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Several complex variables - one at a time!

A complex (or J-complex) disc is a map φ : D→ M, of the
standard unit disc D ⊂ C to a complex (or almost complex)
manifold M, φ ∈ O(D) ∩ C(D). We will describe methods for
constructing complex discs and discuss their applications.

In Part I we will discuss applications to analytic continuation of
holomorphic an CR functions.

In Part II we will consider applications to symplectic rigidity and
non-squeezing properties of differential equations.
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Part I: Complex discs

Continuity principle
CR manifolds and CR functions
Baouendi-Treves approximation theorem
Bishop’s equation
The edge-of-the-wedge theorem
Minimality
Kneser-Lewy extension theorem
Strip-problems
Analytic continuation from a family of lines
Boundary Hartogs theorems

Alexander Tumanov Complex discs and their applications



Continuity principle

Theorem (Hartogs, Levi, Behnke, Stein, Cartan, Thullen, etc)

Let φt be a family of complex discs in a domain Ω ⊂ Cn and let
φ be a complex disc in Ω. Suppose φt → φ as t → 0 uniformly
in D. Let f ∈ O(Ω). Then f holomorphically extends to a
neighborhood of φ(D).
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CR manifolds

Let M be a smooth real submanifold in Cn. Recall the complex
tangent space at p ∈ M

T c
p (M) = Tp(M) ∩ JTp(M), p ∈ M.

Here J : Cn → Cn is the operator of multiplication by i =
√
−1.

The manifold M is called a CR manifold if dim T c
p (M) does not

depend on p ∈ M. The manifold M is called generic if Tp(M)
spans Tp(Cn) ' Cn over C for all p ∈ M, that is,

Tp(M) + JTp(M) = Cn.

For instance, all real hypersurfaces are generic. If M is generic,
then M is a CR manifold and

dimC T c
p (M) + cod M = n,

where cod M is the codimension of M in Cn. The dimension
dimC T c

p (M) is called the CR dimension of M and is denoted by
dimCR M.
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CR functions

A C1 function f on M is called a CR function if df is C-linear on
T c

p (M), p ∈ M. In other words, f is a CR function if

df ∧ dz1 ∧ · · · ∧ dzn|M = 0.

This condition uses only holomorphic differentials
dzj = dxj + idyj . For a continuous function f on M, we say that f
is a CR function if the above condition holds in the sense of
distributions.
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Baouendi-Treves approximation theorem

Theorem (Baouendi and Treves, 1981)

Let M be a generic manifold in Cn. Then for every point p ∈ M
there is a neighborhood U ⊂ M of p such that for every
continuous CR function f on M there is a sequence of
polynomials fλ such that fλ|U converge uniformly to f |U as
λ→∞.

Let f be a CR function on M. Let φ : D→ Cn be a small
complex disc attached to M, that is φ(∂D) ⊂ M. By the above
theorem, locally f is a limit of a sequence of polynomials fλ.
They converge to f on the boundary φ(∂D). By the maximum
principle, they converge on the set φ(D). Let Ω be a set filled by
small discs attached to M. Then the sequence of holomorphic
functions fλ converge uniformly on Ω. If Ω is an open set in CN ,
then the limit of fλ is holomorphic. If Ω is a CR manifold, then
the limit is a CR function.
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Proof

Let M0 ⊂ M be a maximally real submanifold through p, that is
p ∈ M0, T c(M0) = 0, and dim M0 = n. We introduce
coordinates in Cn in such a way that p = 0 and

Tp(M0) = Rn ⊂ Cn.

We introduce the entire functions

fλ(z) = (λ/π)n/2
∫

M0

f (w)e−λ(z−w)2
dw1 ∧ · · · ∧ dwn,

where (z − w)2 :=
∑

(zj − wj)
2, λ > 0.

After shrinking M0 if necessary

(λ/π)N/2e−λ(z−w)2
dw1 ∧ · · · ∧ dwN

form a δ-shaped sequence as λ→∞. Thus

fλ(z)→ f (z) for z ∈ M0 as λ→∞.
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We now prove that fλ → f in a neighborhood of p ∈ M. Let us
view M0 as a manifold with boundary, and let M1 ⊂ M be a
slight perturbation of M0 with the same boundary.

We define f̃λ =
∫

M1
. . . by integrating the same expression as in

fλ. Then by the same argument, f̃λ(z)→ f (z) for z ∈ M1. But
actually f̃λ(z) = fλ(z) for all z ∈ Cn.
Indeed, M0 and M1 bound a submanifold M01 ⊂ M,
∂M01 = M0 −M1. Since e−λ(z−w)2

is holomorphic and
df ∧ dw1 ∧ · · · ∧ dwn|M = 0, the integrand is a closed form on M.
By the Stokes formula fλ − f̃λ =

∫
M0
−
∫

M1
=
∫

M01
= 0. Thus fλ

converge to f on every perturbation M1 of M0 in M, hence in a
neighborhood of p on M. To approximate f by polynomials, one
takes the Taylor polynomials of fλ. QED
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Bishop’s equation

Theorem (Bishop, 1965)

Let M be a generic manifold in Cn = Ck × Cm, cod M = k,
dimCR M = m. Let p ∈ M. Assume that the projection
w : Cn → Cm maps T c

p (M) isomorphically to Cm. Then for every
q ∈ M close to p there exists a unique analytic disc φ attached
to M having a given w-component and passing through q, that
is, φ(1) = q.

