East Asia Joint Workshop on Fields and Strings @KIAS Nov.6, 2018

Holographic Spacetimes as Quantum Circuits of Path-Integrations

Tadashi Takayanagi

Yukawa Institute for Theoretical Physics (YITP), Kyoto Univ.

Based on 1808.09072

Closely Related works

(1) "Surface/State Correspondence"
Miyaji-TT,
PTEP (2015) no.7, 073B03 [arXiv:1503.03542].

(2)``Path-integral Optimization''
Caputa-Kundu-Miyaji -Watanabe-TT

(3) "Tensor networks as path integral geometry"

PRL 119.071602 [arXiv:1703.00456]

Milsted-Vidal arXiv:1805.12524

1 Introduction

The AdS/CFT provides a formulation of quantum gravity on AdS in terms of CFTs.

AdS/CFT

[Maldacena 1997]

Gravity (String theory)
on D+1 dim. AdS
(anti de-Sitter space)

Classical limit

General relativity with $\Lambda < 0$

= (

Conformal Field Theory (CFT) on D dim.Minkowski spacetime

Large N + Strong coupling

Strongly interacting Quantum Field Theories

Motivation 1

What is the basic mechanism of AdS/CFT? (AdS/CFT is still a Black Box!)

This is a very important question when we try to generalize the idea of holography to other spacetimes, such as de-Sitter space, flat space, and big-bang,.....

Note: In string theory, the holography looks the best framework to study quantum gravity.

A basic mechanism of AdS/CFT?

- ⇒ An interesting possibility is tensor networks (TNs)! [Swingle 2009,....]
- ⇒ ``Emergent space from Quantum Entanglement"

Tensor network = Network of Quantum entanglement =``Geometry'' of Wave-functional in QFTs

Which surface in the AdS corresponds to the TN?

⇒ This basic question has confused us quite a lot !!

Possibility 1 TN = Time Slice (hyperbolic space) in AdS?

[Swingle 2009, Pastawski-Yoshida-Harlow-Preskill 2015,...]

⇒ Supported by HEE and QEC

But how the time coordinate emerges from TN?

Possibility 2 TN = de Sitter space ?

[Beny 2011, Czech-Lamprou-McCandlish-Sully 2015,....]

⇒Supported by Causal structure of MERA network

Our new formulation can explain both of them!

Motivation 2 Holographic complexity?

Computational Complexity of a quantum state |Ψ>

= Min [# of Quantum Gates]

Unitary trf. between two adjacent spins

A Holographic Complexity Proposal

Hol. Complexity

= Gravity Action in Wheeler-DeWitt (WDW) patch of AdS

[Brown-Roberts-Susskind-Swingle-Zhao 15]

So far no clear derivation of this formula.
Our formulation provides a partial support.

Motivation 3 Holographic Entanglement Entropy (HEE)

[Ryu-TT 06, Hubeny-Rangamani-TT 07]

$$S_{A} = \underset{\Gamma_{A} \approx A}{\operatorname{Min}} \left[\frac{\operatorname{Area}(\Gamma_{A})}{4G_{N}} \right]$$

 Γ_A is the area of codim.=2 **minimal space-like surface** such that $\partial A = \partial \gamma_A$ and $A \sim \gamma_A$. homologous

What about areas

of time-like surfaces? (or Gtt)

Our formulation suggests their holographic duals.

Contents

- (1) Introduction
- 2 Spacetime = Path-integral Circuit Conjecture
- 3 Time-like Surface and Quantum Entanglement
- 4 Gravitational Force from Quantum Circuits
- ⑤ Conclusions

2 "Spacetime = Path-integral Circuit" Conjecture

(2-1) Surface/State duality [Miyaji-TT 2015]

Consider Einstein gravity on a d+2 dim. AdS.

The surface/state duality argues:

\(\Sigma\): a d dim. convex space-like surface in AdS_{d+2}.

which is closed and homologically trivial

Dual

The surface/state duality is motivated by the tensor network description of holography.

How to construct such states $|\Psi(\Sigma)\rangle$ in the continuum limit of CFTs ?

(2-2) ``Slice = Quantum Circuit' Conjecture

A (d+1) dim. slice $M\Sigma$ in AdSd+2

A quantum circuit which creates the state $|\Psi(\Sigma)\rangle$ by path-integrals

$$\Psi(\Sigma)[\varphi_0] = \int_{M_{\Sigma}} D\varphi \, e^{-S_{CFT}[\varphi]} \delta[\varphi|_{\Sigma} - \varphi_0]$$

A CFT action on the curved space $M\Sigma$ with an appropriate coarse-graining s.t. z= lattice spacing

Euclidean AdS

- (i) The path-integral circuit is not unitary.
- (ii) $|\Psi(\Sigma)\rangle$ does not depend the choice of M_{Σ} owing to the conformal symmetry (up to normalization).

$$\Psi(M_{\Sigma}:\Sigma)[\varphi_0] = e^{C(M_{\Sigma}) - C(M_{\Sigma}')} \cdot \Psi(M_{\Sigma}':\Sigma)[\varphi_0]$$

We call the quantity $\,C(M_\Sigma)\,$ a path-integral complexity of the circuit $\,M_{_{\Sigma}}\,$.

Path-integral Optimization and Complexity

Euclidean Path-integral Complexity –

Minimize $C(M_{\Sigma})$ by changing M_{Σ} for a given $|\Psi(\Sigma)\rangle$.

This defines the Euclidean path-integral complexity of the state: $C(\Psi_{\Sigma}) = Min[C(M_{\Sigma})]$.

