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ERATOFGRAVITATIONAL WAVES

= Sensitivity curves for current & future experiments
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How thermal first-order phase transition produces GWs
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&G SKE TEH COF
2 ASE T RANSEHIOIN & LV EROIDUICT N

GWs just redshift as non-interacting radiation after production

frequency f X T

Transition time Redshift : energy PGW X a—4 i

t
t=tq
Frequency & energy scale correspondence
% )
b I B 14
Jpen e (H) (107 GeV> AT
8 >

Temperature of the Universe
fo : Present GW frequency o : SR
@ transition time

0.1-1 Hz detectors sensitive to EW, TeV, PeV physics
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@. Introduction
|. Bubble dynamics in first-order phase transitions
2. Analytic approach to GWV production

3. Future prospects
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BEHAVIOR OF BUBBLES

Two main players : scalar field & plasma (e Espinosa ecal, JCAPO6(2010)028]

false
pressure

- Walls (where the scalar field value changes)

want to expand (“‘pressure’)

scalar+plasma
dynamics

friction - Walls are pushed back by plasma (“friction”)

true

Walls make thermal plasma motion : Case | vy, 2 1/v/3 (Detonation)

plasma bulk motion

> = | Uy

true —» false

> >
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BEHAVIOR OF BUBBLES

Two main players : scalar field & plasma (e Espinosa ecal, JCAPO6(2010)028]

false
pressure

- Walls (where the scalar field value changes)

want to expand (“‘pressure’)

scalar+plasma
dynamics

friction - Walls are pushed back by plasma (“friction”)

true

Walls make thermal plasma motion : Case2 v, S 1/V/3 (Deflagration)

plasma bulk motion —» VU

true —p false
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L NAPHCS AR TER COLEISIONN

( Bubbles start to nucleate )

O

O

Ryusuke Jinno

- Nucleation rate (per unit time & vol)

M) « eb*
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L NAPHCS AR TER COLEISIONN

Bubbles expand )

- Bubbles expand, keeping

_(thickness of bulk motion)
(bubble radius)

typically )

= const: (
e

- Bulk motion carries most of the released energy

- Typically collide At ~ 1/ after nucleation

Ryusuke Jinno 06 /22



L NAPHCS AR TER COLEISIONN

[ Bubbles collide )

_ - Scalar field damps soon after collision

Vaw - Plasma bulk motion continues to propagate
-

“sound waves”’

(8? = C§V2) w' =0 u":fluid velocity field

Note velocity changes from ¥y, to Cs
\_\ - Thickness of the bulk motion is fixed

at the time of collision

Ryusuke Jinno 06 /22



LHNAPHC S AR TER COLEISIONN

[ Turbulence develops j

- Nonlinear effect appears at late times

“turbulence”

Ryusuke Jinno 06 /22



THREESOURE S (I (3

Classification of GWV sources [e.g. Caprini et al., |CAP 1604(2016)]

GWs hij ~ Tij
? ? ? |.Walls (energetically subdominant)

collide and damp soon

“bubble collision”

- 2. Plasma bulk motion continues to propagate
“sound waves”

3.At late times,

sound waves develop into nonlinear regime

“turbulence”

Ryusuke Jinno 01722



[Hindmarsh et al.‘15]

“bubble collision”

- 2. Plasma bulk motion continues to propagate

sound waves’’

¢

’

3.At late times

sound waves develop into nonlinear regime

turbulence”

(X4

01722
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PeECEsil T L
ANALEHC APERCIAL

What we do when we predict GVWVs in particle physics models

Particle physics Parameters Prediction on
ﬁ . . ﬁ
model relevant to phase transition GWs

N

e.g. - lransition temperature
- Nucleation rate ...and so on

| want to make our understanding on () “two-wheel:

Numerical

Analytic

+
understanding understanding

Why ? Imagine any successful field of physics e.g. CMB, lattice QCD, ...

Ryusuke Jinno 08 /22
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@. Introduction
W. Bubble dynamics in first-order phase transitions
2. Analytic approach to GWV production

3. Future prospects
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FE oY 31
WE WANT TO UNDERSTAND

Let us solve the following system
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FE oY 31
WE WANT TO UNDERSTAND

Let us solve the following system

- Cosmic expansion neglected

- Bubbles nucleate with rate I

(Typically I' ~ eBt in thermal transitions)

- Bubble shells

(parametrizing both scalar & plasma bulk motion)

are approximated to be thin

Ryusuke Jinno 09 /22



FE oY 31
WE WANT TO UNDERSTAND

Let us solve the following system

. - Shells become more and more energetic

T;; o< (bubble radius)

- They lose energy & momentum after first collision

(bubble radius @ coIIision)2

1;; o< T,; @ collision x
; i@ (bubble radius)?

