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AdS/CFT

Classical limit
Large N + Strong coupling 

Gravity (String theory) 
on D+1 dim.  AdS

(anti de-Sitter space)

Conformal Field Theory 
(CFT)  on 
D dim.Minkowski
spacetime

General relativity 
with Λ＜0

Strongly interacting 
Quantum Field Theories

[Maldacena 1997]

=

The AdS/CFT provides a formulation of 
quantum gravity on AdS in terms of CFTs. 

① Introduction



Motivation 1

What is the basic mechanism of AdS/CFT  ?
(AdS/CFT is still a Black Box !)

This is a very important question when we try to 
generalize the idea of holography to other spacetimes,  
such as de-Sitter space, flat space, and big-bang,…..

Note:  In string theory, the holography looks the best 
framework to study quantum gravity. 



A basic mechanism of AdS/CFT ?
⇒ An interesting possibility is 

tensor networks (TNs) ! [Swingle 2009,….]

⇒``Emergent space from Quantum Entanglement’’

Tensor network = Network of Quantum entanglement
=``Geometry’’ of Wave-functional in QFTs

AdSMERA TN

ΓAΓA ≈



Which surface in the AdS corresponds to the TN ?
⇒ This basic question has confused us quite a lot !!

Possibility 1 TN = Time Slice (hyperbolic space) in AdS ?
[Swingle 2009, Pastawski-Yoshida-Harlow-Preskill 2015,…]

⇒ Supported by HEE and QEC 
But how the time coordinate emerges from TN ?  

Possibility 2 TN = de Sitter space ?
[Beny 2011, Czech-Lamprou-McCandlish-Sully 2015,….] 

⇒Supported by Causal structure of MERA network

Our new formulation can explain both of them !



Motivation 2 Holographic complexity  ?

A Holographic Complexity Proposal 
Hol. Complexity
= Gravity Action  in Wheeler-DeWitt

(WDW) patch of AdS
[Brown-Roberts-Susskind-Swingle-Zhao 15]

Computational Complexity 
of a quantum state |Ψ>
=  Min [# of Quantum Gates] 

|0〉|0〉|0〉 |0〉|0〉|0〉|0〉

|Ψ>

WDW 
patch

0=t

AdS
So far no clear derivation of this formula.
Our formulation provides a partial support.

t

Unitary trf. between two adjacent spins



Motivation 3 Holographic Entanglement Entropy (HEE)
[Ryu-TT 06, Hubeny-Rangamani-TT 07]
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② ``Spacetime = Path-integral Circuit’’ Conjecture

(2-1) Surface/State duality [Miyaji-TT 2015]

Consider Einstein gravity on a d+2 dim. AdS.
The surface/state duality argues:

Gravity
AdSd+2

Σ :  a d dim. convex space-like surface in AdSd+2.
which is closed and  homologically trivial

ΣdA pure state

Dual

| ⟩Ψ(Σ) ∈ 𝐻𝐻𝐶𝐶𝐶𝐶𝐶𝐶



The surface/state duality is motivated by the 
tensor network description of holography.

Σ

| ⟩Ψ(Σ)

How to construct such states     
in the continuum limit of CFTs ? 

| ⟩Ψ(Σ)



Σ

ΣM

(2-2)  ``Slice = Quantum Circuit’’ Conjecture

A (d+1) dim. slice MΣ in AdSd+2

A quantum circuit which creates
the state                by path-integrals | ⟩Ψ(Σ)
Ψ Σ 𝜑𝜑0 = �𝐷𝐷𝜑𝜑 𝑒𝑒−𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶[𝜑𝜑]𝛿𝛿 𝜑𝜑|Σ − 𝜑𝜑0

ΣM
A CFT action on the curved space MΣ
with an appropriate coarse-graining s.t. z= lattice spacing

Dual



Euclidean AdS
(i)  The path-integral circuit is not unitary.

(ii) | ⟩Ψ(Σ) does not depend the choice of          owing 
to the conformal symmetry (up to normalization). 

We call the quantity                a path-integral complexity  
of the circuit          .    

