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Which	came	first,	
the	chicken	or	the	egg	?

Genetic	theory	tells	us	that		the	egg	came	first
and	many	people	may	think	so	....

Is	this	always	the	case	?			
This	is	what	I	would	like	to	discuss	today.
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Today	I	will	concentrate	only	on	the	EW	scale.

Why	EW	scale	100	GeV is	much	lower	than	UV	scales
GUT	scale		1016 GeV,				if	exists
Planck	scale		1018	GeV		
String	scale			1017 GeV	?
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Partial	list	of	solutions	to	the	hierarchy	problem:

(1)	Supersymmetry:			cancellation	of	quadratic	divergences
No	SUSY	particles	are	found,	little	hierarchy	problem,	...

(2)	Technicolor								:			dynamical	generation	of	scales	like	QCD
Light	Higgs	difficult,	big	form	factor	(composite),	

Higgs	is	a	light	pseudo-NG	?			SO(4)/SO(3)	etc.		

(3)	Multiverse	/	Anthropic	?	

(4)	Classical	conformal	:		Coleman-Weinberg	radiative	breaking

coupling	to	gravity		->		quantum	scale	invariance	?
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My	favorite	model



Primordial
Inflation

χSB induces
EWSB

QCD
phase	transition

⇠ 100MeV

Super-cooling	in	EW
<h>=0	@	T<	100	GeV														
(all	particles	massless)						

Reheating	at	low	TReheating	@	high	T

2nd
Inflation

DM	produced					à dilute																						à "super-cool	DM"
(an	appropriate	number	of	e-folding)

Thermal	inflation	starts	at	TeV scale	and	ends	at	100	MeV	!

Big	Bang	starts

e-foldng <	10

Super-cooled	universe	with	the	second	(low	scale)	inflation
in	the	classically	conformal	model

Serpico,	Shimada,	SI
(2017)

gravitational	wave,		PBH,	Baryogenesis

1-page	summary	of	recent	progress	in	the	classical	conformal	pheno.

BBN	~	MeV



Anyway	.......
There	are	many	proposals	to	solve	the	hierarchy	problem,
but		there	is	one	common	basic	assumption

"Calculate	the	Higgs	potential	first	!"

And	then	obtain	the	solution =	minimum	of	the	potential.
one	solution	to	one	Higgs	potential

à Also	we	are	faced	with	the	naturalness	problem



Which	came	first,	
the	chicken	or	the	egg	?

Effective
PotentialSolution

Usually		calculate	the	potential	first,	then	obtain	a	solution.

Is	it	possible	to	obtain	a	solution	first													,	then	calculate	potential?



A	classical		example	of	the	Chicken	first	approach

There	are	many	orbits	around	the	Sun:	the	Earth,	the	Jupiter,	Mercury	..
each	of	the	orbit	is	at	the	bottom	of	the	corresponding	potential.		
But	the	underlying	dynamics	is	the	same.	

Solution	determines	the	potential



A	similar	mechanism
to	dynamically	generate	the	EW	scale.

I	talked	about	the	basic	idea
at	1st East	Asia	Joint	WS	@	Huhei



In	the	D-brane	model	building,
the	distance	between	branes	(=moduli)	
gives	a vev of	the	scalar	field.

Distance	⇔ scale	of	the	gauge	symmetry	breaking
N
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The	natural	scale	of	M	should	be
the	string	scale,	not	the	EW	scale.

Hierarchy	problem	in	string	theory	
=	Difficulty	to	generate	the	 EW	scale	in	string	theory
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Ex：D3s+anti-D7			on			Z3 orbifold R4	× (T2× T2× T2 )/	Z3

Put	4	D3-branes	on	a fixed	point	of	T6/Z3
Assignment	of
Z3 charge	for	D3s

4

U(1)	*	U(1)	

Quiver	gauge	theory

U(2)	*	U(1)	*	U(1)	

vev
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Anti	D7

D3

D3

D3

Attractive	force	between	D3s	and		anti-D7	
due	to	open	string	1-loop	amplitudes

Repulsive	centrifugal	force	
by	revolution	of	D3s

1-loop	suppressed

High	angular	frequency
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Low	velocity	
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Solution:
Hierarchy	of	EW	scale

Merry-go-round	scenario	(named	by	Kimyeong )

N.Kitazawa SI
PTEP,2015



It	is	possible	to	make	a	classically	stable	state
with	a	short	distance r	<<	lstring .

