Bootstrapping CFTs without using unitarity

East Asia Joint Workshop on Fields and Strings 2018, KIAS

Based on 1706.04054 and 1711.09075

Unitarity is nice

- Kink

El-Showk et al., 2012

Why at a kink?

- Island

Kos et al. 2014

Why not using unitarity?

- But... not applicable to all interesting problems: 3 kinds.
- Let us see how unitarity is used Consider < $\phi \phi \phi \phi>$

1. Non-unitary CFTs

- Statistical physics

Lee-Yang edge singularity
(imaginary coupling constant)
polymers, percolation, disordered systems
(logarithmic CFTs)

- Complex CFTs
scaling dimensions/OPE coefficients are complex numbers
complexified deformations of real CFTs
walking in gauge theories ~ weakly first-order phase transition (Gorbenko-Rychkov-Zan, '18)

2. Higher-point functions

- 5-point $C_{\phi \phi i} C_{\phi i j} C_{\phi \phi j} \neq(\ldots)^{2}$

- 6-point $C_{\phi \phi i} C_{\phi i j} C_{\phi j k} C_{\phi \phi k} \neq(\ldots)^{2}$

3. When 1-point functions are non-zero

- 2-point functions are not diagonal. 4-point functions will not have squares.
- 2-point functions already lead to nontrivial consistency equations
- Boundary CFTs/Defect CFTs
surface critical phenomena, entanglement entropy non-local probes/order parameters in gauge theories

- Thermal bootstrap (CFT on $S^{1} \times \mathbb{R}^{d-1}$) Kubo-Martin-Schwinger condition for thermal 2-point functions (lliesiu-Kologlu-Mahajan-Perlmutter-Simmons-Duffin, '18)

Need a different approach

- In 2013, F. Gliozzi proposed an alternative method:
"determinant method".
(Gliozzi-Rago '14, Gliozzi-Liendo-Meineri-Rago '15, Nakayama '16, Gliozzi '16, Esterlis-Fitzpatrick-Ramirez '16, Hikami '17 \& '18, LeClair-Squires '18)
- OPEs are truncated. Unitarity is not used.
- For an overdetermined system, determinants of minors should vanishes.
ex. 3d free scalar CFT
$\phi \times \phi=I+\left[\Delta_{\phi^{2}}, 0\right]+\left[\Delta_{T}=3,2\right]+\left[\Delta_{\phi^{2}}+4,4\right]$

- It is subtle to estimate the errors in the prediction, because OPE truncation errors are omitted.

How to tame the truncation error?

Source of discrepancy

Gliozzi-Rago method sets truncation error to zero, while we know that it's small but nonzero
=> need a modification which would handle truncation error consistently

From a review talk by Slava Rychkov in 2015

Error minimization

- Modification OPE truncation error is minimized
- "Error function" $=\sqrt{\sum(\text { (truncated crossing eqn })^{2}} \sim \|$ truncated OPE $\|$

Is OPE truncation a good approximation?

- Why is Ising at the kink?

Something dramatic must happen

- Many operators decouple (El-Showk et al., 2014) spectrum is very sparse/minimal non-perturbative equations of motion ($\mathrm{d}>2$ minimal models?)
- OPE convergence is particularly rapid OPE truncation error is particularly small
- Unitarity is not crucial In fact, 2d Lee-Yang is sparser than 2d Ising

Analytic results

- $\phi_{1} \times \phi_{1}=I+\phi_{2}$

P_{2}	free	$\phi^{4} \mathrm{WF}$	2 d LY	2 d Ising	3 d LY	3d Ising
estimate	2	$2-\epsilon$	-4	0.2	-4	1.0
exact/numerical	2	$2-2 \epsilon / 3$	-3.7	0.25	-3.9	1.1

- $\phi_{1} \times \phi_{1}=I+\phi_{2}+T \longrightarrow$ d-dependent rational function

P_{2}	free	$\phi^{4} \mathrm{WF}$	2 d LY	2 d Ising	3 d LY	3 d Ising
estimate	2	$2-0.66 \epsilon$	-3.63	0.254	$-3.90 /-3.88$	1.12
exact/numerical	2	$2-0.67 \epsilon$	-3.65	0.25	$-3.91 /-3.88$	1.11

universal, approximate relations for CFT data

What is more?

- Perturb the minima add subleading operators
still under development more precise results
- Strongly-coupled theories also have small expansion parameters:
OPE coefficients of the subheading operators!
- Interplay between numerical \& analytic results quantitative \& qualitative understanding ex. double-twist spectrum \& larger spin perturbations

Summary

- Lesson from the kink sparse spectrum due to operator decoupling rapid OPE convergence \& small OPE truncation error
- New bootstrap method: error minimization Perturbation theory in small OPE coefficients

$$
\phi_{1} \times \phi_{1}=\underset{\text { non-perturbative }}{\left(I+\phi_{2}+T\right)}+\underset{\text { perturbations }}{\left(\mathcal{O}_{3}+\mathcal{O}_{4}+\ldots\right)}
$$

- Shifman-Vainshtein-Zakharov sum rules in QCD
Thank you

