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Chiral anomaly

- Chiral anomaly [Adler] [Bell, Jackiw]
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- Consistency: axial current conservation vs gauge symmetry
- They can be traded, but cannot be simultaneously removed.

- Cancellation: constrains low energy spectrum in terms of charge
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Guiding principle

- Good guiding principle of model building.
- Ex. SUB)xSU(2)xU(1)
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Constrains the spectrum uniquely
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- Singlets (1,1), not constrained.
- New physics extensions
- Grand Unification, SUSY breaking, ...



Chiral anomaly

- Chiral anomaly [Adler] [Bell, Jackiw]
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- Consistency, low energy spectrum

- Field theory is the low-energy limit of string theory.
- If string theory is UV finite (S-matrix, partition function), so is field theory.

- Adler-Bardeen theorem: anomaly is one-loop exact.



Global consistency condition

In string theory,
anomaly cancellation is promoted to global consistency condition
from one-loop diagram.

- Closed string: - Open string:
- Vacuum-to-vacuum (torus) diagram - - Cylinder and its twisted variants — RR
modular invariance tadpole cancellation.
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- Condition between gauge symmetry F - Constrains the number of D-branes n.
and geometry R.

- F, Rin the low energy theory.
trRANR—tr FANF =0




Modular invariance

Point particle on a circle of circumference /|  [Polchinskivol. 1]
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UV divergent at / - 0.

String on a circle: no such region 7, - 0 in the moduli space
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“Modular invariance cuts off the UV divergences without
spoiling the space-time gauge invariance.”
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Conclusion: partition function and elliptic genus
- Partition function Z(7) = Tr qEOQLo g = ™7

- Modular invariance (main topic today) UV finite condition.
- Anomaly free low energy field theory.
- Works well with perturbative heterotic string.

- Strongly coupled heterotic string
+ non-perturbative objects like N5 (M5 in M-theory)

. Elliptic genus ~ Z(7) = Tr g~oglo (—1)F
- Twisted version often gives us good enough information. Cf. SUSY [Witten]
- Can be calculated using topological string.

- Modular invariance of the elliptic genus gives global consistency condition.
[KSC, S.J.Rey]



Strongly coupled heterotic string

- M-theory on S'/ Z, = heterotic string theory [Horava, Witten]
- At the ends of interval we have separated two Eg’s

- Heterotic string = M2-brane stretched between them.

- String tension & gauge coupling is proportional to R
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Small instantons

- Solution to self-dual equation F=*F: codimg =4, FAF = integer
- Global consistency conditondH=F, ANF; + b AF,b—RAR=0
- Eg > G + commutant unbroken group

1. Shrinking to zero size = Eg unbroken

2. Phase transition: NS5 detached into bulk. [Ganor, Hanany]
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What will be global consistency condition in this case?

I M5's
M9 M9



Modular form

- Partition function is quasi-modular form.
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- Generated by
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- Partition function Z(t) is quasi-modular form. (modular invariance + anomaly)



Bianchi identity

- The partition function/elliptic genus is
- Invariant under T

- Non-invariantunder S 7 (—1) = Z(7)exp (

T

W—Z(trR/\R—trF/\F)) .
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- The non-invariant piece can be expressed in term of FAF, RAR

Anomaly

- Non-invariant piece: Bianchi identity for Kalb-Ramond field

dH =trRAR—tr FAF

- Anomaly cancellation requires it to be zero dH = 0.



Holomorpy vs modular invariance

- The building blocks of partition function/elliptic genus
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E,, 2k Eisenstein series.

- In the holomorphic basis. All is modular form except E,.
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- But homomorphy lost. Cf. anomalous theory.
- Non-invariant phase: consistent relation among F, R, n.



Elliptic genus, with M5-branes

- For strongly coupled heterotic string with M5-branes, we need elliptic genus

Z = Trqlogho(—1)F

- We can calculate it using defect operator via topological vertex [Minahan,
Nemeschansky, Vafa, Warner] [Igbal, Kozcaz, Vafa] [Haghighat et al.]

Es Es With probe M2-branes

M9-M2 vertex Dz1'>, Dyi%

M2-M5-M2 vertex D,J,W,f
M2 : :

To regularize IR divergence

M5's we introduce Q-deformation.
M9 M9

Z =Dy, Dyio Dyiv ... Doi'p
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Application [KSC, S.J.Rey]

- The number of M5-branes n
- The probe M2-branes parameterized by Young tableaux v,

Z =Dy Dy, Dy ... Dty

v
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- With | Depends only on the size
7 (_%> = Z(7)exp (”?Z(trR AR —trF A F)) ~ of the Young tableaux

- this is interpreted as
dH =trRAR—trFAF = Z §*(z — 2z)
1€NSH

- cf. NS5 brane from small instanton.
No information other than four-form. From FAF



Summary

- Anomaly cancellation is lifted to global consistency condition in string theory.
- 1-loop: embedded in partition function / elliptic genus

- We need also the effect of strongly coupled heterotic string
and non-perturbative objects like NS5-branes.

- Requiring both holomorpy and modular invariance, we get global consistency
condition.

dH =trRAR—trFAF =Y (2 2)
1€NSH



