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- Introduction



Type 1B matrix model

IKKT (*96)
I

A proposal for nonperturbative formulation of superstring theory

S = —g%Tl" (%[AM,ANHAM,AN] + %?,Z_)FM[AM, \If])

N x N Hermitian matrices
A, - 10D Lorentz vector (M =0,1,...,9)

U : 10D Majorana-Weyl spinor } SO(9,1) symmetry

Large-N limit is taken

Space-time does not exist a priori, but is generated dynamically
from degrees of freedom of matrices

. Aoki-Iso-Kawai-Kitazawa-Tada (‘98)
Euclidean mo.del Krauth-Nicolai-Staudacher ('98) Austing-
Ao = iAo Wheater (01), .............

Here we study Lorentzian model



Emergence of time evolution

-4
—
Tq \

t
o] [ n average b1 <tz <--- <1y
AO — 2 +1 / These values are
v t ) dynamically determined
\ tN/
_— Band-diagonal structure is
small \ observed, which is
nontrivial
n
Ai — \ _ A;(t) represents space
nll Ai(t) structure at fixed time t
concept of “time evolution™

(i=1~09)
k small J emerges



SSB of SO(9) symmetry
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Emergence of expanding (3+1)d universe

S
Numerical simulation was updated recently Nishimura-A.T. (18)
by using the complex Langevin method
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Questions
S S

We are interested in dynamics at late times

» What is (3+1)d space-time structure like?

» Chiral fermions appear at low energy?
‘ Standard Model

Structure of extra dimensions



Classical dynamics dominates at late times

» The late—time behaviors are difficult to study by direct Monte
Carlo methods, since larger matrix sizes are required.

» But the classical equations of motion are expected to become
more and more valid at later times, since the value of the action
iIncreases with the space expansion.

» We develop a numerical algorithm for searching for classical
solutions satisfying the most general ansatz with
“quasi direct product structure”

Stern, Steinacker, Yang,......

» Chiral zero modes are obtained as solutions of EOM.
Cf.) Aoki-Iso-Suyama ('02)
A. Chatzistavrakidis, H. Steinacker and G. Zoupanos (‘11)
Nishimura-A.T.('13) Aoki-Nishimura-A.T.("14)



Plan of the present talk
S
1. Introduction

2. Analysis of classical EOM

3. Space-time structure and chiral zero
modes from classical solutions

4. Conclusion and outlook



~ |Analysis of classical EOM



Defining the Lorentzian model
S

» Lorentzian model

opposite sign

Sp ~ 2Tr([A0, Ai]z) — Tr([A?;, Aj]z) not bounded below

Introduce IR cutoffs

1
—Tr(Ag)? <
~ (Ag)° < &

removedin N — o0
%Tr(AZ-)Q < L2



Equation of motion

§ =~ Tr([AM, ANy, Ay

¥
(A M T A (]
A ,_AM,Ao]]+(){A0:0

o, B : Lagrange multiplier

constraints

1 )
—Tr(A7) =&
N corresponding to IR cutoffs
1 2

LV )




Configuration with “quasi direct product structure”
.

AT Nishimura-A.T.("13)

AM:Xugﬁ(u:O,...,3)
AaleX @\E/ (a:4,...,9)

T ‘ M =1 : direct product space-time

NXXNX Nnyy N:NXxNY

Each point on (3+1)d space-time has the same structure in the
extra dimensions

This ansatz is compatible with Lorentz symmetry to be
expected at late time

O Xy = g[O] X Q[O]Jr
O € S0O(3,1) g|O] € SU(Nx)



Chiral fermions in type |[IB matrix model

It is reasonable that one can analyze massless modes of
fermions from Dirac equation in 10d

TM[Ay, U] =0 U is Majorana-Weyl in 10d

we demand s to be chiral in 4d
TH[A,,¥] =0

- 4 T%[A4,,0] =0

‘\I; is chiral in 4d and 6d

We examine spectrum of 6d Dirac operator e [Ya, >l<]

zero eigenvectors — chiral zero modes in 4D



Structure of Ya and chiral zero modes
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Algorithm for finding solutions
S

I =Tr([AM,[Awm, Aol] + ado)? + Tr([AM, [Au, A;]] — BA;)?

Ay=X, M (u=0,...,3)
AaleX®Ya (CL:4,.--,9)

We search for configurations that gives 1 =0

gradient descent algorithm
update configurations following

o1 o1 o1
5X, = ~“oxd Yo = e M =~

) /<0




Space-time and chiral zero




Typical solutions

S e
Our ansatz {Au — Xu®M (M — 0»---73)
A, =1n, ®Y, (a:4,...,9)

M?> =M )  eigenvalues of M: -1, 0, 1
M,Y,] =0
- [X", [ X, Xo]] + aXo =0
X7 [ X0, Xil]l - BXi =0 (i=1,2,3)
YO, [V, Vo]l - BY, =0
_AM A, Aoll + Ay =0
‘_:AM, Ay, Aill— BA; =0 (1=1,...,9)




Structure of M and Ya




Band diagonal structure of Xi
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Eigenvalues of Tii
S

Ti5(t) = %(Xz(t)xj(t)) | ' .