X (arbitrary damping func. D)

Ryusuke Jinno 09 /22



THIS ST M S SOV A E

We wrote down GW spectrum in this system analytically, essentially from causality

|707.03111: After a short calculation
(I year and half)

Full derivation takes too long

— we illustrate the derivation in a simplified setup : Envelope approximation

i

Ryusuke Jinno [0%/522



LRI IO COF CaVV SR TRUIM

Let’s focus on transition time, since redshift after production is trivial

& Transition time ) Redshift i
—I—I—H—I—> t

& t = lstart L= tend) t =1

What we want to know : paw (tend, k) = GWV energy density per each wavenumber k

tstart

tend tend
[ng(tend, P T k)hy; (tend, k)) ~ dtx/ dt, “eos(k(ty =1, ) WEREE (tx,x)Ti-(ty,y)ﬂj
lstart

Green(tend, tz)

5 h(tend, k
2 Sk h( ; k) } Paw (tend, k) i
. . . ten 7
(indices omitted) T(ty, k) M (e k)

Green(t t
( end y) [e.g. Caprini et al., PRD77 (2008)]
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LRI IO COF CaVV SR TRUIM

Let’s focus on transition time, since redshift after production is trivial

Redshift i

Message
GW spectrum is essentially

( Transition time

What we wa
two-point ensemble average
pew (tend, k) ~ (h:)
<TT?>
T tx, k M
EM tensor ( ) hilsnd k)
; : }pGW(tendak)
. . . ten :
(indices omitted) T(ty, k) M (e k)

Greenit i)

[e.g. Caprini et al., PRD77 (2008)]
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CALCULATION OF (T'T)

[Jinno & Takimoto ’16 & ’17]

Calculating (T(tz, ©)T(ty,9))..s Means ...
- Fix spacetime points z = (t,,Z) and y = (t,,%)

- Find bubble configurations s.t. EM tensor 1’ is nonzeroat z &y

—

T, Y i 3
L Y
at time ¢, °, . attime ¢, [N

@

A 3 ¢
) Y4
s Y 4

A ¢
nucleation point *

L]

74
1
|
":

robabilit
- Calculate { ¥ .

} for such configurations and sum up
value of T'(t,,Z)T(ty,¥)

Ryusuke Jinno 25522



CALCULATION OF (T'T)

Only two types of configurations exist :

- Single-bubble

7 7
B

> .
at tlme tCC \‘ 4 at tlme ty
‘

A 04
s ¢
A ¢
nucleation point *

- Double-bubble

4

o
~

[Jinno & Takimoto ’16 & ’17]

X

Time ‘ /

y

Space
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FINAL RESULT
FOR ERIVELOPE CASE

The spectrum becomes sum of two contributions

GGW(tenda k) X A(S) TS A(d))

- Single-bubble spectrum

a7 T 1(vkry) o Ja(vhr)
A(S)z/ dt, / dr, v¥kd— kr.)S J1(Vkry) o v) g kt,
—00 ’y |ty ot I(tz,y, Tv) ]O(U " ) 0+ vkry 1¥ (’Uk’f'v)2 ? COS( ’y)

- Double-bubble spectrum

A@ _ / dtx,y/| |drv v3k3z(te_ LRI B T Dty ) cos(hy)
—00 t:z:,y

zyy )2 (VETy)?
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e O LR FINVELCOPE

Interception (= collision) complicates the calculation

once we consider “beyond the envelope”

>wa||s

intercepted

uninkerc

[\

Ryusuke Jinno
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e O TRV P
FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [Jinno & Takimoto ‘17]

(1.)single-bubble + 2. double-bubble

A = /dt/dt/lt dr/ dt/dt/dt

e~ @9 (¢,)

RORG

k® '
i . J1(kr)
3 X [jo(kT)’Co(nmnx nynx) + kr (kT 2

| X Ot [TB (t:z:ia tn)sD(tzatmi)] atyi [TB(tyi, tn)sD(ty’tyi)] COS(ktz,y)

j2 (kr)

’Cl (naznx ’ nynx) +

) ’C2 (na:nx ’ nynx)

Ryusuke Jinno
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BEOIND THE BNV (e
FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [linno & Takimoto ‘17]

