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– General Relativity is based on Riemannian geometry, where the only geometric and
gravitational field is the Riemannian metric, gµν . Other fields are meant to be extra matter.

– On the other hand, string theory suggests to put a two-form gauge potential, Bµν , and a
scalar dilaton, φ, on an equal footing along with the metric:

• They form the closed string massless sector, being ubiquitous in all string theories,∫
dDx

√
−ge−2φ

(
Rg + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)

where H = dB .

This action hides O(D,D) symmetry of T-duality which transforms g,B, φ into one another. Buscher 1987

– T-duality hints at a natural augmentation to GR, in which the entire closed string massless
sector constitutes the fundamental gravitational multiplet and the above action corresponds to
‘pure’ gravity.

Double Field Theory (DFT), initiated by Siegel 1993 & Hull, Zwiebach 2009-2010, turns out to
provide a concrete realization for this idea of Stringy Gravity by manifesting O(D,D) T-duality.

• Plan of this talk

I. Review DFT as Stringy Gravity, as formulated on ‘doubled-yet-gauged’ spacetime.

II. Derive the Einstein Double Field Equations, GAB = 8πGTAB , as the unifying single expression for the

closed-string massless sector, as well as for Newton-Cartan, Carroll and Gomis-Ooguri gravities.

III. Moduli-free Kalaza–Klein reduction of DFT on non-Riemannian internal space.
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DFT as Stringy Gravity

O(D,D) completion of General Relativity
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Notation for O(D,D) and Spin
(
1,D−1

)
L × Spin

(
D−1, 1

)
R local Lorentz symmetries

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =


0 1

1 0


p, q, · · · Spin

(
1,D−1

)
L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin
(
1,D−1

)
L spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin
(
D−1, 1

)
R vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin
(
D−1, 1

)
R spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

– The constant O(D,D) metric, JAB , decomposes the doubled coordinates into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) ,

where µ, ν are D-dimensional curved indices.

– The twofold local Lorentz symmetries indicate two distinct locally inertial frames for the
left-moving and the right-moving closed string sectors separately ⇒ Unification of IIA and IIB.

The spin group can generalize to Spin(t , s)L × Spin(̄t , s̄)R with t + t̄ = s + s̄ = D ⇒ Heterotic.
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• Closed string massless sector as ‘Stringy Graviton Fields’

The stringy graviton fields consist of the DFT dilaton, d , and DFT metric, HMN :

HMN = HNM , HK
LHM

NJLN = JKM .

Combining JMN and HMN , we get a pair of symmetric projection matrices,

PMN = PNM = 1
2 (JMN +HMN ) , PL

M PM
N = PL

N ,

P̄MN = P̄NM = 1
2 (JMN −HMN ) , P̄L

M P̄M
N = P̄L

N ,

which are orthogonal and complete,

PL
M P̄M

N = 0 , PM
N + P̄M

N = δM
N .

Further, taking the “square roots" of the projectors,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we get a pair of DFT vielbeins satisfying their own defining properties,

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 ,

or equivalently
VM

pVNp + V̄M
p̄V̄Np̄ = JMN .
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Classification of DFT backgrounds, 1707.03713 with Kevin Morand

The most general form of the DFT metric, HMN = HNM , HK
LHM

NJLN = JKM , is

characterized by two non-negative integers, (n, n̄), 0 ≤ n + n̄ ≤ D:

HAB =

 Hµν −HµσBσλ + Yµi X i
λ − Ȳµı̄ X̄ ı̄λ

BκρHρν + X i
κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κ
Bλ)ρYρi − 2X̄ ı̄

(κ
Bλ)ρȲρı̄



i) Symmetric and skew-symmetric fields : Hµν = Hνµ, Kµν = Kνµ, Bµν = −Bνµ ;

ii) Two kinds of eigenvectors having zero eigenvalue, with i, j = 1, 2, · · · , n & ı̄, ̄ = 1, 2, · · · , n̄,

HµνX i
ν = 0 , Hµν X̄ ı̄ν = 0 , KµνYνj = 0 , Kµν Ȳν̄ = 0 ;

iii) Completeness relation: HµρKρν + Yµi X i
ν + Ȳµı̄ X̄ ı̄ν = δµν .

– Orthonormality follows: Yµi X j
µ = δi

j , Ȳµı̄ X̄ ̄µ = δı̄ ̄ , Yµi X̄ ̄µ = Ȳµı̄ X j
µ = 0 .

– O(D,D) invariant trace: HA
A = 2(n − n̄) .
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µ = 0 .