Proof. Let p = 0. We choose w to be part of coordinate
functions in Cn and complete it to a system of holomorphic
coordinates (z = x + iy ,w) ∈ Ck × Cm.
Then we can choose the z coordinates so that Tp(M) has the
equation x = 0, so T c

p (M) has the equation z = 0. Then M has
a local equation

x = h(y ,w),

where h is a smooth function with h(0) = 0 and dh(0) = 0.
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Let ζ 7→ φ(ζ) = (x(ζ) + iy(ζ),w(ζ)) be an analytic disc in Cn.
The disc φ is attached to M if and only if

x(ζ) = h(y(ζ),w(ζ)), |ζ| = 1.

Let T be the Hilbert transform on the unit circle ∂D. We slightly
modify it by putting

T1u := Tu − (Tu)(1).

Since x(ζ) and y(ζ) are harmonic conjugates, they are related
by the Hilbert transform on b∆. Then the function y(ζ) satisfies
the following Bishop’s equation.

y = T1h(y ,w) + y0, y0 = y(1).

The existence and uniqueness of the solution to Bishop’s
equation follow by the implicit function theorem. The solution
defines φ(ζ) for |ζ| = 1. For all ζ ∈ D, the disc is obtained by
harmonic extension. QED
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The edge-of-the-wedge theorem

Let M be a generic manifold in Cn. Let Np(M) := Tp(Cn)/Tp(M)
be the normal space to M in Cn. The spaces Np(M) form the
normal bundle N(M).
Let Γ be an open cone in Np(M). Let U be a neighborhood of p
in M. We can identify Γ with a cone in a transverse plane Π
through p, Π⊕ Tp(M) = Cn. A wedge W with direction cone Γ
is a set of the form

W = ((M ∩ U) + Γ) ∩ U.
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The edge-of-the-wedge theorem

Theorem (Ayrapetian and Henkin, 1981)

Let M ⊂ Cn be generic, and let p ∈ M. Let
Mj 1 ≤ j ≤ k = cod M be manifolds with boundary M. Let
ξj ∈ Tp(Mj)/Tp(M) ⊂ Np(M) point inside Mj and let ξj form a
basis of Np(M). Let Γ be the convex span of ξ, . . . , ξk . Then all
continuous CR functions on M ∪

⋃k
j=1 Mj extend

holomorphically to the same wedge with direction cone Γ′,
where Γ′ ⊂ Γ is any finer cone.

Proof (Ayrapetian, 1989). We show that analytic discs attached
to X = M ∪

⋃k
j=1 Mj fill up a wedge W with edge M and

direction cone Γ′. Then by the Baouendi-Treves approximation
theorem (it still holds in this situation), all CR functions on X
extend to be holomorphic in W , as desired.
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We will write a version of the Bishop equation for X . We first
choose coordinates and introduce a parametric equation

x = h(y ,w , t),

where (z,w) ∈ Ck × Cm = Cn, t ∈ Rk , and h is a smooth
Rk -valued function in a neighborhood of 0. Then the manifold
M has the equation x = h(y ,w ,0) while Mj is defined as
tj > 0, tl = 0 for l 6= j . In these coordinates the cone Γ turns
into Rk

+ := {t ∈ Rk : tj ≥ 0, 1 ≤ j ≤ m}.

Divide the circle ∂D into disjoint arcs ∂D =
⋃k

j=1 γ j and let
ψj ≥ 0, 1 ≤ j ≤ k , be nonzero smooth functions on ∂D, with
support in γj . We define for ζ ∈ b∆, λ ∈ Rk

+

t(ζ) = (λ1ψ1(ζ), . . . , λkψk (ζ)).

We take w(ζ) = w0 = const and y(0) = y0 ∈ Rk . Consider the
Bishop equation

y = Th(y ,w0, t) + y0.

For small λ, the solutions exist and define complex discs
attached to X . They cover the desired wedge. QED
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Minimality

Let M be a CR manifold in Cn. We say that M is minimal at
p ∈ M if there is no proper CR submanifold S ⊂ M through p
such that dimCR S = dimCR M. By “proper” we mean that
dim S < dim M.

We say that M has finite type at p ∈ M if iterated commutators
of complex tangential vector fields span the whole tangent
space Tp(M).
If M has finite type at p ∈ M, then M is minimal at p. Indeed, if
S ⊂ M with the indicated properties exists, then complex
tangent vector fields can be restricted to S, their commutators
stay in Tp(S), so they cannot span the whole space Tp(M). In
case M is real analytic, M is minimal at p if and only if M has
finite type at p.
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The minimality is necessary and sufficient for wedge
extendibility.