General nucleation rate
(1.)single-bubble
/ & wall velocity

A(s)—/ dt/ dt, é? d'r/ dt/ dtm/ dt,;
'vlta:yl

e~ D (t (s) ®

T:z:n'ryn ( ) ( )
K- , g1(kr jo(kr
3 X [jo(kT)’CO(namXanynx) + kr (k‘l")2

| X 8ta:i [TB (t:z:ia t'n) (taza ta:i) atyi [TB (tyi’ t’n)3D(ty’ t'yi)] COS(ktz,y)

’Cl (naznx ’ nynx) +

’C2 (nznx ’ nynx )

General damping function after collision
15; o< (bubble radius)'2 X

Ryusuke Jinno
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BEOIND THE BNV (e
FINAL EXPRESSIONS

Full expression reduces to only ~10-dim. integration [Jinno & Takimoto ‘17]

. single-bubble + (2,) double-bubble

A@D — / dt, / dt,
2
/ dr / dt.. / dtyn / dt.; / di,; / dCyr, / dcyn / AdPznyn

@ (s yn)@ Ly y)e_l(m y)P( ten) (yn)

J1(kr) ja(kr)

3 XTr ljo(kT)’Co(nmn,nyn) + . (k’l‘) ,C (n:z:nanyn)]
X Ogi [TB(bzis ton) D (tzs tai) | Onyi [rB(Eyis tyn)  D(ty, ty:) | cos(ktzy)

Kzl (n:z:n nyn) +

Ryusuke Jinno 16 /22



NUMERICAL RESULT

Single-bubble (Damping function D = ¢~(!=%)/7  ¢; : interception time)
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(coincide with [Huber&Konstandin ‘08] )
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NUMERICAL RESULT

Single-bubble

A®)

1_

Sourcing saturates for fixed k

102

1074 i
i

106 é/_’_ _0/_’_“
¢

10-8 =
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at late times
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102 101
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NUMERICAL RESULT

Double-bubble

[515:22
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INTERPRETATION

Wavenumber k sourced when the typical bubble size grows to ~ |/k

[

Ryusuke Jinno

/] / /GWs with\ -\ \\
(" /wavenumber k), D

-y
I

M !

o
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THIN-WALL

NUMERICAL SIMULATION

Recently cross-checked by thin-wall numerical simulation by Prof. Konstandin

Ryusuke Jinno
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RAE R AN
Ritet1 St BoC LURERH SEEC A RGN

What are the implications of our result to the REAL system?

4 GW amplitude

7 =

~ ~

typical typical
bubble size sound shell size GW frequency

| |
| | >
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IEEIC AR ICINS:
Ritet1 St BoC LURERH SEEC A RGN

What are the implications of our result to the REAL system?

4 GW amplitude

Low frequency regime , High frequency regime

(Our results)

typical

bubble size

typical

sound shell size GW frequency
I
| >
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RAE R AN
Ritet1 St BoC LURERH SEEC A RGN

GW spectrum discussed in the literature

4 GW amplitude (according to LISA working group)

— enhancement
ki

spectrum (@ sound shell

- grows until Hubble time
typical : | typical

bubble size sound shell size GW frequency

| |
| | >

Ryusuke Jinno 20722



RAE R AN
Ritet1 St BoC LURERH SEEC A RGN

GW spectrum discussed in the literature

4 GW amplitude

Nonlinear dynamics
starts at late times

(turbulence)

typical typical

bubble size sound shell size GW frequency

| |
| | >

Ryusuke Jinno 20722



IEEIC AR ICINS:
Ritet1 St BoC LURERH SEEC A RGN

GW spectrum discussed in the literature

4 GW amplitude
1078
10-! | pics
>
z hes
S 10
-~
10-"!
107 s 104 0.001 0.01 0.1
typical f[Hz] [Caprini et al.’ 6]
bubble size sound shell size GW frequency
[ l
I I >
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RAE R AN
Ritet1 St BoC LURERH SEEC A RGN

GW spectrum may be more rich & structureful than previously thought

4 GW amplitude

Structure growing

to lower frequency

fl
e o i

typical typical

bubble size sound shell size GW frequency

| |
| | >

Ryusuke Jinno 20722



I LI A0 S:
Ritat1 St Bl HURERE SEEC A RG]

All these structures tell us about

the physics which drives the transition

typical typical
bubble size sound shel size GW frequency

Ryusuke Jinno 20722




RAE R AN
Ritet1 St BoC LURERH SEEC A RGN

Sound shell model for GW enhancement (for experts) [Hindmarshi6]

4 GW amplitude
Still

growing structue

to lower frequency
fl

typical typical

bubble size sound shell size GW frequency

| |
| | >
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TALK PLAN

@. Introduction
W. Bubble dynamics in first-order phase transitions
«. Analytic approach to GW production

3. Future prospects

Ryusuke Jinno



ELHUIRE PRODGERC TS

“Can we make GWs CMB?”