– O(D,D) invariant trace: HA
A = 2(n − n̄) .

ARXIV:1707.03713 1804.00964 1808.10605 with Stephen Angus, Kyoungho Cho, and Kevin Morand



Classification of DFT backgrounds, 1707.03713 with Kevin Morand

B-field contributes through O(D,D)-conjugation:

HAB =

 1 0

B 1


 H Yi (X i )T − Ȳı̄(X̄ ı̄)T

X i (Yi )
T − X̄ ı̄(Ȳı̄)T K


 1 −B

0 1

 .

I. (n, n̄) = (0, 0) corresponds to the Riemannian case or Generalized Geometry à la Hitchin :

HMN ≡

 g−1 −g−1B

Bg−1 g − Bg−1B

, e−2d ≡
√
|g|e−2φ Giveon, Rabinovici, Veneziano ’89, Duff ’90

II. Generically, string becomes chiral and anti-chiral over the n and n̄ dimensions:

X i
µ ∂+xµ(τ, σ) ≡ 0 , X̄ ı̄µ ∂−xµ(τ, σ) ≡ 0 : to be explained later

– Such non-Riemannian examples include
• (1, 0) Newton-Cartan gravity (ds2 = −c2dt2 + dx2, lim

c→∞
g−1 is finite & degenerate)

• (1, 1) Gomis-Ooguri non-relativistic string Melby-Thompson, Meyer, Ko, JHP 2015

• (D−1, 0) ultra-relativistic Carroll gravity

• (D, 0) Siegel’s chiral string: maximally non-Riemannian, rigidlyH = J

– Singular geometry in GR can be smooth in DFT (check your favorite SUGRA solutions).

– Their dynamics will be all governed by the Einstein Double Field Equations.
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• Diffeomorphisms in Stringy Gravity are given by “generalized Lie derivative": Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ωT ∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ωT is the weight, e.g. δe−2d = ∂B(ξBe−2d ), δVAp = ξB∂BVAp + (∂AξB − ∂BξA)V B
p .

• For consistency, the so-called ‘section condition’ should be imposed: ∂M∂
M = 0.

From ∂M∂
M = 2∂µ∂̃µ, the section condition can be easily solved by letting ∂̃µ = 0.

The general solutions are then generated by the O(D,D) rotation of it.

• The section condition is mathematically equivalent to a certain translational invariance:

Φi (x) = Φi (x + ∆) , ∆M = Φj∂
M Φk ,

where Φi ,Φj ,Φk ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be derivative-index-valued. JHP 2013

I ‘Physics’ should be invariant under such shifts of the doubled coordinates in Stringy Gravity.
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Doubled-yet-gauged spacetime JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• If we solve the section condition by letting ∂̃µ ≡ 0, and further choose ∆M = cµ∂M xµ, we note(
x̃µ , xν

)
∼
(
x̃µ + cµ , xν

)
: x̃µ ’s are gauged and xν ’s form a section.

• Then, O(D,D) rotates the gauged directions and hence the section.
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Doubled-yet-gauged spacetime JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

– In DFT, the usual infinitesimal one-form, dxM , is not covariant:

neither diffeomorphic covariant,

δxM = ξM , δ(dxM ) = dxN∂Nξ
M 6= dxN (∂Nξ

M − ∂MξN ) ,

nor invariant under the above ‘coordinate gauge symmetry’,

dxM −→ d
(
xM + ∆M) 6= dxM .

– The naive contraction, dxMdxNHMN , is not an invariant scalar, and thus cannot lead to

any sensible definition of the ‘proper length’ in DFT or doubled-yet-gauged spacetime.
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xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

– These problems can be all cured by literally ‘gauging’ the infinitesimal one-form,

DxM := dxM −AM , AM∂M = 0 (derivative-index-valued) .

Now, DxM is covariant :

δxM = ∆M , δAM = d∆M =⇒ δ(DxM ) = 0 ;

δxM = ξM , δAM = ∂MξN (dxN −AN ) =⇒ δ(DxM ) = DxN (∂Nξ
M − ∂MξN ) .

– E.g. if we set ∂̃µ ≡ 0, we have AM = Aλ∂M xλ = (Aµ , 0), DxM = (dx̃µ − Aµ , dxν) .
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• With DxM = dxM −AM , it is possible to define the ‘proper length’ through a path integral,

Proper Length := − ln
[ ∫
DA exp

(
−
∫ √

DxM DxNHMN

)]
.

