. D)

THIS SYSTEM IS SOLVABLE

We wrote down GW spectrum in this system analytically, essentially from causality

1707.03111: After a short calculation (I year and half)

Full derivation takes too long

→ we illustrate the derivation in a simplified setup : Envelope approximation

DEFINITION OF GW SPECTRUM

Let's focus on transition time, since redshift after production is trivial

• What we want to know : $\rho_{GW}(t_{end}, k) = GW$ energy density per each wavenumber k

DEFINITION OF GW SPECTRUM

Let's focus on transition time, since redshift after production is trivial

CALCULATION OF $\langle TT \rangle$

[Jinno & Takimoto '16 & '17]

- **Calculating** $\langle T(t_x, \vec{x})T(t_y, \vec{y}) \rangle_{\text{ens}}$ means ...
 - Fix spacetime points $x = (t_x, \vec{x})$ and $y = (t_y, \vec{y})$
 - Find bubble configurations s.t. EM tensor T is nonzero at x & y

CALCULATION OF $\langle TT \rangle$

[Jinno & Takimoto '16 & '17]

- Only two types of configurations exist :
 - Single-bubble

FINAL RESULT FOR ENVELOPE CASE

The spectrum becomes sum of two contributions

$$\rho_{\rm GW}(t_{\rm end},k) \propto \Delta^{(s)} + \Delta^{(d)}$$

- Single-bubble spectrum

- Double-bubble spectrum

BEYOND THE ENVELOPE

Interception (= collision) complicates the calculation

once we consider "beyond the envelope"

BEYOND THE ENVELOPE: FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [Jinno & Takimoto '17]

I. single-bubble + 2. double-bubble

$$\begin{split} \Delta^{(s)} &= \int_{-\infty}^{\infty} dt_x \int_{-\infty}^{\infty} dt_y \int_{v|t_{x,y}|}^{\infty} dr \int_{-\infty}^{t_{\max}} dt_n \int_{t_n}^{t_x} dt_{xi} \int_{t_n}^{t_y} dt_{yi} \\ & \frac{k^3}{3} \begin{bmatrix} e^{-I(x_i,y_i)} \ \Gamma(t_n) \ \frac{r}{r_{xn}^{(s)} r_{yn}^{(s)}} \\ & \times \left[j_0(kr) \mathcal{K}_0(n_{xn\times}, n_{yn\times}) + \frac{j_1(kr)}{kr} \mathcal{K}_1(n_{xn\times}, n_{yn\times}) + \frac{j_2(kr)}{(kr)^2} \mathcal{K}_2(n_{xn\times}, n_{yn\times}) \right] \\ & \times \partial_{txi} \left[r_B(t_{xi}, t_n)^3 D(t_x, t_{xi}) \right] \partial_{tyi} \left[r_B(t_{yi}, t_n)^3 D(t_y, t_{yi}) \right] \cos(kt_{x,y}) \end{split}$$

BEYOND THE ENVELOPE: FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [Jinno & Takimoto '17]

BEYOND THE ENVELOPE: FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [Jinno & Takimoto '17]

I. single-bubble + 2. double-bubble

$$\begin{split} \Delta^{(d)} &= \int_{-\infty}^{\infty} dt_x \int_{-\infty}^{\infty} dt_y \\ &\int_{0}^{\infty} dr \int_{-\infty}^{t_x} dt_{xn} \int_{-\infty}^{t_y} dt_{yn} \int_{t_{xn}}^{t_x} dt_{xi} \int_{t_{yn}}^{t_y} dt_{yi} \int_{-1}^{1} dc_{xn} \int_{-1}^{1} dc_{yn} \int_{0}^{2\pi} d\phi_{xn,yn} \\ &\frac{k^3}{3} \begin{bmatrix} \Theta_{\rm sp}(x_i, y_n) \Theta_{\rm sp}(x_n, y_i) e^{-I(x_i, y_i)} \Gamma(t_{xn}) \Gamma(t_{yn}) \\ &\times r^2 \left[j_0(kr) \mathcal{K}_0(n_{xn}, n_{yn}) + \frac{j_1(kr)}{kr} \mathcal{K}_1(n_{xn}, n_{yn}) + \frac{j_2(kr)}{(kr)^2} \mathcal{K}_2(n_{xn}, n_{yn}) \right] \\ &\times \partial_{txi} \left[r_B(t_{xi}, t_{xn})^3 D(t_x, t_{xi}) \right] \partial_{tyi} \left[r_B(t_{yi}, t_{yn})^3 D(t_y, t_{yi}) \right] \cos(kt_{x,y}) \end{bmatrix} \end{split}$$

NUMERICAL RESULT

• Single-bubble (Damping function $D = e^{-(t-t_i)/\tau}$, t_i : interception time)

NUMERICAL RESULT

Single-bubble

NUMERICAL RESULT

Double-bubble

Wavenumber k sourced when the typical bubble size grows to ~ 1/k

THIN-WALL NUMERICAL SIMULATION

Recently cross-checked by thin-wall numerical simulation by Prof. Konstandin

• What are the implications of our result to the REAL system?

