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T'he massively rich real world

On-shell observables such as S-matrix, correlation functions are derivable from the
simplest interactions,
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Start with the fundamental interaction Physical principles (Unitarity, Locality,

Symmetry) fixes the answer. \
For massless particles or CFTs, this is

completely fixed by symmetries



T'he massively rich real world

Start with the fundamental interaction physical principles (Unitarity, Locality,

Symmetry) fixes the answer.
For massive particles, the fundamental

3 interactions are not fixed

— 2s+1] distinct interactions

What physics can we learn from employing consistency conditions on these
interactions ?

[s there a notion of simplest massive amplitude ? (Similar question for massless
amplitudes led to dual conformal symmetry of N=4 SYM, and maximal SUGRA)



T'he massively rich real world

Consider an amplitude for massive states. Since it is a scalar function that carries the
quantum number of the physical state (Little group)
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[ =1,2 are doublets of SU(2) Little group.
We introduce ped — )\alj\?'x
In doing so we simply have:
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e The decomposition is unambiguous

e The problem reduces to finding the Irreps of SL(2,C)



T'he massively rich real world

Consider the three point amplitude with one massless and two equal mass
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We need two vectors to span the SL(2,C) space:

(Ua, Va) = (3,05 €08 A5

We also need to have variables that carry the opposite helicity weight of the
massless leg
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m1l=m2 » 2p2-p3 = (3|p2[3] =0 > XA =

m

This allows us to define the x factor which carries positive helicity

Three point amplitude is constructed from (x, A, € )



T'he massively rich real world

Consider the three point amplitude with one massless and two equal mass
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The x-tactor

Let’s first consider the case where all gi=0 for i>0
e What characterizes it in the UV ?

In the UV we approach the massless limit m->0
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All gi have more singular for m->0, bad UV behaviours. Indeed consider
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With h=-1 (Ioannis_Giannakis, James T. Liu, Massimo Porrati)



The x-tactor

Let’s first consider the case where all g=0
e What characterizes it in the UV ?

In the UV we approach the massless limit:

M =T naft, M =hafT + At

where <n A>= [n A] =m and
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This is the amplitude for minimal coupling between a positive h helicity state with

+s and -s helicity.



The x-tactor

Let’s first consider the case where all gi=0
e What characterizes it in the IR ?

In the IR we can consider the magnetic moment. Lets start non-relativistically

Taking the relativistic form
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Let’s convert the minimal coupling
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we see that g=2! In other words good H.E. behavior is tied to the classical magnetic
moment being 2. Indeed this is the case for W bosons.



The x-factor - under factorization

Let us now impose factorization constraints

We expect consistent factorization to impose non-trivial constraint on the three-point
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Leads to the constraint
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The x-factor - under tactorization

Consider compton scattering
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The presence of %2 introduces constraint in the other channel since
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The x-factor - under factorization

Consider compton scattering

Indeed for S>1 the naive form becomes nonlocal (3|py|2]2-25
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On the s-channel kinematics we can write:
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The x-factor - under factorization

Consider gravitational compton scattering

Graviton Compton Amplitude for S > 2

— (3|p1[2]* 28
Mu(S>2) = =~ (5 m2) (u — mayensz,

25(3[p1[2]° (B4)[21] yas-s _ 25(@Ipal2] (B1)[24] yas—s
t(s —m?) 2m2M?, t(u —m?) 2m2M2

2S5

N { (3|p1|2]*(34)%[21]* [Z (28) Azs_r(—(43) 32](21) [43](32)[21])r—2]

dm*(s —m?)M7 |\ r 4m3 4m3

+ $8lp1[2]7(31)"[24] !Z (2S> (—1)" Azs_,,(—<13)[32](24) - [13](32)[24])r—2]}

4m?(u — m?) M2, T 4m3 4m3

_ Poly + Polyjy3) + Poly,as
tM?2

r=2

(4.24)




Non-minimal couplings

» We know that for photon couplings AA deformations corresponds to g-2 factors,
what does such deformations correspond to ? (take s=1/2)
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But there are excessive terms that do not match with the t-channel residue!
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One cannot make factorization consistent!



Non-minimal couplings

» We know that for photon couplings AA deformations corresponds to g-2 factors,
what does such deformations correspond to ? They are simply not allowed!

M; = X2(€2S + Zaie2s_iXiA2i)
i
we must have al=0! The gravi-magnetic moment is zero

» If we have a system where the gravitational couplings are given by the double
copy of gauge couplings (string theory), the magnetic moment for the gauge
coupling must be 2!
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Fundamental charged particles must have classical g=2 is a prediction of string

theory.



The simplest amplitude

* Are there particles in nature with s>2 and has minimal
coupling to graviton and photons (just x) ?

« String theory ?



The simplest amplitude

* Are there particles in nature with s>2 and has minimal
coupling to graviton and photons (just x) ?

* String theory ? No!
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The simplest amplitude

Are there particles in nature with s>2 and has minimal coupling to graviton and photons (just x) ?

Since the state is likely composite, we consider the one body EFT
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for Kerr Black hole C#=1



The simplest amplitude

Are there particles in nature with s>2 and has minimal coupling to graviton and photons (just x) ?

Since the state is likely composite, we consider the one body EFT
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The simplest amplitude

We derive the three-point amplitude from the 1 BD EFT
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The simplest amplitude

We derive the three-point amplitude from the 1 BD EFT
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The simplest amplitude

We derive the three-point amplitude from the 1 BD EFT
Converting to spin-s amplitudes

e The spin-independent piece —my/u2 yields
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The simplest amplitude

We derive the three-point amplitude from the 1 BD EFT

Putting everything together, we find:
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Now lets compare to our “minimal coupling”




The simplest amplitude

Let us compare with minimal coupling

First rewrite:
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The simplest amplitude

Let us compare with minimal coupling

Let's compare

EFT 2., Af ,(21)"° (_w<23><31>)“ 217> ([231 [311)"

2m 2mx

“Minimal coupling”  (21)%* (21)) ZAG ,(21)° ( “’(23>(31>)a[21] b([23”31])

2max
a,b=0

This is exactly the same if Aa p= As b



The simplest amplitude

Let us compare with minimal coupling

However, there is a very simple relationship:
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Since A , = ( : ) ( Z ) scales as a,;f, we see that in the large s limit
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The coupling x2(12)° marches with Kerr black hole coefficients as s — oo!See also Alfredo
Guevara, Justine Vine and Alexander Ochirov



T'he inspired gravitational potential

see also (Alfredo Guevara 1706.02314 )
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http://arxiv.org/abs/arXiv:1706.02314

T'he inspired gravitational potential

With the Compton amplitude, we can now compute the NLO spin effects
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Out look

There is a natural expansion basis for the scattering of massive states that makes
physical properties of the interaction transparent. UV behaviors, magnetic moments

Show that all charged perturbative string states must have g=2
Kerr-black holes have the simplest spinning amplitude (supersymmetric?)
Leads to on-shell approach to compute spin-dependent pieces of graviational potential

For fixed spins, subleading trajectories are degenerate, and should be the dominant
contributions to BH microstate counting (Horowitz-Polchinski)— amplitudes of
subleading trajectories are simpler than leading ones?

We see that Kerr-Black hole has x*2 coupling. How is this protected under quantum
corrections?