– For the (0, 0) Riemannian DFT-metric, with ∂̃µ ≡ 0, AM = (Aµ, 0), and from

DxM DxNHMN ≡ dxµdxνgµν +
(
dx̃µ − Aµ + dxρBρµ

) (
dx̃ν − Aν + dxσBσν

)
gµν

after integrating out Aµ, the proper length reduces to the conventional one,

Length =⇒
∫ √

dxµdxνgµν(x) .

– Since it is independent of x̃µ, indeed it measures the distance between two gauge orbits, as desired.
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘completely covariant’ actions:

I. Particle action Ko-JHP-Suh 2016

Sparticle =

∫
dτ e−1 Dτ xM Dτ xNHMN (x)− 1

4 m2e

II. String action Hull 2006, Lee-JHP 2013, Arvanitakis-Blair 2017

Sstring = 1
4πα′

∫
d2
σ − 1

2

√
−hhij Di x

M Dj x
NHMN (x)− εij Di x

MAjM

With the (0, 0) Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

the above actions reduce to the conventional ones:

Sparticle ⇒
∫

dτ e−1 ẋµẋνgµν − 1
4 m2e ,

Sstring ⇒ 1
2πα′

∫
d2σ − 1

2

√
−hhij∂i xµ∂j xνgµν + 1

2 ε
ij∂i xµ∂j xνBµν + 1

2 ε
ij∂i x̃µ∂j xµ .

III. κ-symmetric doubled-yet-gauged Green-Schwarz superstring, unifying IIA & IIB JHP 2016

SGS = 1
4πα′

∫
d2
σ − 1

2

√
−hhij ΠM

i ΠN
j HMN − εij Di x

M (AjM − iΣjM
)
,

where ΠM
i := Di xM − iΣM

i and ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′.
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On the other hand, upon the generic (n, n̄) DFT backgrounds,

the auxiliary gauge potential decomposes into three parts:

Aµ = KµρHρνAν + X i
µYνi Aν + X̄ ı̄µȲνı̄ Aν .

– The first part appears quadratically, which leads to Gaussian integral.

– The second and third parts appear linearly, as Lagrange multipliers, to prescribe

i) Particle freezes over the (n + n̄) dimensions

X i
µ ẋµ ≡ 0 , X̄ ı̄µ ẋµ ≡ 0 .

Remaining orthogonal directions are described by a reduced action:

Sparticle ⇒
∫

dτ e−1 ẋµ ẋνKµν − 1
4 m2e .

ii) String becomes chiral over the n dimensions and anti-chiral over the n̄ dimensions

X i
µ

(
∂αxµ + 1√

−h
εα
β∂βxµ

)
≡ 0 , X̄ ı̄µ

(
∂αxµ − 1√

−h
εα
β∂βxµ

)
≡ 0 .

Sstring ⇒ 1
2πα′

∫
d2σ − 1

2
√
−hhij∂i x

µ∂j x
νKµν + 1

2 ε
ij∂i x

µ∂j x
νBµν + 1

2 ε
ij∂i x̃µ∂j x

µ .
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Covariant derivatives and curvatures:

semi-covariant formalism (completely covariantizable)
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• Semi-covariant derivative : Jeon-Lee-JHP 2010, 2011

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

for which the DFT Christoffel connection can be uniquely fixed,

ΓCAB=2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
DPB]

E
)
∂DPEC− 4

D−1

(
P̄C[AP̄B]

D+PC[APB]
D
)(
∂Dd+(P∂E PP̄)[ED]

)
by demanding the compatibility, ∇APBC = ∇AP̄BC = ∇Ad = 0, and some torsionless conditions.

∗ There are no normal coordinates where ΓCAB would vanish point-wise: Equivalence Principle is broken

for string (i.e. extended object) but recoverable for point particle.

• Semi-covariant Riemann curvature :

SABCD = S[AB][CD] = SCDAB := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
, S[ABC]D = 0 ,

where RABCD denotes the ordinary “field strength”: RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED .

By construction, it varies as ‘total derivative’: δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB .

• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

The two spin connections for the Spin
(
1,D−1

)
L × Spin

(
D−1, 1

)
R local Lorentz symmetries are

determined in terms of the DFT Christoffel connection by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄ V̄Bq̄ = 0 .
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• Complete covariantization
– Tensors,

PC
D P̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1 q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1 q̄2···q̄n , Dp̄Tp̄q1q2···qn ; DpDpTq̄1 q̄2···q̄n , Dp̄Dp̄Tq1q2···qn .