But	the	large	angular	frequency		
à two	problems
・Dispersion	relation	of	Higgs	

violates		Lorentz	symmetry		(Coriolis	force)

・closed	string	emission	à unstable
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To	avoid	these	problems,
it	is	necessary	to	make	a	bound	(or	resonant)	
state	with		ω <<	mstr .
à We	need	weak	attractive	force:		V	<<	(mstring)3	 r2
A	simple	way	to	avoid		ω=mstr is	to	consider	

Flat	moduli		such	as			Dp - Dp ,		

BPS	=	no	interaction	at	rest
but		

v--dependent		attractive	force	is	generated
when	they	are	moving	with	a	constant	velocity
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In	the	closed	string	region,		

No	minimum	exists.
Potential	barrier	at	r	<	lstr

closed	string	picture



In	the	closed-string	dominated	region	(r	>>	lstr ),
the	repulsive	force	surpasses	the	attractive	force.

However,		"Beauty	is	Attractive"			 Kofman Linde	Liu	Malony
MaCllister Silverstein	2004

Mass	changes	rapidly.	à non-adiabatic	process
Open	string	particles	are	produced	(=	preheating).

à lose	energy	and	the	trajectory	shrinks.
à and	when	the	trajectory	becomes	circular,

no	more	particle	production	occurs.	



Is	it	possible	to	make	
a	"bound	state"	with	r	<<	lstr
between	revolving	D-branes?

Dp Dp

Many	works	on	D0-branes							(N=16		SU(N)	supersymmetric	QM)
Witten	index	(Piljin Yi)		Tr(-1)F =	1							---- threshold	bound	state

massless	graviton
Quantum	bound	state	(Kabat Pouliot)		---- resonant	state		E	>	0

These	states	are	near	the	ground	state.
What	we	want		is	highly	excited,	but	almost	stable	resonant	states.

(like	a	solar	system,	not	like	a	hydrogen	atom)

2 4 6 8 10

1

2

3

4

5

?
open	string
region



Poor	man's	Calculation	of	attractive	potential	
between	revolving	Dp,	in	particular	p=0.

D0 D0

It	is	straightforward,	but	
not	so	trivial
because	of	the	time-dependent
boundary	conditions:

In	the	rotational	frame,	the	boundary	condition	becomes	simple,
but	the	system		is	interacting:	

T.	Suyama,	
H.	Ohta,	SI	
to	appear	soon



Furthermore,	by	taking	variation	with	respect	to	the	T	fields,

Thus			T	– field	must	satisfy		à
at	the	boundaries:

These	conditions	can	be	simplified	by	introducing	a	new	variable

σ＝０

σ＝π



With	these	(and	a	few	more)	changes	of	world	sheet	fields,
the	action	of	open	strings	stretched	between	revolving	D0s	becomes

Open	string	world	sheet	action	between	revolving	D0s

boundary	conditions



One-loop	amplitude	of	open	string	between	revolving	D0s
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Effective	potential	induced	by	massive	states
:	Double	expansion	with	respect	to	w^2	and	r^2.

The term e−2r2t/πα′
is nothing but the effect of stretched open strings with distance

2r, and the additional factor
(
1− v2

3

)−1/2
comes from the v2 correction to the

momentum integration.
To determine V2(r,ω), we need to evaluate the integrals of the form

Ik(r) :=

∫ ∞

0

dt

2t
tkf(t, r)e−2πt. (4.6)

The integral with k ≤ 1
2 is defined by the analytic continuation for k. We expand

the integrand in r2 and integrate term by term. As a result, we obtain
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+O(r6)
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. (4.7)

Using this expression, we obtain
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√
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√
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+O(ω4, r6).

