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» Let us focus on scalar four point correlation function in
d-dimensional CFT, it is often decomposed in particular OPE
channel say (12)(34) or s-channel:

(O1(21)Oa(22) O3(23) Oa(T4)) = Y CAJ AJ (z:) TA D c(AS?JG(AS?J(u, v)
{0a,s} {04, s}

where c( ) are product OPE coefficients and the kinematic
pre—factor is:

1 2 2 A= A=
TA(?(iL'i): — ﬁ(&y) (&) ’ a(s):%, b(s):%'

(517%2)_"’12 (234) 2

where AEE =A A W (S) (x,) and G )J(Z,Z) are the s-channel
“conformal partial wave” and “conformal block” for Op,y family.

» We have also introduced the conformally invariant cross ratios:

2,2 2
_ Z5T 2,z
u=z2z= éQ 34, v=(1-2)(1-2)= 14 23 :vfj = (z; — :vj)Q.
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GE)J(Z, z) almost behaves as natural kinematic basis and it satisfies the
quadratic Casimir equation” [Dolan-Osborn 2003, 2011]

AA—d)  J(J+e)
2 + 2

A (a9,59),00GR(2,2) = Co(A, J)GR(2,2), Co(A,J) =

Here d — 2 = 2¢ and the second order partial differential operator is:

©) _ i Z (-9 _q_no
Ay’ (a,b,c) = D,(a,b,c) + Dz(a,b,c) + 25z — ((1 z) % (1-2) 82)

2

D,(a,b,c) = 2*(1 — z)(,f? —((a+b+1)2° — cz)% — abz,

This equation has 8-fold degeneracies, i.e. eigenvalue is invariant under:
Aod-A, Jo2—-d-J, As1-J
While GX)J(Z,E) and Géu)J(z,Z) can be obtained from the crossing trans:

st (z2,A2) ¢ (4,A4), s u: (x2,A2) & (x3,A3).

set:(wv) = (vyu); (2,2) > (1-2,1-2), seu: (w,v) = (1/u,v/v); (2,2) = (1/2,1/2)
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» For even d, GX)J(Z, Z) is given by finite sum of hypergeometric

functions:
d=2: GR,(22) = (_Q)J(}+ 57y (ks (Dkas(2) + kars(Dka-s ()
d=4:G9,(22) = Wi_a(mw(z)m#_xz)—kA+J(z)kA_J_2(z>>,
ks(z) = :c%QFl <§+a(s),§+b(s),ﬂ,x)

» For general d, quadratic Casimir equation has integral solution:

i 3 d
‘I’,(/,)J(xz‘) x /Rd d*zo(On, (€1)Op, (22)Ohtin, 1 (€0)) (On—in, 1 (€0) O, (23)On4 (€4)), h = 5"

Constructed from 3 point functions involving symmetric-traceless
primary Optiv,s(X0) and its shadow Op_j, s(X0).

> The xp-integration yields a symmetric linear combination of direct
and shadow CPWs, we can use m to project out one or the

other in v-integration.
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> After contracting the tensor structures from three point functions
yielding Gegenbauer polynomial, the explicit xg can be done via
Symanzik star-formula:

fo#m U = v [ o I i

'LO Z<j

> This leads us to Mellin representation of Wés)J(x,-) [Mack, Penedones +

others].

1
WE)J(.’M) X / dv ,M(S) (V)‘I’,(/S,')J(mz)s #S)J( ) 27r2'((A _ h)2 + VQ)I‘(:t'L'V)(h:{: i — 1)J

W@ =786 [y [ iR 0M 0

where s and t are the so-called Mellin variables.
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Here the integration measure over Mellin space is given by:

p2(s.8) = T (69)

1<j

+ _ + _
58 = B2 =8 56 _ As42 S o) — SH STE pe), 68 = 2 S a@, 58 = _%—a(s)—b@, o) = 1

The remaining integrand is called “Mellin partial amplitude”:

F(Tiu—%) (s)(s t) h:EZZ/—J

M(S) (s,t) = (5](5)) r (55,1)) P,y Ty = 5

()" IN(J+h—-1) (—1)katha (s)
Z 27l Z L kil (Ti" ) ( )k H (1 i )J_,_E,k..
r=0 | S ky=J—2r (z7) ™I° (ij W 7

~
.
I
-
<

where 151553(5; t) is Mack polynomial which contains no poles in s, t;

{7} are also functions of 7,,.
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» Explicitly integrating over both s and t, we obtain: [Chen-Kyono]

e Tosv+ns+T
‘I’(SJ(:cz) = (ccz Z ZH( % )J ke Z F(—wsu ns)uW

os=+ rk i=1 v
RO 1(s)
X |:Vk14_ 2 2F1

Kosw + s+, ng(3+ns+r
1+ @]

+v o+ )2b(5) oF [KI?,(;;,) t+ns+, 'io(u) tns+r

v
1+ wiy

oF [“’C b, :c] =T ()T(B)(1 — ¢)oF [“’c b. “’J _ T / e ds TN =)l —5) 1

sinme J_;o 2mi T'(c—s)

This is valid for all d, for even d where finite sum results are known,
we obtain non-trivial identities among hypergeometric functions!