– Spinors, ρα, ρ′ᾱ, ψαp̄ , ψ′ᾱp ,

γ
pDpρ , γ̄

p̄Dp̄ρ
′
, Dp̄ρ , Dpρ

′
, γ

pDpψq̄ , γ̄
p̄Dp̄ψ

′
q , Dp̄ψ

p̄
, Dpψ

′p
.

– RR sector, Cαᾱ O(D,D) covariant nilpotent operators

D±C := γ
pDpC ± γ(D+1)Dp̄Cγ̄ p̄

, (D±)2 = 0 =⇒ F := D+C ( RR flux ) .

c.f. O(D,D) spinorial treatment is the artifact of the diagonal gauge fixing of the twofold spin groups.

– Yang-Mills,

Fpq̄ := FABV A
pV̄ B

q̄ where FAB := ∇AWB −∇BWA − i [WA,WB ] .

– Curvatures,

Spq̄ := SABV A
pV̄ B

q̄ ( Ricci ) , S(0) := (PACPBD − P̄AC P̄BD)SABCD ( scalar ) .
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Assuming (0, 0) Riemannian background, {eµp, ēµp̄,B, φ}, they reduce e.g. to

• Generalized Geometry :

Dp̄Tq =
1
√

2

(
∂p̄Tq + ωp̄qr T

r + 1
2 Hp̄qr T

r)
,

γ
pDpρ = 1√

2
γm (∂mρ + 1

4ωmnpγ
npρ + 1

24 Hmnpγ
npρ− ∂mφρ

)
.

Hitchin 2002, Gualtieri 2004, Coimbra, Strickland-Constable, Waldram 2008, 2011

• With eµp ≡ ēµ p̄ , H–twisted & democratic RR :

D+ ⇒ d + H ∧ , D− ⇒ ? (d + H ∧ ) ? .

Bergshoeff, Kallosh, Ortín, Roest, Van Proeyen 2001

• The scalar curvature gives the closed string effective action :

∫
e−2d S(0) =

∫ √
|g|e−2φ

(
Rg + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)
.

These results show how closed string massless sector, {gµν ,Bµν , φ}, should couple

minimally and O(D,D)-covariantly to extra matter, while forming (pure) Stringy Gravity.
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Equipped with the semi-covariant derivatives, one can construct, e.g.

• D = 10 Maximally Supersymmetric Double Field Theory, Jeon-Lee-JHP-Suh 2012

Ltype II = e−2d
[

1
8 S(0) + 1

2 Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1
2 ρ̄γ

pDpρ− i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]
which unifies IIA & IIB SUGRAs (thanks to the twofold spin groups), and further
supersymmetrises non-Riemannian gravities, e.g. Newton-Cartan, Gomis-Ooguri.

⇒ The single theory contains the various gravities as different solution sectors.

• Minimal coupling to the D = 4 Standard Model, Kangsin Choi & JHP 2015 [PRL]

LSM = e−2d


1

16πGN
S(0)

+
∑
V PABP̄CDTr(FACFBD) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′



Every single term above is completely covariant, w.r.t. O(D,D), DFT-diffeomorphisms, and

twofold local Lorentz symmetries.
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Derivation of the Einstein Double Field Equations

from the General Covariance of Stringy Gravity
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Henceforth, we consider a general action for Stringy Gravity coupled to matter fields, Υa,∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
,

where S(0) is the stringy scalar curvature and Lmatter is the matter Lagrangian equipped with the
completely covariantized master derivatives, DM . The integral is taken over a section, Σ.

We seek the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa .

– Firstly, the pure Stringy Gravity term transforms, up to total derivatives ('), as

δ
(

e−2d S(0)

)
' 4e−2d

(
V̄ Bq̄δVB

pSpq̄ − 1
2 δd S(0)

)

– Secondly, the matter Lagrangian transforms as

δ
(

e−2d Lmatter

)
' e−2d

(
−2V̄ Aq̄δVA

pKpq̄ + δd T(0) + δΥa
δLmatter

δΥa

)
where we have been naturally led to define

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄
− V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2d Lmatter

)
δd

.
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• Combining the two results, the variation of the action reads

δ

∫
Σ

e−2d
[

1
16πG S(0) + Lmatter

]
=

∫
Σ

e−2d
[

1
4πG V̄ Aq̄δVA

p(Spq̄ − 8πGKpq̄)− 1
8πG δd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]
Hence, the equations of motion are ‘for now’ exhaustively,

Spq̄ = 8πGKpq̄ , S(0) = 8πGT(0) ,
δLmatter

δΥa
= 0 .