Theorem (Tumanov, 1988)

Let M be a generic manifold in CN . Suppose M is minimal at
p ∈ M. Then there is a wedge W with edge M near p such that
all CR functions on M extend to be holomorphic in W.

Theorem (Baouendi and Rothschild, 1990)

Let M be a generic manifold in CN . Suppose M is not minimal
at p ∈ M. Then for every neighborhood U ⊂ M of p there exists
a CR function in U that does not extend to any wedge with
edge M near p.

Thrépreau (1985) proved the above theorems in the
hypersurface case.
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We give a short sketch of the proof that minimality implies
wedge-extendibility.
Let Ap denote the set of all complex discs φ attached to M
through p ∈ M, that is φ(1) = p.
We consider the evaluation maps

F : Ap → M, F(φ) = φ(−1),

G : Ap → Np(M), G(φ) = [φν(1)],

where φν(1) = ∂φ(1)/∂ν is the derivative of φ in the direction of
the inner normal ν to ∂D at 1, and the brackets mean the class
in Np(M). Then F and G are smooth maps. We set

Fφ = RangeF ′(φ) ⊂ Tφ(−1)(M)

Gφ = RangeG′(φ) ⊂ Np(M)
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By lifting φ to the cotangent bundle and using duality, we can
show that

dim M − dim Fφ = cod M − dim Gφ, T c
φ(−1)(M) ⊂ Fφ.

Using the edge-of-the-wedge theorem discussed above, we
can see that if Gφ = Np(M), then all CR functions do extend to
a wedge as desired.
If the main result fails, then we choose a disc φ ∈ Ap with the
highest dim Gφ, which is still less than cod M. Then for this disc
dim Fφ < dim M.
Then by the constant rank theorem, the range of F will contain
a manifold S through φ(−1), dim S < dim M. Since
T c
ψ(−1)(M) ⊂ Fψ for every ψ ∈ Ap, dimCR S = dimCR M.

Finally, one can show that we can replace φ by φ̃, φ̃(ζ) = φ(ζ2),
for which φ̃(−1) = φ̃(1). The constructed submanifold S will
contradict the minimality. QED
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Kneser-Lewy extension theorem

The Baouendi-Treves approximation theorem proved very
useful. We’ve been lucky to have it. What if it was not
available? Would everything break down?

Probably not. Recall the extension to a convex side of a
hypersurface.
Let M = {z ∈ Cn : r(z) = 0} be a smooth hypersurface. Recall
that the Levi form of M is a hermitian form on T c

p (M) defined by

L(p)(ξ, ξ) =
n∑

j,k=1

rjk (p)ξjξk , ξ ∈ T c
p (M),

where rjk = ∂2r/∂zj ∂zk .

Theorem (Kneser, 1936; Lewy, 1956)

Suppose L(p)(ξ, ξ) > 0. Then all CR functions on M extend
holomorphically to the side r(z) < 0 near p.
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Proof by H. Lewy

For simplicity n = 2. Let (z,w) be coordinates in C2. Let Ω be
the convex side of M, and let G be the projection of Ω to the
z-coordinate. Put

Γz = {w ∈ C : (z,w) ∈ M}.

The hypothesis on the Levi form imply that we can choose the
coordinates such that p = (z0,w0), z0 ∈ M, and for every z ∈ G
close to z0, Γz is a simple closed curve in M. (By the
Baouendi-Treves theorem, we can stop here.)

For the extension we have only one candidate

F (z,w) =
1

2πi

∫
Γz

f (z, ζ) dζ
ζ − w

.

We show that F is a holomorphic extension of f as desired.
Obviously, F is holomorphic in w . We will prove F is
holomorphic in z.
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To show that F is an extension, we need the vanishing of the
moments

mk (z) =

∫
Γz

ζk f (z, ζ) dζ, k ≥ 0.

We will see that mk is holomorphic. Note that Γz shrinks into a
point as z → ∂G. Then mk (z)→ 0 as z → 0. Hence mk (z) = 0
for all z ∈ G.

To show that F and mk are holomorphic in z, we put

Φ(z) =

∫
Γz

H(z, ζ) dζ,

where H(z, ζ) is the integrand in the formula for F or mk .
We apply the Morera theorem to Φ. Let γ ⊂ G be a closed loop.
Consider the “torus” T = {(z, ζ) ∈ M : z ∈ γ, ζ ∈ Γz}. Then T
bounds a “solid torus” S ⊂ M obtained by filling the loop γ.
Then by Stokes’ formula, since H is a CR function,∫

γ
Φ(z) dz =

∫
T

H(z, ζ) dζ ∧ dz =

∫
S

dH(z, ζ) ∧ dζ ∧ dz = 0.