» Even more excitingly, the infinite summation over ns can also be
expressed in terms of Appell’s hypergeometric functions Fy:

(s) ®) - ) R
v =T X ST (1) oy
os=x rk i=1 J_T_Zj kﬁ v 2
1 4 9 3
X Vk 4_a(5);b(b) 4 HUSSV) T T Klagsg + T' u,v| +v erH_a(s _b(S) ~4 KIU(SSJ + T, K'UE;SV) + T- u. v
1+ w&f}, 1+iosv 1+ wgsé), 1+iosy




» The Appell function F4 is one of the four possible two variable
generalization of hypergeometric function:

B[ ™ %y zr(al)m?)r(l_cl)r(l_@)n[“1’ “Q;m,y],

oC o0
ai, ap (@1)m+n(@2)m+n m n 1 1
Fy iz, y| = T , x|z +|y|2 < 1.
c1, Co y Z Z min!(e1)m(c2)n y & vl

» In particular, it satisfies the following partial differential equations:

0*Fy,  ,0°F4 0*F4 OF OF,

z(1 —x) 552 Y o 2my@ + (e1 — (a1 +ag + l)x)% — (a1 + a9 + l)ya—y —a1a9F4 =0,
O%F O°F O°F OF OF

y(1—vy) 6y24 -z 8x24 - -’Byaxaz + (c2 — (a1 + ag + 1)37)6—; — (a1 +ay + 1)-’176—; —a1a9F, =0,

and they reduce to various defining equation for generalized
hypergeometric function e.g. 3F> when (x,y) = (2, (1 — t)?) and
(a1,2, c1,2) take special values. It would be very interesting to
understand their connections with conformal Casimir equation.
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Another cute connection with mathematics, consider 2 x 2 matrix (zonal)
generalization of hypergeometric function [Koornwinder, Spinkjuizen-Kuyper 1978]:

Fl® b; z, (3 _
2F(lc)|i‘(cc_ G[E’b;]] a, b c—a—pL()(a+b—c) c—a, c—b
| |+ ! |

I'(c—a)l'(c—b) 4 1—|—a-{—b—c,c—%;u’v T'(a)I'(b) 1—a—b+c,c—%;u’v

where LHS can be expressed in terms of Legendre polynomials:

0, b [2 0]] _ & (@m(a = DiB)mb— Hi(Dmi 1242
2F1l c’lo, z”‘ﬂég (©)m(c — D) ml!()mr P’"‘l(2 ¢z_z)

This implies in our case:

3
a:mcl,(ssy)-f—r, b=n§£‘2+r, c=§+iasu (i.e. d=3)

we can express GS’)J(u, v) in terms of 2 x 2 zonal hypergeometric
function.
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» Summarizing here, we have obtained an expression for s-channel
scalar conformal block:

(s) | R— 4 (s) u%'*"f
GASJ(ZaZ):— 1—’7'5 o (e
) cg?J;g ( (2 )J—T_ZJ k_ji Va( )izb( )
a(®) 166 ~ 1(s) 4(s) a3) b6) ~ 2(s) 3(s)
x | yR1a— 250 ) kS (T) ?;)7', K*S)(T) +1‘; wv L ) k=S (1) -(};)'r, K2 (1) +7'; v
14wy, 1+h—-A l4+wyy, 1+h—A
ATT(“2)0e;  T(A+J) g @ 2 :

in terms of finite sum over Appell's hypergeometric function F,.

> It has correct |u| < 1 expansion, and satisfies the desired property
such as:

s _ a4 b(s) ~(s _
GR(2,2) Iasamaa= (1= 2)(1 - 2))*7*V6R), (2, 2),

and matches with known expressions for d = 2, 4 etc.
Other t- and u- channels are obtained through crossing trans.
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» To discuss crossing kernel, it is convenient to consider spectral
representation of four point scalar correlation function:

(H NBACHES / dv b V)\Il(s) (z;)

where BJ(V) is “spectral function” whose poles and residues encode
the spectrum and OPE coefficients.