• Specifically when the variation is generated by diffeomorphisms, we have δξΥa = L̂ξΥa and

δξd = − 1
2 e2d L̂ξ

(
e−2d) = − 1

2DAξ
A , V̄ Aq̄δξVA

p = V̄ Aq̄L̂ξVA
p = 2D[AξB]V̄ Aq̄V Bp .

The diffeomorphic invariance of the action then implies

0 =

∫
Σ

e−2d
[

1
8πG ξ

BDA
{

4V[A
pV̄B]

q̄(Spq̄ − 8πGKpq̄)− 1
2JAB(S(0) − 8πGT(0))

}
+ δξΥa

δLmatter

δΥa

]
This leads to the definitions of the off-shell conserved stringy Einstein curvature,

GAB := 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , DAGAB = 0 (off-shell) ,

JHP-Rey-Rim-Sakatani 2015
and the on-shell conserved stringy Energy-Momentum tensor,

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , DAT AB = 0 (on-shell) .
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• GAB and TAB each have D2 + 1 decomposable components,

V A
pV̄ B

q̄GAB = 2Spq̄ , GA
A = −DS(0) , V A

pV̄ B
q̄TAB = 2Kpq̄ , T A

A = −DT(0) .

I All the equations of motion of the DFT vielbeins and dilaton are unified into a single expression:

Einstein Double Field Equations

GAB = 8πGTAB

which is naturally consistent with the central idea that Stringy Gravity treats the entire closed
string massless sector as geometrical stringy graviton fields.
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Einstein Double Field Equations

GAB = 8πGTAB

I Restricting to the (0, 0) Riemannian backgrounds,
the EDFE reduce to

Rµν + 25µ(∂νφ)− 1
4 HµρσHν

ρσ = 8πGK(µν) ,

5ρ
(

e−2φHρµν
)

= 16πGe−2φK[µν] ,

R + 42φ− 4∂µφ∂
µ
φ− 1

12 HλµνHλµν = 8πGT(0) .

• For other non-Riemannian cases, (n, n̄) 6= (0, 0), EDFE govern the dynamics of the
non-Riemannian ‘chiral’ gravities, such as Newton-Cartan, Carroll, and Gomis-Ooguri, etc.
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Examples: TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0)

• RR sector,

LRR = 1
2 Tr(FF̄) , Kpq̄ = − 1

4 Tr(γpF γ̄q̄F̄) , T(0) = 0 .

• Spinor field,

Lψ = ψ̄γpDpψ + mψψ̄ψ , Kpq̄ = − 1
4 (ψ̄γpDq̄ψ −Dq̄ψ̄γpψ) , T(0) ≡ 0 .

• Scalar field,

Lϕ = − 1
2H

MN∂Mϕ∂Nϕ− V (ϕ) , Kpq̄ = ∂pϕ∂q̄ϕ , T(0) = −2Lϕ .

• Fundamental string: with Di yM = ∂i yM −AM
i (doubled-yet-gauged),

e−2d Lstring = 1
4πα′

∫
d2σ

[
− 1

2

√
−hhij Di yM Dj yNHMN (y)− εij Di yMAjM

]
δD(x − y(σ)

)
,

Kpq̄ = 1
4πα′

∫
d2σ
√
−hhij (Di y)p(Dj y)q̄ e2d(x)δD(x − y(σ)

)
, T(0) = 0 .

– More examples in our paper include Yang-Mills, point particle, superstring, etc.
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Moduli-free Kaluza–Klein reduction Cho-Morand-JHP 1808.10605

• The maximally non-Riemannian background, HAB = JAB , is special.

– It is the fully O(D,D) symmetric vacuum.

– It does not allow any linear fluctuation: fromHA
BHB

C = δA
C ,

δHA
BHB

C +HA
BδHB

C = 0 =⇒ δHAB = 0 for HA
B = δA

B .

– The coset structure is trivial,
O(D,D)

O(D,D)× O(0, 0)
= 1 .

– In other words, there is no Nambu-Goldstone mode for the completely symmetric vacuum.

– String in the doubled-yet-gauged sigma model becomes completely chiral à la Siegel.
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Moduli-free Kaluza–Klein reduction Cho-Morand-JHP 1808.10605

• For DFT Kaluza-Klein ansatz, we set the internal space to be maximally non-Riemannian,

Ĥ = exp
[
Ŵ
] H′ ≡ J ′ 0

0 H

 exp
[
Ŵ T
]
, Ŵ =

 0 −W c

W 0

 , Ĵ =

 J ′ 0

0 J

 ,

where W c
A′

A := W A
A′ , W A

A′∂A = 0, and the coset structure is O(D+D′,D+D′)
O(D′+1,D+D′−1)×O(D−1,1)

.