QED
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21-st century
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Strip-problems

Let Ω be a domain in complex plane and let Ct be a continuous
one parameter family of Jordan curves such that

⋃
Ct = Ω. Let

f be a continuous function in Ω such that the restrictions f |Ct

extend holomorphically inside Ct . When does this imply that f
is holomorphic in Ω?

This question is still largely open. It is related to inverse
problems for PDE and integral geometry. There are partial
results by Agranovsky, Ehrenpreis, Globevnik, Tumanov, and
others.
Agranovsky answered the question when both the curves and
the function are real analytic.
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Strip-problem

The name “Strip-problems” is due to the following special case.

Theorem (Tumanov, 2004)

Let f be a continuous function in the strip |Im z| ≤ 1. Suppose
for every t ∈ R the restriction of f to the circle
Ct = {z ∈ C : |z − t | = 1} extends holomorphically inside the
circle. Then f is holomorphic in the strip |Im z| < 1.

We note that if we restrict to the family {Ct : |t | < 1− ε} for
some ε > 0, then the result fails. The function f (z) = z2/z
extends inside the circles but is not holomorphic in Ω.
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Testing analyticity on circles

We present a more general result.
Let {Ct : α ≤ t ≤ β}, be a continuous one parameter family of
circles in complex plane C with centers at c(t) ∈ C and radii
r(t) > 0. Let Dt denote the disc bounded by Ct .
Suppose the following hold.

(a) Dα ∩ Dβ = ∅, that is |c(α)− c(β)| > r(α) + r(β).
(b) The functions c(t) and r(t) are piecewise C3 smooth.
The curve t 7→ c(t) is injective and regular, that is c′(t) 6= 0.
(c) No circle Ct is contained in the closed disc Ds for t 6= s,
that is |c(t)− c(s)| > |r(t)− r(s)|.
(d) |c′(t)| > |r ′(t)| whenever defined.
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Theorem (Tumanov, 2007)

Let the family {Ct : α ≤ t ≤ β} satisfy (a)-(d). Let Ω =
⋃

Dt . Let
f : Ω→ C be a continuous function. Suppose for every
α ≤ t ≤ β the restriction f |Ct extends holomorphically to Dt .
Then f is holomorphic in Ω.

The condition (a) is crucial, the others being added for
simplicity and convenience of the proof. The smoothness in
excess of C1 is used only to deal with triple intersections of the
circles. The condition that the circles can’t lie inside one
another is natural because otherwise the values of f on them
are unrelated. We assume the slightly stronger property (c) that
they can’t even touch. The condition (d) is the infinitesimal
version of (c). In fact (c) implies (d) with possible equality, but
for simplicity we assume the strict inequality.
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Proof for a strip

We will use that f extends into Dt = {z ∈ C : |z − t | < 1} for
|t | ≤ 1 + ε for some ε > 0 and prove that f is holomorphic in
Ω =

⋃
|t |<1+ε Dt . We define

Xt = {(z,w) ∈ C2 : (z − t)(w − t) = 1, |z − t | ≤ 1},
Σ = {(z,w) ∈ C2 : w = z}.

One can see that Xt ∩ Xs ⊂ Σ for t 6= s.

Alexander Tumanov Complex discs and their applications



We define M =
⋃
|t |<1+ε Xt . Then M \ Σ is a piecewise smooth

Levi-flat hypersurface in C2. Let ft denote the holomorphic
extension of f inside Ct for |t | < 1 + ε. For (z,w) ∈ Xt we define

F (z,w) = ft (z).

Then F is a continuous CR function on M because F is
holomorphic on the fibers Xt .
We plan to prove that F actually is independent of w . That
would mean that all the extensions ft (z) match at z, and f is
holomorphic.
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Let Ω′ = Ω \ (D−1−ε ∪ D1+ε). For z ∈ Ω′ put

Γz = {w ∈ C : (z,w) ∈ M}.

If z /∈ R, then Γz is a simple closed curve in C parametrized by

t 7→ w(t) = t +
1

z − t
, t ∈ Iz .

Here Iz is the interval Iz = {t : |z − t | ≤ 1} ⊂ R. The curve Γz is
closed because for both endpoints of Iz we have |z − t | = 1,
which implies w = z. If z ∈ R, then Γz = R.

We note that Γz shrinks into a point as Im z → 1. By the
argument of H. Lewy described above, the CR function F
holomorphically extends inside Γz for z ∈ Ω′ \ R. When z ∈ Ω′

crosses the real line R, the interior and exterior of the loop Γz
interchange. This implies that F (z,w) extends to the whole
Riemann sphere for every z ∈ R, hence F (z,w) is independent
of z, and f is holomorphic. QED
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Analytic continuation from a family of lines

Theorem (Tumanov, 2008)

Let Λ ⊂ R2 be a C2-smooth convex curve with strictly positive
curvature. Let f be a complex function in the exterior of Λ.
Denote by lλ the tangent line to Λ at λ ∈ Λ. Suppose that for
every λ ∈ Λ, the restriction f |lλ extends to entire function fλ on
C = R2. Suppose that the map (z, λ) 7→ fλ(z) is continuous.
Then f extends as an entire function on C2.