(4.8)

Note that since our calculation is performed in the Wick rotated metric, the po-
tential in the Lorentzian metric is obtained by replacing ω2 with −ω2. The relevant
part of the potential is written as a positive power series of (r/lstr)2 and (ω/mstr)2;

V2 ∼ mstr

(
c1 + c2

(
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mstr

)2

+ · · ·
)(
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lstr
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+ mstr
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c3 + c4
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+ · · ·
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r

lstr

)4

+ · · · (4.9)

where we defined (2πα′)1/2 = lstr = 1/mstr and c1 > 0. As expected, the leading
order potential is proportional to m3

stringr
2 and strongly attractive. Angular-

frequency corrections to the potential are given by mstringω2r2. Whether it is at-
tractive or repulsive depends on the regularization constant ϵ0 and we cannot say
either here. In the superstring case, the potential must vanish in the ω → 0 limit
and this ω-dependent term give the leading order (massive state) contribution to
the potential.

Other contributions VN (r,ω) with N > 2 can be obtained similarly, but the
calculations become tedious as N increases.
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By using (??) for Tr0, (??), (??) and (??) for Tr1, and the results in Appendix
?? for Tr2, we can obtain the explicit forms of the partial traces up to O(v2) as
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Bosonic	case:		the	first	excited	massive	state

In	superstring

M = mp+1
str V (set the string coupling g = 1 for simplicity) rotate with an angular

momentum L = Mr2ω. Then the centrifugal repulsive force is given by Mrω2 and
under the angular momentum conservation, its centrifugal potential becomes

VL =
L2

2Mr2
. (5.2)

As we saw in the case of D0-particles in the bosonic string, strong attractive potential
is generated by the one-loop open string amplitude: c1m3

strr
2 for r ≪ lstr. In the Dp-

brane case, an integration over the position of the end point of open strings gives the
volume factor V ∝ M and the most dominant part of the effective potential will be
given by cM(r/lstr)2 for r ≪ lstr. Then we have a classical solution with ω ∼ mstr.
However, such a classical bound state with large angular velocity ω is unstable
against emitting closed string emission. Furthermore, if we lived on such a D3-brane,
the Lorentz symmetry is strongly violated; thus a construction of the standard model
based on this kind of D-brane configurations is not phenomenologically viable.

Alternatively we may consider a pair of D-branes revolving around each other
in superstring theory. When ω = 0, such configurations of D-branes is BPS, and
therefore, there is no force between them. If they are revolving around each other,
it would generate attractive potential as in (??). But in superstring cases, many
terms cancel due to supersymmetry; especially ω-independent terms are completely
cancelled. Thus in the typical form of the effective potential generated by massive
states (??), some of the coefficients must vanish: e.g. c1 = c3 = 0. It is further
known that when two branes are moving with a constant relative velocity, the v2

terms also cancel. It is, however, not clear whether such cancellations occur in the
revolving configuration. For revolving Dp-branes (for odd p), massless open string
states induce the following Coleman-Weinberg type effective potential;

V
∑

i

(−1)Fini

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
) p+1

2

log

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
)

(5.3)

where ni is the number of degrees of freedom of the field i. Supersymmetry imposes
that

∑
i(−1)Fini = 0. Under the angular momentum conservation, ω2 is replace by

(J2/Mr2)2. If (r/lstr)2 terms and (ω/mstr)2 terms can be balanced, together with
the centrifugal potential L2/2Mr2, there mimght exist bound states of revolving
D-branes. And, if it is the case, the rotation of the D-branes must be extremely
slow;

ω

mstr
∼ r

lstr
≪ 1. (5.4)

In applications to phenomenological and cosmological applications, this property
will save the problems of strong Lorentz violation as well as the rapid closed string
emissions. We hope to report a further investigation on this possibility in future.
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C2 =	C4 =	0	?			
àWe	are	checking	how	it	deviates	from	constant	velocity	case