» We can regard \TJIES)J(X,-) as orthonormal basis satisfying
orthogonality condition:

B +V)+6(w—7)) b,

DN | =

£© () & (1) = [Tiz, d%z; (s) ®) _
(‘I'U,J(xz)a‘l’u/,]'(mz)) /Vol(SO(l d+1))‘I’VJ($z)‘I’ 'J/(ml)

where W implies A; — A; = d — A;, Vol(SO(1,d + 1)) is the
volume of conformal transformation for gauge fixing. We can have
similar expansion and orthogonal basis for t- and u-channels.
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> We can think of crossing kernel as the expansion coefficients/mixing
matrix when changing the basis, e.g.:

\I!(t "(z;) = / dV’KJt;,(V u’)‘Il(,J,(xz)

The crossing kernel is defined as the overlap of the different basis:

4 i, -
9:.5])'(1/ V,) = ( I(Jt?r(xz) v’ J’( z)) /VOI(I_S[ZO(II d—:— 1))‘1111?,(1,‘1)‘1/1(15,),‘],(:121)

Can directly relate \II( )’ "(x;) and \U(,)’J,’(x,-) using crossing kernel.

» Moreover we can also recast the crossing equation as relation
between spectral functions in different OPE channels:

e os)
bS-S)(V) = Z /oodu b(t)( ')KJJ,(V',I/)
J=0""
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The simplest case is the 1-dim. crossing kernel, in this case quadratic
Casimir equation for 5L(2,R) Slmpllfles to ODE [Van Rees-Hogervorst, 2017] .

D.(a, 89,016 (2) = X\~ g (a), 2 = 222
|2 13] |24

39 (2) = 22F1(a® + A\, 59 + A, 27, 2).

To cure singular behavior z =1 for F;(a, b, ¢, z), instead we consider
symmetric combination:

[(F2a)T(1 + a® + b))
(3 Fa+a®)l(; Fa+be)

T (2) = Qu(+)gf) (2) + Qu(-)g}? (2),  Qu(Fa) =

where a € IR acts as spectral parameter. The orthogonality condition is:




» We can now expand an arbitrary function f(z) using this basis:

0= [ s @06 < fO@) = [ o) w

—100

where Ny(a) = M f.(c) is the Jacobi transformation of f(z).

» Similar basis can be defined for other channels, this allows us to
define the crossing kernel from crossing equation:

. ~ \I!(t)(l —2) = /ioo d—O‘K(g a.A.)qj(s)(z)
1—2 g " Jieo 2miN(a) T T
The final answer is expressed in terms of Wilson function
W(«, B; A;) which is a linear combination of 4F3 contains no poles
in spectral parameters « and £:

K(:B)a; Az) =

‘ A+ A
I‘(1—+—a(s)+b(s>)1“(1+a(‘)—|—b(t))1“(#—%:I:a)I‘(—i( “; 4)+g$[3)W(a,ﬂ;Ai)
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One natural application for crossing kernel is in AdS4.1/CFTy:

» The holographic dual configuration for the basis @A’J(Xi): [Hijano et al

2015]

Namely so-called “Geodesic Witten Diagram” (GWD).

> Quick Justification: What else? Other than entire AdSy.1, the only
possible remaining trajectories preserving the
AdS-isometries/conformal symmetries are the " geodesics”
connecting the pairs of CFT primaries inserted at {P;}.
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» Using kinematical GWDs, we can decompose single s-channel spin-J
exchange Witten Diagram (WD) containing dynamical information
about large N CFTs into infinite sum of GWDs for single and
double trace operators [Chen et al 2017]:

J oo o0
Tup(P) = GA,JWA,J(H)+Z (Z b WA, + 80+ 142m 1 (B) + Z bnlWA3+A4+l+2n;.1(Pi))

=0 \m;=0 n;=0

This allows us to identify its precise contributions to the (12)(34)
OPE coefficients of the four point CFT correlation function.

» For a given s, t, u-channel, the corresponding GWDs is the natural
kinematic basis for expanding the Witten diagram in that channel.

» However, to identify the individual s, t, u-channel WD contributions
to dynamical CFT data {A} or {\120}, it is necessary to recast
them into the GWD in the same OPE channel, e.g. s-channel for
(12)(34).
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» Contrast with normalization, the inner product for crossing kernel in
Euclidean signature is somewhat ambiguous, as 0 < u,v < oo, we
necessarily cross the branch cuts of 5 F; in either s- or t-channels.

» Instead we Wick rotate into Lorentzian signature [Caron-Huot,
Simmons-Duffin-Stanford-Witten 2017].