In the case Λ is the unit circle, the result was obtained by
Aguilar, Ehrenpreis and Kuchment (1996) as the
characterization of the range of a version of the Radon
transform. Öktem (1998) gave a proof using a separate
analyticity result by Siciak (1969). For a general convex curve
Λ, the proof is based on the extendability of CR functions,
specifically, Lewy’s (1956) proof of the classical extension
theorem.
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Boundary Hartogs theorems

Here we refer to Hartogs’s name for both separate analyticity
and extension from the boundary!

Let Ω ⊂ Cn be a convex domain with smooth boundary ∂Ω and
let f be a continuous function on ∂D. Suppose for every
complex line L the restriction f |L∩∂Ω holomorphically extends
into L ∩ Ω. Then f extends to Ω as a holomorphic function of n
variables (Stout, 1977).
The condition of holomorphic extendibility into sections L ∩Ω by
all complex lines L seems excessive, because it suffices to use
only the lines close to the tangent lines to ∂Ω.
Indeed, for simplicity assume f ∈ C1(∂Ω). Then the Morera
condition for L as L approaches a tangent line L0 at z0 ∈ ∂Ω
implies that the ∂ derivative of f at z0 along L0 equals zero.
Then f holomorphically extends to Ω by the classical
Hartogs-Bochner theorem.
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For which smaller families of lines the result is still true? In
particular, the family should not contain the lines close to the
tangent lines to ∂Ω.

This question has been the subject of work by Agranovsky,
Dinh, Globevnik, Stout, Rudin, etc. Glovevnik and Stout (1991)
conjectured that the result would hold for a family of all lines
tangent to a smooth subdomain Ω1 ⊂ Ω. The conjecture is still
open.
Agranovsky proved a general result implying the conjecture in
case all data are real analytic.
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We would like to mention the following partial result.

Theorem (Baracco, Tumanov, Zampieri, 2007)

Let Ω1 ⊂ Ω be smooth bounded strongly convex domains in Cn.
Suppose a function f ∈ C(∂Ω) extends holomorphically along
every complex geodesics for Ω which is tangent to ∂Ω1. Then f
extends holomorphically to Ω.

For a ball, complex geodesics (also called extremal or
stationary discs) turn into the usual complex lines. Arguably, for
a general convex domain they are more appropriate than the
lines. If Ω is a ball, and Ω1 is a general convex subdomain, the
above theorem proves the conjecture of Globevnik and Stout.
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The proof employs the method described above. We add an
extra variable, the fiber coordinate in the projectivized
cotangent bundle. Then using the lifts of the extremal discs we
lift the given function f to a CR function on the boundary of a
wedge W whose edge is the projectivized conormal bundle of
∂Ω1. Then using the theory of CR functions we extend it to a
bounded holomorphic function in W . Finally since W contains
“large” discs, we prove that the lifted function actually does not
depend on the extra variable, which proves the result.
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Extension from bunches of lines

We now consider families of lines through finitely many points.
There are interesting results for holomorphic extendibility of
continuous, smooth, or real-analytic functions on the boundary
(Agranovsky, Baracco, Globevnik, and others). Restricting to
continuous functions, we mention the following result proving a
conjecture by Agranovsky.

Theorem (Baracco, 2013; Globevnik, 2013)

Let f be a continuous function on the sphere ∂B2 that extends
holomorphically into sections by complex lines intersecting the
set of 3 non-collinear points. Then, f extends holomorphically
into B2.

Globevnik’s version is more general allowing points outside B2.
For higher dimension, the result is nowhere published. For
domains other than a ball, the corresponding result is unknown.
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Part II: J-complex discs

Almost complex structures
J-complex discs in a cylinder
Gromov’s Non-Squeezing Theorem
Real bidisk
Modified Cauchy-Green operators
Non-squeezing in Hilbert space
Discrete non-linear Schrdinger equation
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Almost complex structures

M is a smooth real manifold M, dim M = 2n.
(M, J) is an almost complex manifold
Jp : TpM → TpM, J2

p = −I, I the identity map.
Jst is the standard almost complex structure in Cn.

A smooth map f : (M ′, J ′)→ (M, J) is called (J ′, J)-complex if it
satisfies the Cauchy-Riemann equations.

df ◦ J ′ = J ◦ df .

For M ′ = D and J ′ = Jst , we call the map f a J-complex disc.
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Almost complex structures
Coordinate representation

z = (z1, . . . , zn) local coordinates on (M, J).
J is represented by a complex n × n matrix A(z) such that

Av = (Jst + J)−1(Jst − J)v , v ∈ Cn.

J ↔ A is a 1-1 correspondence (with obvious exceptions).
Jst ↔ 0.