• Plugging this ansatz into the (D+D′)-dimensional ‘pure’ DFT action as well as

the doubled-yet-gauged string action, we obtain

– Heterotic DFT (non-Abelian after Scherk-Schwarz twist),

LHet = S(0) − 1
4H

ACHBDFAB
ȦFCDȦ −

1
12H

ADHBEHCF
(
ωABCωDEF − 6ωABCH[D

G∂EHF ]G

)
,

where as for Yang–Mills and Chern–Simons terms,

FAB
Ċ = ∂AWB

Ċ − ∂BWA
Ċ + fȦḂ

ĊWA
ȦWB

Ḃ , ωABC = 3W[A
Ȧ∂BWC]Ȧ + fȦḂĊWA

ȦWB
ḂWC

Ċ ,

c.f. Hohm-Kwak, Grana-Marques, Berman-Lee, etc.
– Heterotic string (with WAA′ ≡ 0 for simplicity),

1
2

∫
Σ

−
√
−hhij gµν∂i x

µ
∂j x

ν + ε
ij Bµν∂i x

µ
∂j x

ν + ε
ij
∂i x̃µ∂j x

µ + ε
ij
∂i ỹµ′∂j y

µ′ .

Here the internal coordinates, yµ
′

(1 ≤ µ′ ≤ D′), are all chiral :
(√
−hhαβ + εαβ

)
∂βyµ

′
= 0 .
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Moduli-free Kaluza–Klein reduction Cho-Morand-JHP 1808.10605
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]
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1
2
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Σ
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µ
∂j x
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µ
∂j x

ν + ε
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µ + ε
ij
∂i ỹµ′∂j y
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Conclusion

• String theory predicts its own gravity, i.e. Stringy Gravity (DFT), rather than GR: 1804.00964

GAB = 8πGTAB ,

which is the O(D,D) completion of original Einstein Field Equations.

• Stringy Gravity may be formulated in ‘doubled-yet-gauged’ spacetime, and can unify

Riemannian SUGRA and non-Riemannian Newton-Cartan, Carroll, Gomis-Ooguri, etc.
1707.03713

• The maximally non-Riemannian space, HAB = JAB , is the fully O(D,D) symmetric vaccum.

It does not admit any moduli, and, adopted into KK ansatz, realizes heterotic string/DFT.

⇒ Heterotic string has non-Riemannian origin. 1808.10605
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What would be the O(D,D) completion of your physics?

Thank you
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Einstein Double Field Equations
Stephen Angus, Kyoungho Cho, and Jeong-Hyuck Park
Department of Physics, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, KOREA

Core idea: string theory predicts its own gravity rather than GR
In General Relativity the metric gµν is the only geometric and gravitational field, whereas in
string theory the closed-string massless sector comprises a two-form potential Bµν and the
string dilaton φ in addition to the metric gµν. Furthermore, these three fields transform into
each other under T-duality. This hints at a natural augmentation of GR: upon treating the
whole closed string massless sector as stringy graviton fields, Double Field Theory [1, 2] may
evolve into ‘Stringy Gravity’. Equipped with an O(D,D) covariant differential geometry be-
yond Riemann [3], we spell out the definitions of the stringy Einstein curvature tensor and the
stringy Energy-Momentum tensor. Equating them, all the equations of motion of the closed
string massless sector are unified into a single expression [4],

GAB = 8πGTAB (1)

which we dub the Einstein Double Field Equations.

Double Field Theory as Stringy Gravity
• Built-in symmetries & Notation:
– O(D,D) T-duality
– DFT diffeomorphisms (ordinary diffeomorphisms plus B-field gauge symmetry)
– Twofold local Lorentz symmetries, Spin(1, D−1)× Spin(D−1, 1)

⇒ Two locally inertial frames exist separately for the left and the right modes.

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =




0 1

1 0




p, q, · · · Spin(1, D−1) vector ηpq = diag(− + + · · ·+)

α, β, · · · Spin(1, D−1) spinor Cαβ, (γp)T = CγpC−1

p̄, q̄, · · · Spin(D−1, 1) vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin(D−1, 1) spinor C̄ᾱβ̄, (γ̄p̄)T = C̄γ̄p̄C̄−1

The O(D,D) metric JAB divides doubled coordinates into two: xA = (x̃µ, x
ν), ∂A = (∂̃µ, ∂ν).