Many things to do:

- Make more realistic prediction

by accommodating propagation velocity change

- Cross-check with thin-wall numerical simulations — establish low-freq. regime

- Subtracting above from full numerical simulation

will tell us “really f/H enhancing part” of sound waves

- Other questions e.g. how long sound waves last?

We can divide problems into smaller pieces...

Ryusuke Jinno

'(H.R.)"'dQqw/d log k

(H.t)~

—
9
oo

,_.

ISy
L
o

—
o

H
9

H
9
L

1000/T:
2000/,
3000/T;
4000/,

“24 _ 5000/T;

— 6000/T,

wl —— 7000/T,

_kl

=~

100

10! 102
kR,

[Hindmarsh et al.’ 7]
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CONCLUSION

We developed an analytic approach to GW production in phase transitions,

which will describe the low-frequency regime of GW spectrum

Will help to interpret numerical simulation results

and to gain insight on the physics encoded in the spectrum

Still many things to do: Let’s prepare for LISA

Ryusuke Jinno 2707
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SRS FOOR
COSHIOL OGICAL (VWS

Inflationary quantum fluctuations (“primordial GWs")

Preheating (particle production just after inflation)

Cosmic strings, Domain walls

First-order phase transition

- Electroweak sym. breaking

(w/ extension)

- B-L breaking

Ryusuke Jinno

can occur in many physics models

- PQ sym. breaking
- Breaking of GUT group

- Strong dynamics ...and so on

/22



BEHAVIOR OF BUBBLES

Two main players : scalar field & plasma [e.g. Espinosa et al., JCAP06(2010)028]

false
pressure

- Walls (where the scalar field value changes)

want to expand (“‘pressure”)

scalar+plasma
dynamics

friction - Walls are pushed back by plasma (“friction”)

true

Pressure & friction are determined by

P — Preleased
ressure = G t / Prad

Friction ~ 7 (coupling btw. scalar field & plasma) X vy, (wall velocity)

Ryusuke Jinno 129



BEHAVIOR OF BUBBLES

“Pressure vs. friction” gives terminal velocity of walls

Walls drag fluid as they propagate

-

Pressure ~ «

\Friction ~ 1] X Uy,

Increasing in o
— Uy

-

decreasing in 7] i

Large U ( > 1/4/3) : Detonation

_>U,w

true

> >
> >

false

Ryusuke Jinno

plasma bulk motion

/22



BEHAVIOR OF BUBBLES

“Pressure vs. friction” gives terminal velocity of walls

i 2

Pressure ~ « increasing in «
— Uy

kFriction o e s s decreasing in 7] B

Walls drag fluid as they propagate

Small Uy (S1/V3): Deflagration

_p’Uw

true false

> >

plasma bulk motion

Ryusuke Jinno k)



BEHAVIOR OF BUBBLES

[e.g. Bodeker & Moore, JCAP 0905 (2009) 009
Espinosa et al., JCAP 1006 (2010) 028]

Understanding until ~ 2016

a = 0(0.1) : Large energy release — [Runaway)

- Plasma friction cannot balance with pressure
pressure

- Walls approach the speed of light

friction

- Energy accumulates in walls

wall

a < 0(0.1) : Small energy release — (Terminal velocity) (
plasma bulk motion

— =

pressure
—

to experts :

this is detonation case)

- Plasma friction gets balanced with pressure

- Walls approach terminal velocity

—» friction

- Energy accumulates in plasma bulk motion

Cs wall

Ryusuke Jinno /722



BEHAVIOR OF BUBBLES

Understanding from 2017 ~ [Bodeker & Moore *17]

a 2 O0(0.1) : Large energy release — [ (High-terminal velocity)

plasma bulk motion

=

pressure

- Plasma friction does balance with pressure

frictipn & 7w _WWalls approach high terminal velocity
<tran ition

splitting > - Energy accumulates in plasma bulk motion

=

Cs wall

a < 0(0.1) : Small energy release — (Low-terminal veIocity)
plasma bulk motion

— =

pressure
—

- Plasma friction gets balanced with pressure

- Walls approach terminal velocity

—» friction

- Energy accumulates in plasma bulk motion

Cs wall

Ryusuke Jinno /22



GRAVITATIONAL WAVES /¢

Transverse-traceless part (tensor part) of the metric (2dof)

ds? = —dt* + a?(t)(d;; +[2hs ) dzdx’ hi; = Oihij =0

Action is similar to massless scalar

§2 1 :
G /d4x\/—gM]% [§h?j — ﬁ(vmj)2 Mph;; :canonical

Coupled to the energy-momentum tensor of the system

Dhij — SWGKij,lekl

el

projection to energy-momentum tensor
transverse-traceless modes (coming from bubbles)