Let f : D→ (M, J) be a smooth map. The Cauchy-Riemann
equations in term of the matrix A take the form

fζ(ζ) = A(f (ζ))f ζ(ζ)

This equation is a vector version of the Beltrami equation.
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Almost complex structures
Tamed structures

Let (M, ω) be a symplectic manifold. Let ω be a nondegenerate
2-form, dω = 0. (We only need the standard symplectic form on
Cn.) Let J be an almost complex structure on M.

J is tamed by ω if

ω(v , Jv) > 0, v 6= 0.

The standard complex structure Jst in Cn is tamed by the
standard symplectic form.

Let J be an almost complex structure on a domain Ω ⊂ Cn.
Suppose J ↔ A. Then J is tamed by the standard symplectic
form if and only if

‖A‖ < 1.
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Almost complex structures
Area

For a map f : D→ (M, ω), define

Area(f ) =

∫
D

f ∗ω.

If J on M is tamed by ω, and f is a non-constant J-complex
disc, then Area(f ) is the same as the area of f (D) defined by the
Riemannian metric ω(v , Jv), in particular Area(f ) > 0.

If f is a usual complex disc in Cn, then Area(f ) with respect to
the standard symplectic form is the usual area.
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J-complex discs in a cylinder
Main Theorem

Theorem (Sukhov and Tumanov, 2014)

Let Σ = D× Cn−1, n ≥ 2. Let A be a continuous (resp. smooth)
n × n matrix function on Cn such that A|Cn\Σ = 0.

Suppose ‖A‖ < 1.
Let J be the almost complex structure on Σ corresponding to A.
Then for every point z0 ∈ Σ there exists a J-complex disc
f ∈W 1,p(D), p > 2 (resp. smooth in D) such that
f (D) ⊂ Σ,
f (bD) ⊂ bΣ,
f (0) = z0,
and Area(f ) = π.
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Gromov’s Non-Squeezing Theorem

Let Bn be the unit ball in Cn; then D = B1 ⊂ C is the unit
disc. Bn(r) is the ball of radius r .

Let ω =
∑n

j=1 dxj ∧ dyj = i
2
∑n

j=1 dzj ∧ dz j be the standard
symplectic form in Cn = R2n.
A smooth map ψ : Ω ⊂ Cn → Cn is called symplectic if it
preserves the symplectic form ω, that is, ψ∗ω = ω.

Theorem (Gromov, 1985)
Let r ,R > 0. Suppose there is a symplectic embedding
ψ : Bn(r)→ D(R)× Cn−1. Then r ≤ R.

What is complex here? . . . Only notation.
Gromov’s proof is based on complex analysis, namely on
J-complex (pseudoholomorphic) curves.
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Gromov’s Non-Squeezing Theorem

The original proof as well as its more recent presentations
are quite involved.

We give a simple direct proof of Gromov’s theorem using a
new method for constructing J-complex discs.
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Proof of Non-Squeezing

We prove Gromov’s Non-Squeezing Theorem assuming the
above result (Sukhov-Tumanov, 2014).

WLOG R = 1. Suppose r > 1.

Let ψ : Bn(r)→ Σ be a symplectic embedding, ψ∗ω = ω.

WLOG, shrinking r if necessary, assume ψ extends to a
neighborhood of Bn(r).

Let J = ψ∗Jst.

Let J ↔ A.

Since Jst is tamed by ω, then J is tamed by ω.

Then ‖A‖ < 1. Extend A to Cn satisfying the hypotheses of
Main Theorem.
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Proof of Non-Squeezing

Then there exist a J-complex disc satisfying the conclusions of
Main Theorem, in particular f (0) = ψ(0) and Area(f ) = π.

Then X = ψ−1(f (D)) is a usual analytic set in Bn(r).

Since Area(f ) = π, then Area(X ) ≤ π. On the other hand by
Lelong’s result of 1950, Area(X ) ≥ πr2.

Hence r ≤ 1 contrary to the assumption. The proof is complete.
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Real bidisk

We present a few results on symplectic rigidity obtained by
using J-complex discs. We consider domains in the space Cn

with the standard symplectic structure.
We introduce the real bidisc

D2
R = {(x1 + iy1, x2 + iy2) ∈ C2 : x2

1 + x2
2 < 1, y2

1 + y2
2 < 1}.

The domains D2
R and D2 have the same volume.

Theorem (Wong, 2014)

The domains D2
R and D2 are not symplectomorphic.

Furthermore, D2
R admits a symplectic embedding in D(r)× C if

and only if r ≥ 2/
√
π.
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Real bidisk

Theorem (Wong, 2014)

For n ≥ 2, r ≥ 1 the domains D2
R × Dn−2(r) and D2 × Dn−2(r)

are not symplectomorphic.

It is unknown whether this result holds for r < 1.
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Attempting to prove Main Theorem

Notation:
ζ ∈ D, (z,w) ∈ C× Cn−1 = Cn,
f (ζ) = (z(ζ),w(ζ)).

