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Introduction



Type IIB matrix model

: 10D Lorentz vector

: 10D Majorana-Weyl spinor

Hermitian matrices

Large- limit is taken

IKKT (’96)

Space-time does not exist a priori, but is generated dynamically

from degrees of freedom of matrices

A proposal for nonperturbative formulation of  superstring theory

Euclidean model Aoki-Iso-Kawai-Kitazawa-Tada (‘98)

Krauth-Nicolai-Staudacher (’98) Austing-

Wheater (’01), …………..

Here we study Lorentzian model

SO(9,1) symmetry



average

Emergence of time evolution

Band-diagonal structure is 

observed, which is  

nontrivial

small

small

concept of “time evolution” 

emerges

represents space 

structure at fixed time t  

These values are 

dynamically determined



SSB of SO(9) symmetry

“critical time”

SSB

symmetric under 

we only show 

~moment of  

inertia tensor

Kim-Nishimura-A.T. (’11)



Emergence of expanding (3+1)d universe

Nishimura-A.T. (’18)
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Exponential expansion

Numerical simulation was updated recently

by using the complex Langevin method



Questions

We are interested in dynamics at late times

 What is (3+1)d space-time structure like?

 Chiral fermions appear at low energy?               

Standard Model     

Structure of extra dimensions   



Classical dynamics dominates at late times

 The late-time behaviors are difficult to study by direct Monte 
Carlo methods, since larger matrix sizes are required.

 We develop a numerical algorithm for searching for classical 
solutions satisfying the most general ansatz with 
“quasi direct product structure” 

 But the classical equations of motion are expected to become 
more and more valid at later times, since the value of the action 
increases with the space expansion.

 Chiral zero modes are obtained as solutions of EOM.

Cf.) Aoki-Iso-Suyama (’02)  

A. Chatzistavrakidis, H. Steinacker and G. Zoupanos (‘11)

Nishimura-A.T.(’13)   Aoki-Nishimura-A.T.(’14)

Stern, Steinacker, Yang,.…..



Plan of the present talk

1.  Introduction

2.  Analysis of classical EOM

3. Space-time structure and chiral zero 

modes from classical solutions

4.  Conclusion and outlook



Analysis of classical EOM



Defining the Lorentzian model

opposite sign

not bounded below

 Lorentzian model

Introduce IR cutoffs

removed in 



Equation of motion

: Lagrange multiplier

constraints

corresponding to IR cutoffs



Configuration with “quasi direct product structure”

: direct product space-time

This ansatz is compatible with Lorentz symmetry to be 

expected at late time

Nishimura-A.T.(’13)  

Each point on (3+1)d space-time has the same structure in the 

extra dimensions



Chiral fermions in type IIB matrix model

is Majorana-Weyl in 10d

we demand      to be chiral in 4d

It is reasonable that one can analyze massless modes of 

fermions from Dirac equation in 10d

is chiral in 4d and 6d

We examine spectrum of 6d Dirac operator

zero eigenvectors → chiral zero modes in 4D



Structure of Ya and chiral zero modes

Intersecting D-branes

chiral zero modes



Algorithm for finding solutions

update configurations following

We search for configurations that gives

gradient descent algorithm



Space-time and chiral zero 

modes from classical solutions



Typical solutions

eigenvalues of M: -1, 0, 1

Our ansatz



Structure of M and Ya



Band diagonal structure of Xi
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SO(3) symmetric



3d-3d ansatz

3d manifold and 3d manifold intersects at points

3d

3d

We solve ～mass in 4d

We get 3 solutions for each of        and   ３ｘ３=9 cases



Spectrum of 6d Dirac operator

lowest

2nd lowest

2nd lowest

4 eigenvalues out of 

18432 ones for 9 cases
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Spectrum of 6d Dirac operator

lowest

2nd lowest

2nd lowest

4 eigenvalues out of 

18432 ones for 9 cases



Spectrum of 6d Dirac operator

lowest

2nd lowest

2nd lowest

Average of 9 cases



Lowest/2nd lowest



Lowest/2nd lowest



Profile of wave function for lowest ev

SVD for 

Localized ! Intersecting at a point



Profile of wave function for lowest ev

localized at different α L-R asymmetry



Conclusion and outlook



Conclusion

 We developed a numerical method to search for  classical 

solutions satisfying the most general ansatz with “quasi direct 

product structure”. It works well. 

 Solutions in general give expanding (and shrinking) (3+1)d 

space-times, which have smooth structure. 

 Quasi direct product structure favors block-diagonal structure 

which can yield intersecting branes in extra dimensions. One 

can obtain chiral zero modes in 6d at intersecting points, which 

lead to the chiral fermions in (3+1) dimensions. 



Conclusion

 The wave functions of chiral zero modes are localized. There is 

L-R asymmetry in the wave functions, which means the Yukawa 

coupling which is calculated  from overlap of wave functions of 

fermions and Higgs field (fluctuation of Ya) is asymmetric w.r.t L 

and R.           

Chiral fermions in 4d at low energy? 



Outlook

 We search for solutions by starting with various initial 

configurations to understand the variety of solutions.

 We expect that there exists a solution that realizes the 

Standard model or beyond the Standard model-like matter 

contents and that it is indeed selected in the sense that our 

Monte Carlo result is connected to such a solution.

Or we can calculate 1-loop effective actions around 

classical solutions we have found. We expect the effective 

action for the solution giving SM matter contents at low 

energy to be minimum.



Discussion

 Only 3 blocks?

To realize the Standard Model, more blocks seems 

to be needed.

(1) structure of blocks within a block is allowed for a classical 

solution, but seems non-generic.

Quantum effect might favor such a structure.

(2) We can generalize IR cutoffs as follows:

We took p=1 in this talk for simplicity.

For p=2, arbitrary number of blocks are naturally obtained, 

because no constraints are obtained from

Indeed, p >1 seems to be required from universality 
Azuma-Ito-Nishimura-A.T. (’17 ) 



Discussion  

 A different mechanism for getting chiral fermions

more nontrivial solution having structure as

action of M on left and right modes are different

Nishimura-A.T.(’13)   Aoki-Nishimura-A.T.(’14)

 Gauge groups?

seem to come from a stack of multiple D-branes 

~ identical blocks within a block

~  favored by quantum effect? 

 Profile of D-branes and geometry of extra dimensions

Berenstein-Dzienkowski (’12), Ishiki (’15), Schneiderbauer-Steinaker (’16) 



Evidences for nonperturbative formulation

(1)  Manifest SO(9,1) symmetry and manifest 10D N=2 SUSY

(3) Long distance behavior of interaction between D-branes is 

reproduced      

(4) Light-cone string field theory for type IIB superstring from SD 

equations for Wilson loops under some assumptions       

(2) Correspondence with Green-Schwarz action of Schild-type for type 

IIB superstring  with κ symmetry fixed       

(5) Believing string duality, one can start from anywhere 

with nonperturbative formulation to tract strong 

coupling regime

Het SO(32)

Het  E8 x E8

M

IIA

IIB

I

Fukuma-Kawai-Kitazawa-A.T.  (’97)



Emergence of expanding (3+1)d universe

Kim-Nishimura-A.T. (’11)

Nishimura-A.T. (’18)

Our numerical simulation suggests that expanding 

(3+1)-dimensional Universe emerges
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R^2(t)



Space-time structure

e
ig

e
n
v
a
lu

e
s
 o

fdense distribution

smooth manifold



Profile of wave function for lowest ev
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Localized ! Intersecting at a point



Profile of wave function for lowest ev

localized at different α L-R asymmetry