Effective	potential	induced	by	massless	states	stretched	bet.	D0s
The typical form of the effective potential induced by the massless state (4.27)

is nothing but the Coleman-Weinberg potential for quantum particles in (1 + 0)-
dimensions. Finally in the section, we briefly comment on the relation. For com-
parison and future generalizations to Dp-branes, we will consider general cases in
(1 + p)-dimensions. In 1 + p-dimensional field theory, one-loop integral of a scalar
field with mass m is given by

−Tr log(∆+m2)−1/2 =

∫ ∞

ϵ

dt

2t

∫
dp+1k

(2π)p+1
e−(k2+m2)t

∼
∫ ∞

ϵ

dt

2t
t−

p+1
2 e−m2t ∼

{
(m2)

p+1
2 p = odd

(m2)
p+1
2 logm2 p = even.

(4.28)

If mass is given by vev of some scalar field φ, it gives the well-known Coleman-
Weinberg potential. In our case, mass is generated by the distance r between
D0-particles and the angular velocity ω. Thus the effective potential induced by
open string massless states is given by the typical form (4.27), namely p = 0 case
in (4.28), and the instability is associated with a possibility that the mass squared
m2 becomes negative at large ω.

5 Conclusions and discussions

We have investigated an open string stretched between two D0-branes which revolve
around each other. To quantize the corresponding worldsheet theory, we introduced
new fields which satisfy simple boundary conditions. This makes the worldsheet ac-
tion quite complicated. We analyze the resulting system perturbatively, using the
formalism developed in [IOS]. One of the advantages of using the method of the im-
proved perturbation is the fact that H0(v), containing all perturbative information
on the energy spectrum, commutes with H0 by construction. This enables us to
separate the massless contributions from the massive ones, and also to expand the
trace as in (3.6).

As an application, we obtained the one-loop partition function, and extract the
behavior of the effective potential between the pair of D0-branes induced by the
open string when the separation of the D0-branes is small. Here we summarize our
results for the effective potential. It is given by various contributions from massless
and massive open string states (after the replacement of ω2 by −ω2) as

V ∼ mstr

⎡

⎣
3∑

i=0

√(
r

lstr

)2

+ Ci

(
ω

mstr

)2

+

(
c1 + c2

(
ω

mstr

)2
)(

r

lstr

)2
⎤

⎦ (5.1)

where C0 = 1/32, C1 = −11/32, C2 = C3 = −13/32 and c1 = 162
√

2/π. The
result shows that there is an attractive force between the rotating D0-branes. A
contribution from open string tachyons is neglected in this expression.

Finally we briefly discuss if there is a possibility that Dp-branes with volume V
can make a bound state by revolving each other. Suppose that Dp-brane with mass
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mass2 acquired	by	the	effect	of	revolution

Note	that		C1 is	negative	for	vectors		(positive	for	KK	scalar)
which	indicates	that	the	system	is	unstable	for	large	ω .

c.f.	Field	theory	calculation

grals can be performed easily. We obtain

V10 = −
∫ ∞

0

dt

2t

∫
dk

2π
e−2πtE0(k,r,ω) =

√√√√√√√

−α′ω2 + 8
(
1 + ϵ0π

2α′ω2
) r2

π2α′

32α′
(
1− 1

3
ω2r2

)

(4.22)

V11 = −
∫ ∞

0

dt

2t

∫
dk

2π
e−2πt(E1(k,r,ω)−1) =

√√√√√√√

11α′ω2 + 8
(
1 + ϵ0π

2α′ω2
) r2

π2α′

32α′
(
1− 1

3
ω2r2

) .

(4.23)

To evaluate the integrals for the remaining two eigenvalues, we make the follow-
ing approximation √

1

π2
+

(α′)2

r2
k2 → α′

r
|k| (4.24)

for small r. Then, the integrals can be performed, and we obtain

V12 + V13 = −
∫ ∞

0

dt

2t

∫
dk

2π
e−2πt(E2(k,r,ω)−1) −

∫ ∞

0

dt

2t

∫
dk

2π
e−2πt(E3(k,r,ω)−1)

=

√√√√√√√

13α′ω2 + 8
{
1 +

(
ϵ0π

2 − 2
)
α′ω2

} r2

π2α′

8α′
(
1− 1

3
ω2r2

) − ω2

(
1− 1

3
ω2r2

)2 .