ΣM

Ψ 𝑀𝑀Σ: Σ 𝜑𝜑0 = 𝑒𝑒𝐶𝐶 𝑀𝑀Σ −𝐶𝐶(𝑀𝑀Σ
′ ) � Ψ 𝑀𝑀Σ

′ : Σ 𝜑𝜑0
𝐶𝐶 𝑀𝑀Σ

ΣM



Path-integral Optimization and Complexity

).( 22),(22 dzdxeds zx += φ

Minimize               by changing         for a given              

This defines the Euclidean path-integral complexity of 
the state:          

𝐶𝐶 𝑀𝑀Σ 𝑀𝑀Σ | ⟩Ψ(Σ) .
Euclidean Path-integral Complexity

𝐶𝐶 ΨΣ =Min[            ]𝐶𝐶 𝑀𝑀Σ .

This is equivalent to the path-integral optimization.

Consider two dimensional CFTs. We write the metric:

.| 22 −
= = εε

φ
zewith

The rule of UV cut off:  a lattice site for a unit area.

[Caputa-Kundu-Miyaji-Watanabe-TT 17]
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Liouville Action
𝐶𝐶 𝑀𝑀Σ =



A Sketch: Optimization of Path-Integral
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Σ

ΣM

Σ~

Lorentzian AdS

Case 1:           is space-like  
⇒ The path-integral circuit is not unitary.

Case 2:           is time-like  
⇒ The path-integral circuit is unitary.

ΣM

ΣM

Ψ 𝑀𝑀Σ: Σ 𝜑𝜑0 = 𝑒𝑒𝑖𝑖𝑖𝑖 𝑀𝑀Σ −𝑖𝑖𝑖𝑖(𝑀𝑀Σ
′ ) � Ψ 𝑀𝑀Σ

′ : Σ 𝜑𝜑0

Unitary Transformation

𝑈𝑈 �Σ：Σ = P � exp −𝑖𝑖�
Σ

�Σ
𝑑𝑑𝑑𝑑 𝐾𝐾(𝑠𝑠)

Depends on MΣDepends only on �Σ and Σ



Lorentzian Path-integral Complexity

Again we can define the Lorentzian version of 
path-integral complexity:                                         .

In the gravity dual description,                is computed as 
The gravity action because  

𝐶𝐶 ΨΣ =Min[            ]𝐶𝐶 𝑀𝑀Σ

𝐶𝐶 𝑀𝑀Σ

ZG= 𝑒𝑒𝑖𝑖𝐼𝐼𝐺𝐺 = 𝑒𝑒𝑖𝑖𝐶𝐶 𝑀𝑀Σ .

𝐼𝐼𝐺𝐺 = −
1

16𝜋𝜋𝐺𝐺
�
𝑁𝑁Σ

−𝑔𝑔 𝑅𝑅 − 2Λ

+
1

8𝜋𝜋𝐺𝐺
�
𝑀𝑀Σ

ℎ𝐾𝐾 −
1

8𝜋𝜋𝐺𝐺
�
Σ

γθ
MΣ

Σ
NΣ θ



Σ

MΣ (Null)

Σ

MΣ
(Cylinder) Optimize

𝐼𝐼𝐺𝐺 is minimized at θ=∞, i.e. MΣ becomes light-like.
The holographic complexity  based on WDW patch !



③ Time-like Surface and Quantum Entanglement

(3-1) Holographic Entanglement for Quantum Circuit

As we argued, we can regard a codim.=1 slice MΣ  as
a (non-unitary or unitary) quantum circuit:

𝑉𝑉 Σ2：Σ1 = P � exp −𝑖𝑖�
Σ1

Σ2
𝑑𝑑𝑑𝑑 𝐾𝐾(𝑠𝑠)

Space-like Time-like

1Σ A1

2Σ

P
B1

Q
A2 B2

Γ𝑃𝑃𝑃𝑃Channel-State duality

�|ΨΣ2Σ1 = �
𝑖𝑖

𝑉𝑉 Σ2：Σ1 | ⟩𝑖𝑖 Σ1 ⊗ | ⟩𝑖𝑖 Σ2

Quantum circuit V generates quantum entanglement.

[e.g. Hosur-Qi-Roberts-Yoshida 15]



New Proposal of Holographic Formula

Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆 2
- Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 2 = Δ𝐴𝐴(Γ𝑃𝑃𝑃𝑃)

4𝐺𝐺

2

𝐴𝐴(Γ𝑃𝑃𝑃𝑃) = ∫Γ𝑃𝑃𝑃𝑃 𝑔𝑔

Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 = The increased amount of entanglement between A and B 
along ΓPQ due to unitary (=time-like) quantum gates.  