What are the implications of our result to the REAL system?

GW spectrum discussed in the literature

GW spectrum discussed in the literature

GW spectrum discussed in the literature

GW spectrum may be more rich & structureful than previously thought

Sound shell model for GW enhancement (for experts) [Hindmarsh '16]

TALK PLAN

Ø. Introduction

V. Bubble dynamics in first-order phase transitions

2. Analytic approach to GW production

3. Future prospects

FUTURE PROSPECTS

"Can we make GWs CMB?"

- Many things to do:
 - Make more realistic prediction
 by accommodating propagation velocity change
 - Cross-check with thin-wall numerical simulations → establish low-freq. regime
 - Subtracting above from full numerical simulation will tell us "really β/H enhancing part" of sound waves
 - Other questions e.g. how long sound waves last?
 We can divide problems into smaller pieces...

CONCLUSION

We developed an analytic approach to GW production in phase transitions,

which will describe the low-frequency regime of GW spectrum

- Will help to interpret numerical simulation results
 - and to gain insight on the physics encoded in the spectrum
- Still many things to do: Let's prepare for LISA

SOURCES FOR COSMOLOGICAL GWS

- Inflationary quantum fluctuations ("primordial GWs")
- Preheating (particle production just after inflation)
- Cosmic strings, Domain walls
- First-order phase transition can occur in many physics models
 - Electroweak sym. breaking (w/ extension)
 - B-L breaking

- PQ sym. breaking
- Breaking of GUT group
- Strong dynamics ... and so on

Two main players : scalar field & plasma

[e.g. Espinosa et al., JCAP06(2010)028]

- Walls (where the scalar field value changes) want to expand ("pressure")
- Walls are pushed back by plasma ("friction")

Pressure & friction are determined by

Pressure ~
$$\alpha \equiv \frac{\rho_{\text{released}}}{\rho_{\text{rad}}}$$
 ~ $(\rho_{\text{rad}})/\rho_{\text{rad}}$

Friction ~ η (coupling btw. scalar field & plasma) × v_w (wall velocity)

"Pressure vs. friction" gives terminal velocity of walls

 $\left\{ \begin{array}{ll} \text{Pressure} ~ \boldsymbol{\sim} ~ \alpha \\ \text{Friction} ~ \boldsymbol{\sim} ~ \eta \times v_w \end{array} \right. \rightarrow v_w \left\{ \begin{array}{ll} \text{increasing in} ~ \alpha \\ \text{decreasing in} ~ \eta \end{array} \right. \right\}$

Walls drag fluid as they propagate

Large v_w ($\gtrsim 1/\sqrt{3}$) : Detonation

"Pressure vs. friction" gives terminal velocity of walls

Pressure ~ α \rightarrow v_w v_w $fincreasing in \alpha$ Friction ~ $\eta \times v_w$ ω v_w $decreasing in \eta$

Walls drag fluid as they propagate

Small v_w ($\lesssim 1/\sqrt{3}$): Deflagration

- Understanding until ~ 2016
 - $\alpha \gtrsim \mathcal{O}(0.1)$: Large energy release

 $\alpha \lesssim \mathcal{O}(0.1)$: Small energy release – plasma bulk motion

[e.g. Bodeker & Moore, JCAP 0905 (2009) 009 Espinosa et al., JCAP 1006 (2010) 028]

- Plasma friction cannot balance with pressure
- Walls approach the speed of light
- Energy accumulates in walls

(to experts :

this is detonation case)

- Plasma friction gets balanced with pressure
- Walls approach terminal velocity
- Energy accumulates in plasma bulk motion

Understanding from 2017 ~

 $lpha\gtrsim \mathcal{O}(0.1)$: Large energy release – plasma bulk motion

 $\alpha \lesssim \mathcal{O}(0.1)$: Small energy release – plasma bulk motion

[Bodeker & Moore '17]

High-terminal velocity

- Plasma friction does balance with pressure
- Walls approach high terminal velocity
- Energy accumulates in plasma bulk motion

Low-terminal velocity

- Plasma friction gets balanced with pressure
- Walls approach terminal velocity
- Energy accumulates in plasma bulk motion

GRAVITATIONAL WAVES ?