025

SO(3) symmetric S

0.1

eigenvalues of 15, (t
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3d-3d ansatz

_
3d manifold and 3d manifold intersects at points

 — ™

JASY

Yl(l) £ 0, Y2(1) £ 0, Y3(1) 0
Y4(1) _ Y5(1) _ Yﬁ(l) —0

Y, =

Y1(2) _ Y2(2) _ YS(Q) —0
Y4(2) £ 0, Y5(2) £ 0, Y6(2) £ 0

We solve Fa(chl)\If — \IjYa,@)) — A\ A ~mass in 4d

We get 3 solutions for each of Y M and Ya(2) mm) 3x3=9 cases



Spectrum of 6d Dirac operator
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Spectrum of 6d Dirac operator

N
N = NP = 48
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Spectrum of 6d Dirac operator

N
NV = NP =64
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Spectrum of 6d Dirac operator
S

Average of 9 cases
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Profile of wave function for lowest ev
]

'}:m = UR\PRQVI;E SVD for ¢ = 1

Localized! ===) Intersecting at a point



Profile of wave function for lowest ev
]

U =Ur¥L,V,)

a=1

localized at different o ===) L-R asymmetry



- Conclusion and outlook



Conclusion

-
» We developed a numerical method to search for classical

solutions satisfying the most general ansatz with “quasi direct
product structure”. It works well.

» Solutions in general give expanding (and shrinking) (3+1)d
space-times, which have smooth structure.

» Quasi direct product structure favors block-diagonal structure
which can yield intersecting branes in extra dimensions. One
can obtain chiral zero modes in 6d at intersecting points, which
lead to the chiral fermions in (3+1) dimensions.



Conclusion
I e,,—,—,S—,—,—,—

» The wave functions of chiral zero modes are localized. There is
L-R asymmetry in the wave functions, which means the Yukawa
coupling which is calculated from overlap of wave functions of
fermions and Higgs field (fluctuation of Ya) is asymmetric w.r.t L

and R.
—— Chiral fermions in 4d at low energy?



Outlook

» We search for solutions by starting with various initial
configurations to understand the variety of solutions.

» We expect that there exists a solution that realizes the
Standard model or beyond the Standard model-like matter
contents and that it is indeed selected in the sense that our
Monte Carlo result is connected to such a solution.

» Or we can calculate 1-loop effective actions around
classical solutions we have found. We expect the effective
action for the solution giving SM matter contents at low
energy to be minimum.



Discussion

1
» Only 3 blocks?

To realize the Standard Model, more blocks seems
to be needed.

(1) structure of blocks within a block is allowed for a classical
solution, but seems non-generic.

Quantum effect might favor such a structure.

(2) We can generalize IR cutoffs as follows:
1 1
ST =r ST((4D)7) =1

We took p=1 in this talk for simplicity.
For p=2, arbitrary number of blocks are naturally obtained,
because no constraints are obtained from A3 = M3

Indeed, p >1 seems to be required from universality
Azuma-Ito-Nishimura-A.T. (17 )




Discussion

]
» A different mechanism for getting chiral fermions
more nontrivial solution having structure as [M,Y,| # 0

action of M on left and right modes are different
Nishimura-A.T.('13) Aoki-Nishimura-A.T.('14)

» Gauge groups?
seem to come from a stack of multiple D-branes
~ identical blocks within a block
~ favored by quantum effect?

» Profile of D-branes and geometry of extra dimensions

Berenstein-Dzienkowski ('12), Ishiki ('15), Schneiderbauer-Steinaker (*16)



Evidences for nonperturbative formulation

S
(1) Manifest SO(9,1) symmetry and manifest 10D N=2 SUSY

(2) Correspondence with Green-Schwarz action of Schild-type for type
1B superstring with x symmetry fixed

(3) Long distance behavior of interaction between D-branes is
reproduced

(4) Light-cone string field theory for type 1B superstring from SD

equations for Wilson loops under some assumptions
Fukuma-Kawai-Kitazawa-A.T. (’97)

(5) Believing string duality, one can start from anywhere )

with nonperturbative formulation to tract strong ot Eax E
coupling regime
@ Het SO(32)



Emergence of expanding (3+1)d universe

S S
1 _ _ Kim-Nishimura-A.T. (11)
. — , , ~Moment of
1 (t) o ntr{Az (t)AJ (t)} inertia tensor  Nishimura-A.T. ('18)
,7=1~9

Our numerical simulation suggests that expanding
(3+1)-dimensional Universe emerges
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Space-time structure

_
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Profile of wave function for lowest ev
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Profile of wave function for lowest ev
]
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