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Introduction

• There have been some resurgent interests in superconformal field the-

ories in 6d, with the amount of supersymmetry N = (2,0) or (1,0), i.e.

16 or 8 real supercharges. They were constructed in string/M theory

during 1990’s.

• Some salient features: there is no effective Lagrangian due to tension-

less strings; falls into discrete families, no continuous marginal defor-

mation; obtain CFTs in lower dimensions by compactification; can be

extended to “little string theory”; ADE classification of (2,0) theories.

• What can we learn about these theories? One aspect is to compute

the partition functions on R4
Ω×T

2. This is related to topological string

partition functions on elliptic Calabi-Yau threefolds.



(1,0) theories

• Classification of (1,0) theories:
(del Zotto, Heckman, Morrison, Vafa, et al)
F-theory compactified on a local Calabi-Yau 3-folds X, elliptically fibered
over a Kahler base B.
The theory is characterized by a collection of mutually transversally
intersecting holomorphic curves and intersection matrix

CI ⊂ B , I = 1, . . . , r + f,

The first r of which are compact, is the rank of the corresponding
six-dimensional theory (the tensor branch dimension)
The remaining f are not compact, representing flavor symmetry.

• We have the intersection pairing

AIJ ≡ −CI · CJ , 1 ≤ I, J ≤ r (1)

For 6d SCFTs AIJ has to be positive definite,
While for 6d LSTs AIJ is semi-positive definite, with a single zero
eigenvalue, corresponding to the little string charge.



Partition function and Elliptic genus

• The Ramond elliptic genera of the (0,4) worldsheet theory

Zβ(τ, ε1, ε2,m) ≡ TrR (−1)F qHLq̄HRu2J−v2(J++Jr) e[m]

where q = exp(2πiτ), u = exp(2πiε−) , v = exp(2πiε+) , ε± = 1
2(ε1± ε2) .

where β ∈ Γ, the BPS string charge lattice of the theory, from D3-
branes wrapped on the curve CI.

• The 6d Ω-background partition function ( = A-model refined topolog-
ical string partition function on X) has the following expression

Z(ε1, ε2, t) = Z0

1 +
∑
β∈Γ

Qβ
cZβ(τ, ε1, ε2,m)

 ,
topological string theory: Qβc are exponentials of Kahler parameters of
the compact curve classes CI, 1 ≤ I ≤ r; τ Kahler parameter of elliptic
fiber; m other Kahler parameters.
6d partition function: Q

β
c are exponentials of T2 volume times vev of

scalars in 6d (1,0) tensor multiplets; τ complex structure of T2; m
fugacities of global symmetry.



• Minimal 6d SCFT: These are the “atomic” building blocks for (1,0)

theories, rank one cases realized as F-theory compactified in elliptic

fibration over a base O(−n) → P1, where n = 1,2, · · · ,8 and n = 12.

B. Haghighat, A. Klemm, G. Lockhart and C. Vafa, “Strings of Minimal

6d SCFTs,” arXiv:1412.3152.

• The singularities in elliptic fibration are classified by Kodaira. In F-

theory, we may introduce D7 branes wrapping on singular locus, giving

rise to bulk gauge symmetry in 6d theory. This also introduces some

extra Kahler moduli parameters in the Calabi-Yau geometries. For

n > 2 the strings interact with non-Higgsable bulk gauge symmetry.

• Two simplest theories for n = 1,2, with no bulk gauge symmetry.

There are dual realizations in M-theory, known as E-strings and M-

strings. There are M-theory realizations. E-strings arise as small E8

instantons in Heterotic string theory, see e.g. O. J. Ganor and A.

Hanany, hep-th/9602120.



E, M-strings: brane configuration

0 1 2 3 4 5 6 7 8 9 10
M9 X X X X X X · X X X X
M5 X X X X X X · · · · ·
M2 X X · · · · X · · · ·



How to compute elliptic genus

• Use duality with topological strings (refined topological vertex)

E-strings: topological strings on “half K3” Calabi-Yau.

M-strings: topological strings on elliptic fibration over C2/A1.Haghighat,

Iqbal, Kozcaz, Lockhart and Vafa, arXiv:1305.6322

• Localization method. Construct the proper UV world-sheet theory,

and use supersymmetric localization to compute the path integral,

involving JK residues. e.g. F. Benini, R. Eager, K. Hori and Y.

Tachikawa, arXiv:1305.0533, arXiv:1308.4896; Kim, Kim, Lee, Park,

Vafa, arXiv:1411.232.