• Doubled-yet-gauged spacetime:
The doubled coordinates are ‘gauged’ through a certain equivalence relation, xA ∼ xA + ∆A, such
that each equivalence class, or gauge orbit in RD+D, corresponds to a single physical point in RD [5].
This implies a section condition, ∂A∂A = 0, which can be conveniently solved by setting ∂̃µ ≡ 0.

• Stringy graviton fields (closed-string massless sector),
{
d, VMp, V̄Nq̄

}
:

Defining properties of the DFT-metric,

HMN = HNM , HKLHMNJLN = JKM , (2)

set a pair of symmetric and orthogonal projectors,

PMN = PNM = 1
2(JMN +HMN ) , PL

MPM
N = PL

N ,

P̄MN = P̄NM = 1
2(JMN −HMN ) , P̄L

M P̄M
N = P̄L

N , PL
M P̄M

N = 0 .

Further, taking the “square roots” of the projectors, we acquire a pair of DFT vielbeins,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄η̄p̄q̄ ,

satisfying their own defining properties,

VMpV
M
q = ηpq , V̄Mp̄V̄

M
q̄ = η̄p̄q̄ , VMpV̄

M
q̄ = 0 , VM

pVNp + V̄M
p̄V̄Np̄ = JMN .

The most general solutions to (2) can be classified by two non-negative integers (n, n̄) [6],

HMN =


 Hµν −HµσBσλ + Y

µ
i X

i
λ − Ȳ

µ
ı̄ X̄

ı̄
λ

BκρH
ρν + Xi

κY
ν
i − X̄ ı̄

κȲ
ν
ı̄ Kκλ −BκρHρσBσλ + 2Xi

(κ
Bλ)ρY

ρ
i − 2X̄ ı̄

(κ
Bλ)ρȲ

ρ
ı̄




where 1 ≤ i ≤ n, 1 ≤ ı̄, i ≤ n̄ and

HµνXi
ν = 0 , HµνX̄ ı̄

ν = 0 , KµνY
ν
i = 0 , KµνȲ

ν
ı̄ = 0 , HµρKρν + Y

µ
i X

i
ν + Ȳ

µ
ı̄ X̄

ı̄
ν = δ

µ
ν .

Strings become chiral and anti-chiral over n and n̄ directions: Xi
µ∂+x

µ = 0, X̄ ı̄
µ∂−xµ = 0. Examples

include (0, 0) Riemannian geometry as Kµν = gµν, Hµν = gµν, (1, 1) Gomis-Ooguri non-relativistic
background, (1, 0) Newton-Cartan gravity, and (D − 1, 0) Carroll gravity.

• Covariant derivative:
The ‘master’ covariant derivative, DA = ∂A + ΓA + ΦA + Φ̄A, is characterized by compatibility:

DAd = DAVBp = DAV̄Bp̄ = 0 , DAJBC = DAηpq = DAη̄p̄q̄ = DACαβ = DAC̄ᾱβ̄ = 0 .

The stringy Christoffel symbols are [3]

ΓCAB = 2
(
P∂CPP̄

)
[AB] + 2

(
P̄[A

DP̄B]
E − P[A

DPB]
E
)
∂DPEC

−4
(

1
PMM−1

PC[APB]
D + 1

P̄MM−1
P̄C[AP̄B]

D
)(
∂Dd + (P∂EPP̄ )[ED]

)
,

and the spin connections are ΦApq = V Bp(∂AVBq + ΓAB
CVCq), Φ̄Ap̄q̄ = V̄ Bp̄(∂AV̄Bq̄ + ΓAB

CV̄Cq̄).
In Stringy Gravity, there are no normal coordinates where ΓCAB would vanish point-wise: the Equiv-
alence Principle holds for point particles but is generically broken for strings (i.e. extended objects).

• Scalar and ‘Ricci’ curvatures:
The semi-covariant Riemann curvature in Stringy Gravity is defined by

SABCD := 1
2

(
RABCD + RCDAB − ΓEABΓECD

)
,

whereRCDAB = ∂AΓBCD−∂BΓACD+ΓACEΓB
E
D−ΓBCEΓA

E
D (the “field strength” of ΓCAB).

The completely covariant ‘Ricci’ and scalar curvatures are, with SAB = SACB
C ,

Spq̄ := V ApV̄
B
q̄SAB , S(0) :=

(
PACPBD − P̄ACP̄CD

)
SABCD .

While e−2dS(0) corresponds to the original DFT Lagrangian density [1, 2], or the ‘pure’ Stringy Grav-
ity, the master covariant derivative fixes its minimal coupling to extra matter fields, e.g. type II maxi-
mally supersymmetric DFT [7] or the Standard Model [8].