(4.25)

The effective potential induced by the massless modes becomes a sum of (4.22),
(4.23) and (4.25),

V1 =
3∑

i=0

V1i (4.26)

and in the Lorentzian metric, ω2 is replaced with −ω2. In the limit, r ≪ lstr and
ω ≪ mstr, each term is written in the form of

mstr

√(
r

lstr

)2

+ C1

(
ω

mstr

)2

+ C2

(
r

lstr

)2( ω

mstr

)2

(4.27)

At ω = 0, the potential becomes r/l2s , which is proportional to the length of the
stretched string. In the Lorentitzian metric, the coefficient C is positive for a trans-
verse massless state, namely a contribution from αi

−1|k⟩ in (4.22). On the contrary,

contributions from αT,X,Y
−1 |k⟩ in (4.23) and (4.25), C1 is negative. This indicates

that these vector fields destabilize the configuration of revolving D0-branes when
the angular velocity becomes faster; ω/mstr !

√
|C1|r/lstr.

17



Closed	string	emission	with	spins	is	suppressed	for	ω <<	mstring

angular	momentum	is		conservedà r	and	ω are	related:

V = −µ2|H|2 + λ(|H|2)2

δV =
1
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2
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)2 ( ω
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)2
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j2
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(
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)2

(2)

1

+	the	following	attractive	potential

The	total	potential	per	unit	volume	for	revolving	Dp-brane		is	
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1

M = mp+1
str V (set the string coupling g = 1 for simplicity) rotate with an angular

momentum L = Mr2ω. Then the centrifugal repulsive force is given by Mrω2 and
under the angular momentum conservation, its centrifugal potential becomes

VL =
L2

2Mr2
. (5.2)

As we saw in the case of D0-particles in the bosonic string, strong attractive potential
is generated by the one-loop open string amplitude: c1m3

strr
2 for r ≪ lstr. In the Dp-

brane case, an integration over the position of the end point of open strings gives the
volume factor V ∝ M and the most dominant part of the effective potential will be
given by cM(r/lstr)2 for r ≪ lstr. Then we have a classical solution with ω ∼ mstr.
However, such a classical bound state with large angular velocity ω is unstable
against emitting closed string emission. Furthermore, if we lived on such a D3-brane,
the Lorentz symmetry is strongly violated; thus a construction of the standard model
based on this kind of D-brane configurations is not phenomenologically viable.

Alternatively we may consider a pair of D-branes revolving around each other
in superstring theory. When ω = 0, such configurations of D-branes is BPS, and
therefore, there is no force between them. If they are revolving around each other,
it would generate attractive potential as in (5.1). But in superstring cases, many
terms cancel due to supersymmetry; especially ω-independent terms are completely
cancelled. Thus in the typical form of the effective potential generated by massive
states (4.9), some of the coefficients must vanish: e.g. c1 = c3 = 0. It is further
known that when two branes are moving with a constant relative velocity, the v2

terms also cancel. It is, however, not clear whether such cancellations occur in the
revolving configuration. For revolving Dp-branes (for odd p), massless open string
states induce the following Coleman-Weinberg type effective potential;

V
∑

i

(−1)Fini

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
) p+1

2

log

((
r

lstr

)2

+ Ci

(
ω

mstr

)2
)

(5.3)

where ni is the number of degrees of freedom of the field i. Supersymmetry imposes
that

∑
i(−1)Fini = 0. Under the angular momentum conservation, ω2 is replace by

(J2/Mr2)2. If (r/lstr)2 terms and (ω/mstr)2 terms can be balanced, together with
the centrifugal potential L2/2Mr2, there mimght exist bound states of revolving
D-branes. And, if it is the case, the rotation of the D-branes must be extremely
slow;