Ryusuke Jinno /22



FRICEION CIN LB VAL

| = | process wall rest frame
: . - number density Y-enhanced
symmetric higgs
- contribution from each particle
o —> o —> Y-suppressed
NS SR s mass Ma,h
momentum ~ 1’ momentum ~ v/’

2 3wl 2 i Aol 2 5
E® = ma,s —|—pz,in E* = ma,,h, +pz,out

~ ’yTS Api1 = Dzin — Pz,out =

Pios1= Va/ (or )3fa(P) x -

Ryusuke Jinno /22



FRICEION CIN LB VAL

| = 2 process

Ryusuke Jinno

wall rest frame

transition rad.

i
mass Mg s mass Mg,k

momentum ~ 1’

E? = m? —I—p;in

a,s

momentum ~ I’

dw 27 /2 L% -

£ [(2g)

g

2TC

- number density Y-enhanced

- contribution from each particle

almost constant in Y

DTS WD) 2
B = ma,h +pz,out

/22



LRI IO COF CaVV SR TRUIM

Let’s focus on transition time, since redshift after production is trivial

& Transition time ) Redshift i
—I—I—H—I—> t

& t = lstart L= tend) t =1

What we want to know : paw (tend, k) = GWV energy density per each wavenumber k

tstart

tend tend
[ng(tend, P T k)hy; (tend, k)) ~ dtx/ dt, “eos(k(ty =1, ) WEREE (tx,x)Ti-(ty,y)ﬂj
lstart

Green(tend, tz)

5 h(tend, k
2 Sk h( ; k) } Paw (tend, k) i
. . . ten 7
(indices omitted) T(ty, k) M (e k)

Green(t t
( end y) [e.g. Caprini et al., PRD77 (2008)]
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CALCULATION OF (T'T)

[Jinno & Takimoto ’16 & ’17]

Calculating (T(tz, ©)T(ty,9))..s Means ...
- Fix spacetime points z = (t,,Z) and y = (t,,%)

- Find bubble configurations s.t. EM tensor T is nonzeroat z &y,

i.e. bubble shells are on z & y

T y E %
& Yy
at time %, *, . attime ¢, [N

74
A 3 24
A ¢

1
|}
\\ ’ i
A ’
nucleation point * * *

probability for such a configuration to occur

@

L]

- Calculate { } and sum up

value of T'(t;,2)T(ty,,y) for such a configuration

Ryusuke Jinno /22



CALCULATION OF (T'T)

Only two types of configurations exist :

-|Single-bubble

T

»
at time ¢ °,
A 3

A 04
s ¢
A ¢
nucleation point *

- Double-bubble

\?j
,’ at time {7,

4

o
~

[Jinno & Takimoto ’16 & ’17]

X

Time ‘ /

y

Space
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L UIS FRA TGN,
SINGLE-BUBBLE SPECTRUM

Necessary and sufficient conditions

- No bubbles nucleate inside past cones s R

(probability denoted by P(z,y))

- One bubble nucleates inside the red diamond

within infinitesimal time interval t, ~ t, +dt,

Resulting expression

(T(@)T(y))ern
prob. for one bubble | ¢ T(AT
— P(x,y)/dtn <to nucleate ) (va Hakis dedied) )

S e S realized in each case

Ryusuke Jinno /22



PRUIBGERIC A RESUL }
ECOR ERNVELGIPE CASE

Consistent with numerical simulation within factor ~2

10—10 i

— Total

== Single
== Double

[Jinno & Takimoto ’1 6]
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WHY SINGLE-BUBBLE MAT TERS

lllustration with envelope

(1)

e

N

(2)

M ]-+f

@ |=[\_/

[Jinno & Takimoto, PRD95 (2017)]

Ryusuke Jinno

- Two bubble-wall fragments
must remain uncollided

until they reach x and y

- Other parts of the bubble
might have collided already

- In this sense, breaking of
spherical sym. is automatically

taken into account

/22
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- Gravitational waves : Analytic approach to GW poduction
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