• This talk: modularity ansatz method. Use weak Jacobi forms with

the proper modular weight and index, and pole structures. There are

only finite number of unknown constants which can be fixed by other

methods. Del Zotto, Lockhart arXiv:1609.00310; Jie Gu, MH, Amir-

Kian Kashani-Poor, Albrecht Klemm, arXiv:1701.00764



Weak Jacobi Forms

• Consider a holomorphic function ϕ : H × C → C depend on a modular

parameter τ ∈ H, an elliptic parameter z ∈ C. They transform under

the modular group as

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

2πimcz2
cτ+d ϕ(τ, z), ∀

(
a b
c d

)
∈ SL(2;Z)

and under translations of the elliptic parameter as

ϕ(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϕ(τ, z), ∀ λ, µ ∈ Z .

Here k ∈ Z is called the weight and m ∈ Z is called the index.

• Due to the periodicity, the function has a Fourier expansion

φ(τ, z) =
∑
n,r

c(n, r)qnyr, where q = e2πiτ , y = e2πiz

Holomorphic Jacobi form: satisfying c(n, r) = 0 unless 4mn ≥ r2

We use the weak Jacobi form, satisfying c(n, r) = 0 unless n ≥ 0.



• Some weak Jacobi forms can be constructed by theta functions

φ−2,1(τ, z) = −
θ1(z, τ)2

η6(τ)
,

φ0,1(τ, z) = 4[
θ2(z, τ)2

θ2(0, τ)2
+
θ3(z, τ)2

θ3(0, τ)2
+
θ4(z, τ)2

θ4(0, τ)2
].

Here φ0,1(τ, z) is the elliptic genus of K3.

• A Theorem (Zagier et al):

A weak Jacobi form of given index m and even modular weight k is

a polynomial of E4(τ), E6(τ), φ0,1(τ, z), φ−2,1(τ, z) whose modular

weights and indices are 4,6,0,−2 and 0,0,1,1 respectively.



The ansatz

• For E-string and M-string

Zβ =

( √
q

η(τ)12

)−β·KB̌ φk,n+,n−,β(τ,m, ε+, ε−)∏r
i=1

∏βi
s=1

[
φ−1,12

(τ, sε1)φ−1,12
(τ, sε2)

] ,

• Some explanations:

Here β is the base class. For E-strings and M-strings, only one class in

the base r = 1, and β = n, the number of strings.

φk,n+,n−,β a polynomial of appropriate weight and index in ε± = 1
2(ε1 ±

ε2), and the E8 Weyl invariant Jacobi forms (E-string) or a Jacobi forms

of a mass (M-string) .

The η(τ) dependent prefactor is argued by a shift of base Kahler class.

Zβ formally have vanishing weight.



Index from modular anomaly

• Modular forms are generated by Eisenstein series E4, E6. The second
Eisenstein series E2 is not exactly a modular form. We usually call the
homogeneous polynomials of E2, E4, E6 “quasi-modular” forms, and the
dependence on E2 “modular anomaly”.

• The weak Jacobi forms can be expanded in terms of quasi-modular
forms

φ−2,1(z, τ) = −z2 +
E2z

4

12
+
−5E2

2 + E4

1440
z6 +O(z8),

φ0,1(z, τ) = 12− E2z
2 +

E2
2 + E4

24
z4 +O(z6),

and they satisfy the modular anomaly equation

∂E2
φ−2,1(z, τ) = −

z2

12
φ−2,1(z, τ), ∂E2

φ0,1(z, τ) = −
z2

12
φ0,1(z, τ).

• Therefore we can deduce the index of a weak Jacobi form from its
modular anomaly.



• E-strings: First proposed by Minahan et al hep-th/9707149. Later

generalized to higher genus and refined case S. Hosono, M. H. Saito

and A. Takahashi, hep-th/9901151; Huang, Klemm and Poretschkin,

arXiv:1308.0619

• M-strings: The refined anomaly equation is derived from refined topo-

logical vertex calculations. Haghighat, Iqbal, Kozcaz, Lockhart and

Vafa, arXiv:1305.6322

• In both case the anomaly is a quadratic symmetric polynomial of ε1,2.

So we can determine the modular index for ε±

n+ =


nb
3 (n2

b + 3nb − 4) for the E-string,
nb
6 (2n2

b + 9nb − 5) for the M-string,

and

n− =


nb
3 (n2

b − 1) for the E-string,
nb
6 (2n2

b − 3nb + 1) for the M-string.



Index from anomaly polynomial

• The anomaly polynomial for 6d SCFT and their 2d world-sheet theories

are proposed. Ohmori, Shimizu, Tachikawa, H.-C. Kim, S. Kim, and

J. Park et el.

• A dictionary that map the anomaly polynomial to the indices of various

elliptic parameters in the elliptic genus. N. Bobev, M. Bullimore, and

H.-C. Kim, arXiv:1507.08553

• Kachru et al arXiv:1507.08553 also argues the relation among anomaly

coefficients and modular properties of the elliptic genus in a completely

different way.