Transverse-traceless part (tensor part) of the metric (2dof)

$$ds^{2} = -dt^{2} + a^{2}(t)(\delta_{ij} + 2h_{ij})dx^{i}dx^{j}$$
 $h_{ii} = \partial_{i}h_{ij} = 0$

Action is similar to massless scalar

$$S_{\text{grav}} = \int d^4x \sqrt{-g} M_P^2 \left[\frac{1}{2} \dot{h}_{ij}^2 - \frac{1}{2a^2} (\nabla h_{ij})^2 \right] \qquad M_P h_{ij} : \text{canonical}$$

Coupled to the energy-momentum tensor of the system

FRICTION ON THE WALL

FRICTION ON THE WALL

• $I \rightarrow 2$ process

- number density γ-enhanced
- contribution from each particle almost constant in γ

DEFINITION OF GW SPECTRUM

Let's focus on transition time, since redshift after production is trivial

• What we want to know : $\rho_{GW}(t_{end}, k) = GW$ energy density per each wavenumber k

 $\begin{array}{c} \rho_{\rm GW}(t_{\rm end},k) \sim \langle h_{ij}(t_{\rm end},k)h_{ij}^*(t_{\rm end},k) \rangle \sim \int_{t_{\rm start}}^{t_{\rm end}} dt_x \int_{t_{\rm start}}^{t_{\rm end}} dt_y \ \cos(k(t_x - t_y)) \ {\rm F.T.} \left[\langle T_{ij}(t_x,{\bf x})T_{ij}(t_y,{\bf y}) \rangle \right] \\ \\ \begin{array}{c} {\rm Green}(t_{\rm end},t_x) \\ {\rm EM \ tensor} \\ ({\rm indices \ omitted}) \\ T(t_y,k) & & & & & & & & \\ {\rm Green}(t_{\rm end},t_y) \end{array} \right\} \rho_{\rm GW}(t_{\rm end},k) \\ \\ \end{array} \right\} \rho_{\rm GW}(t_{\rm end},k) \\ \begin{array}{c} {\rm green}(t_{\rm end},t_y) \\ {\rm e.g. \ Caprini \ et \ al., \ PRD77 \ (2008)]} \end{array} \right]$

CALCULATION OF $\langle TT \rangle$

[Jinno & Takimoto '16 & '17]

- **Calculating** $\langle T(t_x, \vec{x})T(t_y, \vec{y}) \rangle_{\text{ens}}$ means ...
 - Fix spacetime points $x = (t_x, \vec{x})$ and $y = (t_y, \vec{y})$
 - Find bubble configurations s.t. EM tensor T is nonzero at x & y,

i.e. bubble shells are on x & y

CALCULATION OF $\langle TT \rangle$

[Jinno & Takimoto '16 & '17]

Only two types of configurations exist :

ILLUSTRATION: SINGLE-BUBBLE SPECTRUM

NUMERICAL RESULT FOR ENVELOPE CASE

Consistent with numerical simulation within factor ~2

[Jinno & Takimoto '16]

WHY SINGLE-BUBBLE MATTERS

Illustration with envelope

[[]Jinno & Takimoto, PRD95 (2017)]

- Two bubble-wall fragments must remain uncollided until they reach x and y
- Other parts of the bubble might have collided already
- In this sense, breaking of spherical sym. is automatically taken into account

SELF INTRODUCTION

Name : Ryusuke Jinno / 神野 隆介 / 진노 류스께

Career: 2016/3 : Ph.D @ Univ. of Tokyo (supervised by Takeo Moroi)
 2016/4-8 : JSPS fellow @ KEK, Tsukuba, Japan
 2016/9- : Research Fellow @ IBS-CTPU, Korea

- Research interest & recent works (~ I year)
 - Inflation : Hillclimbing inflation (unexplored branch of inflatoinary attractor)
 Hillclimbing Higgs inflation (new realization of Higgs inflation)
 - (P)reheating : Preheating in Higgs inflation (discovery of main preheating channel)
 - Gravitational waves : Analytic approach to GW poduction