ω

mstr
∼ r

lstr
≪ 1. (5.4)

In applications to phenomenological and cosmological applications, this property
will save the problems of strong Lorentz violation as well as the rapid closed string
emissions. We hope to report a further investigation on this possibility in future.
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The term e−2r2t/πα′
is nothing but the effect of stretched open strings with distance

2r, and the additional factor
(
1− v2

3

)−1/2
comes from the v2 correction to the

momentum integration.
To determine V2(r,ω), we need to evaluate the integrals of the form

Ik(r) :=

∫ ∞

0

dt

2t
tkf(t, r)e−2πt. (4.6)

The integral with k ≤ 1
2 is defined by the analytic continuation for k. We expand

the integrand in r2 and integrate term by term. As a result, we obtain

Ik(r) =
(
16πα′)− 1

2 (2π)−kΓ

(
k − 1

2

)

×
[
1−

(
k − 1

2

)
r2

π2α′ +
1

2

(
k2 − 1

4

)(
r2

π2α′

)2

+O(r6)

]
. (4.7)

Using this expression, we obtain

V2(r,ω) =
1296 + 106α′ω2

8
√
α′

+
1296 + (−730 + 432π2 + 1296π2ϵ0)α′ω2

16
√
α′

(
r2

π2α′

)

−1296 + (−2430− 864π2 + 2592π2ϵ0)α′ω2

64
√
α′

(
r2

π2α′

)2

+O(ω4, r6).

(4.8)

Note that since our calculation is performed in the Wick rotated metric, the po-
tential in the Lorentzian metric is obtained by replacing ω2 with −ω2. The relevant
part of the potential is written as a positive power series of (r/lstr)2 and (ω/mstr)2;

V2 ∼ mstr

(
c1 + c2

(
w

mstr

)2

+ · · ·
)(

r

lstr

)2

+ mstr

(
c3 + c4

(
w

mstr

)2

+ · · ·
)(

r

lstr

)4

+ · · · (4.9)

where we defined (2πα′)1/2 = lstr = 1/mstr and c1 > 0. As expected, the leading
order potential is proportional to m3

stringr
2 and strongly attractive. Angular-

frequency corrections to the potential are given by mstringω2r2. Whether it is at-
tractive or repulsive depends on the regularization constant ϵ0 and we cannot say
either here. In the superstring case, the potential must vanish in the ω → 0 limit
and this ω-dependent term give the leading order (massive state) contribution to
the potential.

Other contributions VN (r,ω) with N > 2 can be obtained similarly, but the
calculations become tedious as N increases.
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The	potential	has	a	minimum	around

V = −µ2|H|2 + λ(|H|2)2

δV =
1

2
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)

StrM(φ2) = 0? ΛTC = MTC exp(−8π2

bg2 )
r ≪ lstring ω ≪ mstring
r

lstr
∼ ω

mstr
≪ 1

1

Total	angular	momentum

For	p=0,			J	<<	1		
à only	s-wave	(ground	state)	is	allowed.

Thus	only	threshold	bound	state	exists.
For	p>0				J	can	be	larger	than	1.	
A	resonant	state	with	higher	J	may	exist.	

consistent	with	the	assumptions
of	our	calculations
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J =
V
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(
r
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)2( ω
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)
(1)

v = rω ≪ 1

1



Summary

If	resonant	states	exist,	
it	must	be	a	hierarchical	solution		

which	means	 E EW <<	mstring .

We	have	calculated	the	effective	potential		
corresponding	to	the	solution.	

For	p>0,	there	may	exist	a	"classical"	bound	state	satisfying	

Lorentz	violation,		instability	by	radiation					à OK

"The	chicken-first	approach"	to	hierarchy	problem

Future	issues:
(1) Smarter	calculation	by	D-brane	EFT		in	t-dep	background
(2)	construct	phenomenologically	realistic	models
(3)	SUSY	breaking: TeV SUSY?			solution	to	little	hierarchy?
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Stationary	solutions	of	D-branes
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