Cauchy-Riemann equations fζ = Af ζ , that is:(
z
w

)
ζ

= A(z,w)

(
z
w

)
ζ

.

Initial conditions:
z(0) = z0, w(0) = w0.

Boundary condition:
|ζ| = 1 ⇒ |z(ζ)| = 1.

The boundary condition is non-linear. Most if not all general
results assume linear boundary conditions.
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Reduction to linear boundary condition
Rough idea

Let ∆ be a triangle.
Let D→ ∆ be an area preserving map.
Then it gives rise to a sympectomorphism
D× Cn−1 → ∆× Cn−1.

The non-linear condition z(ζ) ∈ bD reduces to the linear
condition z(ζ) ∈ b∆, although with discontinuous coefficients.
The latter can be handled by a modified Cauchy-Green
operator.

Introduce the triangle

∆ = {z ∈ C : 0 < Im z < 1− |Re z|}.

Note Area(∆) = 1, so we will be looking for a disc of area 1.
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Reduction to modified Cauchy-Green operators

Recall the Cauchy-Green operator

Tf (ζ) =
1

2πi

∫
D

f (t) dt ∧ dt
t − ζ

.

T : Lp(D)→W 1,p(D) is bounded for p > 1.
∂Tu = u, that is, T solves the ∂-problem in D.

Let Φ : D→ ∆ be the conformal map, Φ(±1) = ±1, Φ(i) = i .
We look for a solution of Cauchy-Riemann equations in the form

z = T2u + Φ

w = T1v + const

The operators T1 and T2 are modified Cauchy-Green operators.
They differ from T by holomorphic functions.

T1 satisfies Re (T1u)|bD = 0.
T2u|bD takes values in the lines Lj parallel to the sides of ∆.
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Modified Cauchy-Green operators

Let Q be a non-vanishing holomorphic function in D. We define

TQu(ζ) = Q(ζ)
(

T (u/Q)(ζ) + ζ−1T (u/Q)(1/ζ)
)

= Q(ζ)

∫
D

(
u(t)

Q(t)(t − ζ)
+

u(t)
Q(t)(tζ − 1)

)
dt ∧ dt

2πi
.

T1f = TQf + 2iIm Tf (1) with Q(ζ) = ζ − 1. Then
Re (T1u)|bD = 0 (Vekua).

T2 = TQ with Q(ζ) = σ(ζ − 1)1/4(ζ + 1)1/4(ζ − i)1/2, σ = const.
Then T2u(γj) ⊂ Lj . Here γj , j = 0,1,2, denote the arcs [−1,1],
[1, i], [i ,−1] respectively.

Operators similar to T2 were introduced by Antoncev and
Monakhov for application to problems of gas dynamics.
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Operators Sj

Recall that the operator S = ∂T for the whole plane is an
isometry of L2(C). It turns out the operators Sj = ∂Tj , j = 1,2,
have similar properties.

Lemma
Sj : Lp(D)→ Lp(D) is bounded for p close to 2.
‖Sj‖L2(D) = 1.

The first assertion follows by the corresponding property the
operator S because the difference is a smoothing operator.

The second assertion looks like a fluke. It follows because the
boundary values of Tju do not bound a positive area.
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Integral equation
Reduction

To have a little more freedom, we take the initial conditions in
the form z(τ) = z0, w(τ) = w0. Here τ ∈ D will be an unknown
parameter.

We look for a solution of the form

z = T2u + Φ

w = T1v − T1v(τ) + w0.

Then w(τ) = w0 is automatically satisfied.

The Cauchy-Riemann equation fζ = Af ζ turns into the integral
equation (

u
v

)
= A(z,w)

(
S2u + Φ′

S1v

)
.
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How to satisfy z(τ) = z0

Using the equation
z = T2u + Φ,

we now rewrite the condition z(τ) = z0 in the form

τ = Ψ(z0 − T2u(τ)).

Here Ψ : C→ D is a continuous map defined as follows.

Ψ(z) =

{
Φ−1(z) if z ∈ ∆,

Φ−1(b∆ ∩ [z0, z]) if z /∈ ∆.
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Existence of solution

We now have the system

z = T2u + Φ

w = T1v − T1v(τ) + w0(
u
v

)
= A(z,w)

(
S2u + Φ′

S1v

)
τ = Ψ(z0 − T2u(τ))

By a priori estimates in Lp for some p > 2, we show that the
system defines a compact operator. By Schauder principle the
system has a solution.
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Properties of the solution

Now that all the quantities (z,w ,u, v , τ) are defined, we claim
they have all the desired properties.