How to fix the ansatz

• A geometric bound (known as Castelnuovo bound): For a given Kahler

class, the Gopakumar-Vafa invariants vanish for sufficiently large genus.

• We impose the constrains on the ansatz, and call the remaining ambi-

guity “restricted ansatz”. The upshot: The restricted ansatz has only

A(τ, z) in the denominator while the general ansatz’s denominator is∏nb
k=1A(τ, kz).

• The modular index in the numerator of the restricted ansatz is actually

negative for nb > 1 since n− < −1, so must be zero. In principle we

can completely fix the ansatz up to a normalization by these vanishing

conditions from Castelnuovo bound.

• A similar argument works for the refined case.



Minimal 6d SCFTs with gauge symmetry

• Our main examples: n = 3,4 in the list of minimal models, with non-

Higgsable gauge symmetry SU(3) and SO(8).

• The elliptic genus has been also computed by localization method.

SU(3) model, H.-C. Kim, S. Kim, and J. Park, arXiv:1608.03919;

SO(8) model, B. Haghighat, A. Klemm, G. Lockhart, and C. Vafa,

arXiv:1412.3152.

• The ansatz with Jacobi forms is proposed in M. Del Zotto and G.

Lockhart, arXiv:1609.00310. The denominator is more complicated

involved a product over simple roots of the Lie algebra. Some simple

cases are solved, e.g. with the Kahler parameters corresponding to

gauge symmetry set to zero.

• Here we shall tackle the full theory with generic Kahler parameters.



Weyl invariant Jacobi forms

• Let g be a simple Lie algebra of rank r with a Cartan sub-algebra h.

Following Wirthmuller 1992, a Weyl-invariant Jacobi form of weight

w and index n (w ∈ Z, n ∈ N) is defined to be a holomorphic function

ϕw,n : H × hC → C with the various conditions like Modularity, Quasi-

periodicity, Weyl symmetry, Fourier expansion. e.g. Modularity, for(
a b
c d

)
∈ SL(2,Z)

ϕw,n

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)we

[
nc(z, z)g
2(cτ + d)

]
ϕw,n(τ, z) . (2)

The argument τ ∈ H is called the modular parameter, and z ∈ hC
∼= Cr

the elliptic parameter.

• The explicit forms of the ring generators were constructed in Bertola’s

thesis 2002 for g = an, bn, g2, c3, d4.



Affine Weyl invariant Jacobi forms

• The Dynkin diagram is extended to affine Dynkin diagram by an extra

node. The modular parameter q is related to the exponential of Kahler

parameter Q0 of the extra node

q = Q0

r∏
i=1

Q
a∨i
i

where r is the rank of Dynkin diagram, a∨i and Qi are the comarks and

corresponding exponentials of Kahler parameter of nodes.

• The topological string partitions function should be power series of

Qi, i = 0,1, · · · r.



• The geometry introduces certain symmetry conditions. The topolog-

ical string partition for SU(3) model should be symmetric over the

permutation of Kahler parameters corresponding to the 3 nodes in the

affine Â2 Dynkin diagram.

• The topological string partition for SO(8) model should be symmetric

over the permutation of Kahler parameters corresponding to the 4

nodes in edges of the affine D̂4 Dynkin diagram.

1 2

0 2

3 4

1 0

• We construct these affine Weyl invariant Jacobi forms from Bertola’s

basis.



Fixing the ansatz with vanishing BPS
conditions

• For model with gauge symmetry, the number of possible terms is gen-
erally quite large. However, for the case one-string elliptic genus, or
base degree one in topological string setting, we can use the Jacobi
forms with SU(2)R parameter 2ε+ instead of ε+. The use of affine
invariant Jacobi forms further simplifies the ansatz, which has 5 and
149 coefficients for the SU(3) and SO(8) models respectively

• From previous literature on SU(3) and SO(8) models H.-C. Kim, S.
Kim, and J. Park, arXiv:1608.03919; B. Haghighat, A. Klemm, G.
Lockhart, and C. Vafa, arXiv:1412.3152, we can compute the BPS in-
variants and guess the maximal genus with non-vanishing BPS numbers
for a given Kahler class.

• There should be some geometric arguments for these vanishing condi-
tions. Assuming the validity of these top genus formulas in the follow-
ings, we try to use them to fix the Jacobi form ansatz.