A= Real when ΓPQ = space-like
A= Imaginary when ΓPQ = time-like

Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆 = The increased amount of entanglement between A and B 
along ΓPQ due to non-unitary (=space-like) quantum gates.  

More precisely, Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆 counts only entanglement (= ♯of gates)
which scrambles between A and B. 

Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴⇒ −Δ𝐼𝐼3(𝐴𝐴𝐴:𝐴𝐴𝐴:𝐵𝐵𝐵)



Examples

Case 1:   ΓPQ =Space-like extremal surface
⇒ Reduced to the Hol. EE.  

Case 2:  ΓPQ = Time-like interval at the AdS bdy

Our formula leads to

This agrees with 2d CFT results. 

(Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 =0)

t=0
ΓＰＱ

Q

P

t=T
(Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑆𝑆 =0)

Δ𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝑇𝑇 ≈ 𝑐𝑐 � 𝑉𝑉𝑑𝑑−1𝑇𝑇
𝜀𝜀𝑑𝑑

.

⇒ Gtt emerges from the Hamiltonian gates in CFT !   



2d CFT Examples

Case 3:  ΓPQ = Light-like surface
⇒ Non-scrambling Unitary gates

Σ z
θ

t

s𝑉𝑉 𝑀𝑀Σ = P � exp −𝑖𝑖�
−∞

0
𝑑𝑑𝑑𝑑 𝐾𝐾(𝑠𝑠)

Poincare AdS3

𝑑𝑑𝑑𝑑2 =
𝑑𝑑𝑑𝑑2 − 𝑑𝑑𝑡𝑡2 + 𝑑𝑑𝑥𝑥2

𝑧𝑧2

𝐾𝐾 𝑠𝑠 = 𝐻𝐻 + sinhθ � 𝐷𝐷
𝐷𝐷 ≡ dilatation in 2d CFT

The null limit corresponds to θ=∞
⇒ The quantum circuit is the dilatation !

[see also Milsted-Vidal 2018] 

Δ𝐼𝐼3(𝐴𝐴𝐴:𝐴𝐴𝐴:𝐵𝐵𝐵)=0 !



④ Gravitational Force from Quantum Circuits
Consider a massive particle in general relativity.
It is dual to a localized excitation in quantum circuits.

A basic idea:  The presence of many quantum gates 
becomes an obstruction for the massive particle 
propagation because the excitation will be scattered off.

Our proposed formula (assume AdS3/CFT2) leads to 

[♯ of scrambling gates] = 
1
4𝐺𝐺

�𝑑𝑑𝑑𝑑 −𝑔𝑔

A particle moves toward the direction 
with a lower gravitational potential.



The wave function Ψm which corresponds to the 
excitation in the quantum circuits can be estimated:

Ψ𝑚𝑚 ≈ 𝑒𝑒−𝑖𝑖∆𝜃𝜃�∫ 𝑑𝑑𝑑𝑑 −𝑔𝑔.

m

♯ of Quantum gates

Universal Phase Shift 
for each quantum gate

∆𝜽𝜽 ≈ 𝑬𝑬(= Δ) = 𝒎𝒎
[as expected from Lloyd’s conjecture 2000]

𝑆𝑆𝑚𝑚 = −𝑚𝑚�𝑑𝑑𝑑𝑑 −𝑔𝑔

This explains the particle action in curved spacetime
and gravitational force !



⑤ Conclusions
In AdS/CFT , we argued the following correspondence:
1. A codim.2 space-like surface Σ⇔ A quantum state
2. A codim.1  slice ＭΣ ⇔A path-integral quantum circuit ＶΣ
3. The gravitational action surround by MΣ

= The path-integral complexity → Hol. Complexity
4.   The area of codim.2 surface Γ = ♯ of scrambling gates

Gtt and Gravitational force emerges 
from the density of unitary gates. 

Future Problems
Derivation of Einstein equation ?,   Sub AdS locality  ? ,    
dS/CFT ? Flat space holography ?, ...

| ⟩Ψ(Σ)



Organizers:
Pawel Caputa (YITP), Tadashi Takayanagi (YITP, co-chair), 
Tatsuma Nishioka (Tokyo), Yasuaki Hikida (YITP), Keisuke Fujii
(Kyoto), Tomoyuki Morimae (YITP, co-chair), Beni Yoshida 
(Perimeter), Yu Watanabe (YITP) 

Registration is open now !
Deadline: Feb.10th, 2019

http://www2.yukawa.kyoto-u.ac.jp/~qist2019/index.php



Thank you very much !
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