τ ∈ D (not on the boundary). It follows by the boundary
conditions of T2.

z(D) ⊂ D by maximum principle because z is holomorphic
at ζ if z(ζ) /∈ D.
z(bD) ⊂ b∆ and deg(z|bD : bD→ b∆) = 1 by the
boundary conditions of T2.
Area(f ) = 1 by the boundary conditions of T1 and T2.
Indeed, Area(f ) = Area(z) + Area(w). Area(z) = 1 by the
previous item. Area(w) = 0 because every component of
w takes values on a real line.

The proof is complete.
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Infinite-dimensional versions

Flows of Hamiltonian PDEs are symplectic transformations.
Non-squeezing property is of great interest. There are many
results for specific PDEs.

Kuksin (1994-95) proved a general non-squeezing result
for symplectomorphisms of the form F = I + compact.

Bourgain (1994-95) proved the result for cubic NLS.
Consider time t flow F : u(0) 7→ u(t) of the equation

iut + uxx + |u|pu = 0, x ∈ R/Z, t > 0.

Then F is a symplectic transformation of L2(0,1),
0 < p ≤ 2. Bourgain proved the non-squeezing property
for p = 2.
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Infinite-dimensional versions

Colliander, Keel, Staffilani, Takaoka, and Tao (2005)
proved the result for the KdV on the torus.

Roumégoux (2010) - BBM equation.
Abbondandolo and Majer (2014) - in case F (B) is convex.
Mendelson - cubic nonlinear Klein-Gordon equation on
3-torus
Killip, Visan, and Zhang - NLS on Rd and Td for all values
of p for which NLS is well-posed.
Finally, Fabert (2015) proposes a proof of the general
result using non-standard analysis.
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Infinite-dimensional versions

We prove a non-squeezing result for a symplectic
transformation F of the Hilbert space assuming that the
derivative F ′ is bounded in Hilbert scales. We apply our result
to discrete nonlinear Schrödinger equations.
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Hilbert scales

Let H be a complex Hilbert space with fixed orthonormal basis
(en)∞n=1. Let (θn)∞n=1 be a sequence of positive numbers such
that θn →∞ as n→∞, for example, θn = n.

For s ∈ R we define Hs as a Hilbert space with the following
norm:

‖x‖2s =
∑
|xn|2θ2s

n , x =
∑

xnen.

The family (Hs) is called the Hilbert scale corresponding to the
basis (en) and sequence (θn). We have H0 = H. For s > r , the
space Hs is dense in Hr , and the inclusion Hs ⊂ Hr is compact.

Example. H = L2(0,1) with the standard Fourier basis,
θn = (1 + n2)1/2, n ∈ Z. Then Hs is the standard Sobolev
space.
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Non-squeezing in Hilbert space

Let B(r) = B∞(r) be the ball of radius r in H.

Theorem (Sukhov and Tumanov, 2016)

Let r ,R > 0. Let F : B(r)→ D(R)×H be a symplectic
embedding of class C1. Suppose there is s0 > 0 such that for
every |s| < s0 the derivative F ′(z) is bounded in Hs uniformly in
z ∈ B(r). Then r ≤ R.

Under the hypotheses of the theorem, our finite dimensional
proof goes through by estimates in Lp(D,Hs).
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Discrete non-linear Schrödinger equation

Consider the following system of equations

iu′n + f (|un|2)un +
∑

k

ankuk = 0. (1)

Here u(t) = (un(t))n∈Z, un(t) ∈ C, t ≥ 0.

We assume that f : R+ → R and its derivative are continuous
on the positive reals, furthermore,
limx→0 f (x) = limx→0[xf ′(x)] = 0. For example, one can take
f (x) = xp with real p > 0. The hypotheses on the function f are
imposed in order for the flow of (1) to be C1 smooth.

Here A = (ank ) is an infinite matrix independent of t .
Furthermore, A is a hermitian matrix, that is, ank = akn. For
simplicity we also assume that the entries ank are uniformly
bounded and there exists m > 0 such that ank = 0 if
|n − k | > m.
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Discrete non-linear Schrödinger equation

The equation (1) with f (x) = x is called the discrete
self-trapping equation. The special case with ank = 1 if
|n − k | = 1 and ank = 0 otherwise, is the discrete nonlinear
(cubic) Schrödinger equation:

iu′n + |un|2un + un−1 + un+1 = 0.

There are other discretizations of the Schrödinger equation, in
particular, the Ablowitz-Ladik model that can be treated in a
similar way.
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Discrete non-linear Schrödinger equation

The equation (1) can be written in the Hamiltonian form:

u′n = i
∂H
∂un

.

The Hamiltonian H is given by

H =
∑

n

F (|un|2) +
∑
n,k

ankunuk ,

here F ′ = f and F (0) = 0.

The equation (1) preserves the l2(Z) norm
‖u‖l2 = (

∑
n |un|2)1/2. Hence, the flow u(0) 7→ u(t) of (1) is

globally defined on l2(Z) and preserves the standard
symplectic form ω = (i/2)

∑
n dun ∧ dun.

One can verify that our main result applies to (1), hence, the
non-squeezing property holds for the flow of (1).
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Thank you!
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