(s) N J dzdz, 4 9 (s)A 503, 02][01, O4])
(1010:0504), %),y ;@) =, [(-1) / / R e =

/ / dZd)ZI . _ld ZG(S) A; ( 2, )([04’7(_?(251[(0j)7 O3]>]

where the s-channel conformal block now carries A=J+(d-1)
and J = A — (d — 1), and double commutator/discontinuity are:

([O5, 05][01, O4))
T ()

_ (s) (s) (s) 5 im(al®)4b(8)) ~(s),cew 5 —im(al®)4b()) H(s),cw 5

= —2cosm (a®¥ +b¥ ) G¥(2,2) + e g (2,2)+e g (2,2),

([0, 0][01, 05)) _ —2dDisc, [g‘s)(z, 2)]
T(Si)(xi)

— _9cosT (a(s) _ b(s)) GO (2, 7) + (im(a®+b() GO (5, 7) + g—im(a®+b®) 5(s) cow (2,%),

— —2dDisc; [6%)(2,2)]
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» Now applying to crossing kernel, the double discontinuities for

o (t
\UI(/ )J(X,') adre [Sleight-Taronna, Liu et. al., Cardona-Sen et a 2018l, Chen-Kyono To Appear]:
)

) (@)
T (=

. 1 1 )
=—4 ) sinm(Toy - §A1+4) ST (T — iAg_?’)c;Ltj-idtll,JG/(‘Ltj-idtll,J(z’z)’
Ut::t

They can be computed from the monodromies around z = 1 and
Z = oo using the explicit basis we found earlier.

» The crossing kernel is now expressed through the following integral:
K (n,i(A" - ) = (\I',(/t)J(m) GO . J,(a;i))

(&) [\ s el _ (t)
ay (-1) / / dzdz d—2 —\1a6)+b®) ~(s) N v, (@)
=—-2—r ——lz—Z 1—-2)(1—-2 G ;(2,2)dDiscy | ——
Nd 0 (Zf)d | | [( )( )] A’,J’( ) t T(s;) (:I:z)

where we have also used the shadow identity for s-channel block.




» For fixed (ns, n;), using Mellin-Barnes representation for ,F1, the
(z,z) integration is given by Selberg integral:

(a 2 Z(z22)*” 1 2 )81y —3|2 — I'(a)(a+5)(B)T(B +v)T(1+ 27)
8,7) /d/d =)= e = B T g o)

» The remaining s and t integrations reduce to picking up residues at
s,t=0,—1,—2,... as before:

o J
g 1
K‘(}f])/(ug Z(A, — h)) = — A J (S z Sln’/T(Ta-tV Aiti) Sin W(Ta'ty - §A_2+_3
N A' J’ Ut—:l:

© (—1)retns

4
X;Z ( Z(t)) J—r—3, kji (1 51;5))_],_7,,_21 " Z 0 WF(_MW . nt)I‘(A’ —h—ny)

kvl kN i=1 / Ng,Nt=

x> Y T ewi(A - h)ine,ny)
(17)={12,34} (#'5")={14,23}
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It turn out the total residues are given in terms of a special case of
Kampé de Fériet function:

w2 I'(2h—1)
sin7(1 + wg)) sinm(1 + w, ,),) I'(h)

IEEE‘))((i?;i’)“'T"(aw, (A = )y, ns) =

X]F‘OA o 1+E‘L’j;nsr’yh+C~ij;n5r’:’93(:l)/+nt+r,!€'(7;(¢t12+nt +7; 1+17:7‘]"mr h4 itk 6O F) s+, 63 O F) +ng + 17
2.1 Lt hot Gijynrt + 055 s 2P+ G + 055 T+ @1+ 2,

i'j ingr? i jlner

;L1

et ~ 1 - 1 ~
Cijmar = F + kij — —Aj- +ng+1, nf‘tun = Tow + ké, ., — _A;',‘,, + e + 7.
2 u '5"ne J 2 J

which are further generalization of Appell's hypergeometric function:

Z Z m+n )m+n (bl)m ---(bq)m( ’1)n e (bg)n zmy"

p0,q | Aly-+-3Qp: bla bq;b/l: *y q
F |:cl,. Sy dd . d Y| T

P NTTP AT (B
=pq [ a1,---,ap: bl!'-"bq3b’1v"~’b;.x _ Hi:lr(a@) j:lr(bj)r(bj) pq aiy..-yap i b1y...ybgibl, . by -
Clyenser: diy..ydaid,,...,dy D 78 ety ont diy..nydedl,...d DY

B [Tiey Te) IT=; T(d)T(d7) ™

The pole structures are given by the I'-function pre-factors, in
particular they contain double trace operators.
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> Applications to AdS/CFT to directly extract explicit AdS
predictions to compare with CFT?

> Testing crossing kernel with few existing simple examples, where
spectra in certain channel are available? Ising model?

» Application of crossing kernel to Mellin bootstrap by relating the
Mellin amplitudes? [Gopakumar-Sinha 2018]
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