Compare with E-string and M-string

• In E-string and M-string, the base degree one ansatz has only one coef-

ficient which is the overall normalization. Therefore the BPS vanishing

conditions give no constrain for base degree one. At the higher base

degree, one can argue that the generic BPS vanishing conditions are

sufficient to completely fix the higher base degree ansatz. Here generic

conditions mean we only need to know that the BPS invariants always

vanish at sufficiently high genus for a given Kahler class, without the

precise top genus formulas.

• On the other hand, for the models with gauge symmetry, one can check

that the base degree one ansatz satisfies the generic BPS vanishing

conditions, but has more coefficient than just the normalization. So in

order to fix the base degree one ansatz, the generic vanishing conditions

provide no constrain at all, and we need to use the precise top genus

formulas.



• We find that for the SU(3) and SO(8) models, we can completely fix

the base degree one ansatz up to a normalization with the vanishing

BPS conditions.

• For higher base degree, one can easily find certain sub-family of ansatz

which satisfies the generic BPS vanishing conditions, due to the Lie

algebra factor in the denominator of the ansatz. So unlike the E-string

and M-string, the generic BPS vanishing conditions do not completely

fix the higher base degree ansatz for models with gauge symmetry.

• We suspect that the BPS vanishing conditions with precise top genus

formulas can completely fix the higher base degree ansatz for all models,

although it is computationally much difficult to check than the base

degree one case.



E8 Jacobi forms: some curious observations

• The classification results of Wirthmuller apply to all simply laced Lie al-

gebras except for E8. For this final case, Sakai has constructed certain

holomorphic Jacobi forms, denoted as A1, A2, A3, A4, A5, B2, B3, B4, B6,

with the subscript indicating the E8 elliptic index. The An’s have mod-

ular weight 4 and reduce to the Eisenstein series E4 in the massless

limit, while the Bn’s have modular weight 6 and reduce to the Eisenstein

series E6.

• They can be written in terms of Jacobi theta functions, e.g. A1 is the

theta function of E8 lattice Γ8

A1(τ, ~m) = Θ(τ, ~m) =
∑
~w∈Γ8

exp(πiτ ~w2 + 2πi~m · ~w) =
1

2

4∑
k=1

8∏
j=1

θk(mj, τ)



• This set of forms generates a ring over the space of holomorphic mod-

ular forms which we shall refer to as RSakai. It is known that RSakai
does not coincide with the full ring of E8 Weyl invariant Jacobi forms.

Here we construct some examples of weak Jacobi forms.

• Since the leading term in the q-series expansion of the An’s and Bn’s

is 1, we can easily construct Jacobi forms which are polynomials which

vanish at q = 0 for general E8 mass, which we call cusp polynomials.

Their formal sums form an ideal in RSakai. Some examples are the

discriminant function ∆ = 1
1728(E3

4 − E
2
6), A2E4 − A2

1, B2E4 − A2E6.

Then the ratio of a cusp polynomial with ∆ is holomorphic. It is

generally a weak Jacobi form, but not holomorphic Jacobi form.

• After some computer search for cusp polynomials, we conjecture the

ideal of cusp polynomials is finitely generated by 43 generators.



• A more curious Jacobi form with E8 index 5 and modular weight 16:

P = 864A3
1A2 + 21E2

6A5 − 770E6A3B2 + 3825A1B
2
2

−840E6A2B3 + 60E6A1B4.

• Our conjecture
1. The Jacobi form P vanishes at the zero points τ = ±1

2 +
√

3
2 i of E4

for general E8 mass parameters. So far we only check numerically.
2. Any Jacobi form expressed as a polynomial of An’s, Bn’s and E6
which vanishes at the zero points of E4 for general E8 mass parameters
must be divisible by the polynomial P .

• Some later progress by mathematician: (H. Wang, “W (E8)-invariant
Jacobi forms,” arXiv:1801.08462) The space of holomorphic/weak E8
Jacobi forms of a given index is a free module of finite rank over SL(2,Z)
modular forms. Further, the basis of the space of holomorphic/weak
E8 Jacobi forms for index 2,3,4 are explicitly constructed.

• Questions: Construct the basis for higher index? Is the bigraded ring
of E8 Jacobi forms finitely generated?



Summary and Conclusion

• We compute the elliptic genus of E-strings and M-strings by making

a good ansatz using weak Jacobi forms, then fixing the ansatz by

geometric constrains. Although the results have been obtained before,

our method seems more efficient than previous works in certain aspects,

without introducing spurious poles in the ansatz.

• We also consider the models with gauge symmetry SU(3) and SO(8).

The computation is much more complicated, requiring more sophisti-

cated tools like Weyl invariant Jacobi forms.

• Our results agree with previous works, by some non-trivial identities of

Jacobi theta functions.

• We may study more models, especially those that are not solved by

other methods.



Thank you