Derivation of Einstein Double Field Equations
Variation of the action for Stringy Gravity coupled to generic matter fields, Υa, gives

δ

∫
e−2d

[
1

16πGS(0) + Lmatter

]

=

∫
e−2d

[
1

4πGV̄
Aq̄δVA

p(Spq̄ − 8πGKpq̄)− 1
8πGδd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]

=

∫
e−2d

[
1

8πGξ
BDA {GAB − 8πGTAB} + (L̂ξΥa)

δLmatter

δΥa

]
,

where the second line is for generic variations and the third line is specifically for diffeomorphic
transformations. We are naturally led to define

Kpq̄ :=
1

2

(
VAp

δLmatter

δV̄A
q̄ − V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(
e−2dLmatter

)

δd
,

and subsequently the stringy Einstein curvature, GAB, and Energy Momentum tensor, TAB ,

GAB = 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , DAGAB = 0 (off-shell) ,

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , DATAB = 0 (on-shell) .

The equations of motion of the stringy graviton fields are thus unified into a single expression, the
Einstein Double Field Equations (1). Note that GAA = −DS(0), TAA = −DT(0).
Restricting to the (0, 0) Riemannian background, the Einstein Double Field Equations reduce to

Rµν + 25µ(∂νφ)− 1
4HµρσHν

ρσ = 8πGK(µν) ,

5ρ
(
e−2φHρµν

)
= 16πGe−2φK[µν] ,

R + 4�φ− 4∂µφ∂
µφ− 1

12HλµνH
λµν = 8πGT(0) ,

which imply the conservation law, DATAB = 0, given explicitly by

∇µK(µν) − 2∂µφK(µν) + 1
2Hν

λµK[λµ] − 1
2∂νT(0) = 0 , ∇µ

(
e−2φK[µν]

)
= 0 .

The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases,
(n, n̄) 6= (0, 0), where the Riemannian metric, gµν, cannot be defined.

Examples
– Pure Stringy Gravity with cosmological constant:

1
16πGe

−2d (S(0) − 2ΛDFT) , Kpq̄ = 0 , T(0) = 1
4πGΛDFT .

– RR sector, given by a Spin(1, 9)× Spin(9, 1) bi-spinorial potential, Cαᾱ :

LRR = 1
2Tr(FF̄) , Kpq̄ = −1

4Tr(γpF γ̄q̄F̄) , T(0) = 0 ,

where F = D+C = γpDpC + γ(11)Dp̄Cγ̄p̄ is the RR flux set by an O(D,D) covariant “H-twisted”
cohomology, (D+)2 = 0, and F̄ = C̄−1FTC is its charge conjugate [7].

– Spinor field: Lψ = ψ̄γpDpψ + mψψ̄ψ , Kpq̄ = −1
4(ψ̄γpDq̄ψ −Dq̄ψ̄γpψ) , T(0) = 0 .

– Green-Schwarz superstring (κ-symmetric):

e−2dLstring = 1
4πα′

∫
d2σ

[
−1

2

√
−hhijΠMi ΠNj HMN − εijDiyM (AjM − iΣjM )

]
δD
(
x− y(σ)

)
,

Kpq̄(x) = 1
4πα′

∫
d2σ
√
−hhij(ΠMi VMp)(Π

N
j V̄Nq̄) e

2dδD
(
x− y(σ)

)
, T(0) = 0 ,

where ΣMi = θ̄γM∂iθ + θ̄′γ̄M∂iθ′ and ΠMi = ∂iy
M −AMi − iΣMi (doubled-yet-gauged) [9].

Gravitational effect
The regular spherical solution to theD = 4 Einstein Double Field Equations shows that Stringy Grav-
ity modifies GR (Schwarzschild geometry), in particular at “short” dimensionless scales, R/MG,
i.e. distance normalized by mass times Newton constant. This might shed new light upon the dark
matter/energy problems, as they arise essentially from “short distance” observations. Furthermore, it
would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’, since they decouple
from the geodesic motion of point particles, which should be defined in string frame [10].
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• The regular spherical solution to the D = 4 Einstein Double Field Equations shows that
Stringy Gravity modifies GR (Schwarzschild geometry), in particular at “short" dimensionless
scales, R/MG, i.e. distance normalized by mass times Newton constant.

This might shed new light upon the dark matter/energy problems, as they arise essentially
from “short distance" observations:

• Furthermore, it would be intriguing to view the B-field and DFT dilaton d as ‘dark gravitons’,
since they decouple from the geodesic motion of point particles, which should be defined in
string frame.
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