This is equivalent to the path-integral optimization.

[Caputa-Kundu-Miyaji-Watanabe-TT 17]

Consider two dimensional CFTs. We write the metric:

$$ds^{2} = e^{2\phi(x,z)}(dx^{2} + dz^{2})$$
 with $e^{2\phi}|_{z=\varepsilon} = \varepsilon^{-2}$.

The rule of UV cut off: a lattice site for a unit area.

$$C(M_{\Sigma}) = \text{Log}\left[\frac{\Psi_{g=e^{2\phi}\delta_{ab}}}{\Psi_{g=\delta_{ab}}}\right] = S_L[\phi],$$
 # of Isometries [Czech 17]

$$=S_L[\phi],$$

$$S_L[\phi] = \frac{c}{24\pi} \int dx dz \left[(\partial_x \phi)^2 + (\partial_z \phi)^2 + e^{2\phi} \right]$$

$$= \frac{c}{24\pi} \int dx dz \left[(\partial_x \phi)^2 + (\partial_z \phi + e^{\phi})^2 \right] + (\text{surface term})$$

$$\Rightarrow \text{Minimum}: e^{2\phi} = \frac{1}{z^2}.$$
 Hyperbolic plane (H2)
$$= \text{Time slice of AdS3}$$
$$ds^2 = (dx^2 + dz^2)/z^2.$$

$$ds^2 = (dx^2 + dz^2)/z^2$$

A Sketch: Optimization of Path-Integral

Lorentzian AdS

Case 1: M_{Σ} is space-like

⇒ The path-integral circuit is not unitary.

Case 2: M_{Σ} is time-like

⇒ The path-integral circuit is unitary.

$$\Psi(M_{\Sigma}:\Sigma)[\varphi_0] = e^{iC(M_{\Sigma}) - iC(M_{\Sigma}')} \cdot \Psi(M_{\Sigma}':\Sigma)[\varphi_0]$$

Unitary Transformation

$$U(\widetilde{\Sigma}:\Sigma) = P \cdot \exp\left(-i\int_{\Sigma}^{\widetilde{\Sigma}} ds \, K(s)\right)$$

Depends only on $\tilde{\Sigma}$ and Σ

Depends on M_S

Lorentzian Path-integral Complexity

Again we can define the Lorentzian version of path-integral complexity: $C(\Psi_{\Sigma}) = Min[C(M_{\Sigma})]$.

In the gravity dual description, $C(M_{\Sigma})$ is computed as The gravity action because $Z_G = e^{iI_G} = e^{iC(M_{\Sigma})}$.

$$I_{G} = -\frac{1}{16\pi G} \int_{N_{\Sigma}} \sqrt{-g} (R - 2\Lambda)$$

$$+ \frac{1}{8\pi G} \int_{M_{\Sigma}} \sqrt{h} K - \frac{1}{8\pi G} \int_{\Sigma} \sqrt{\gamma} \theta$$

 I_G is minimized at $\theta=\infty$, i.e. M Σ becomes light-like.

The holographic complexity based on WDW patch!

3 Time-like Surface and Quantum Entanglement

(3-1) Holographic Entanglement for Quantum Circuit

As we argued, we can regard a codim.=1 slice $M\Sigma$ as

a (non-unitary or unitary) quantum circuit:
Space-like Time-like

$$V(\Sigma_2 : \Sigma_1) = P \cdot \exp\left(-i \int_{\Sigma_1}^{\Sigma_2} ds K(s)\right)$$

Channel-State duality

[e.g. Hosur-Qi-Roberts-Yoshida 15]

$$|\Psi_{\Sigma_2\Sigma_1}\rangle = \sum_i V(\Sigma_2:\Sigma_1)|i\rangle_{\Sigma_1} \otimes |i\rangle_{\Sigma_2}$$

Quantum circuit V generates quantum entanglement.

New Proposal of Holographic Formula

$$\left(\Delta S_{A1A2}^{S}\right)^{2} - \left(\Delta S_{A1A2}^{T}\right)^{2} = \left(\frac{\Delta A(\Gamma_{PQ})}{4G}\right)^{2}$$

 ΔS_{A1A2}^S = The increased amount of entanglement between A and B along Γ PQ due to non-unitary (=space-like) quantum gates.

 ΔS_{A1A2}^T = The increased amount of entanglement between A and B along Γ PQ due to unitary (=time-like) quantum gates.

$$A(\Gamma_{PQ}) = \int_{\Gamma_{PQ}} \sqrt{g}$$
 \rightarrow A= Real when Γ_{PQ} = space-like A= Imaginary when Γ_{PQ} = time-like

More precisely, ΔS_{A1A2}^S counts only entanglement (= # of gates) which scrambles between A and B.

$$\Delta S_{A1A2} \Rightarrow -\Delta I_3(A1:A2:B1)$$

Examples

Case 1: FPQ = Space-like extremal surface

 \Rightarrow Reduced to the Hol. EE. $(\Delta S_{A1A2}^T = 0)$

Case 2: \(\Gamma\) PQ = Time-like interval at the AdS bdy

$$(\Delta S_{A1A2}^S=0)$$

Our formula leads to

$$\Delta S_{A1A2}^T \approx c \cdot \frac{V_{d-1}T}{\varepsilon^d}.$$

This agrees with 2d CFT results.

⇒ Gtt emerges from the Hamiltonian gates in CFT!

2d CFT Examples

$$V(M_{\Sigma}) = P \cdot \exp\left(-i \int_{-\infty}^{0} ds \ K(s)\right)$$

$$K(s) = H + \sinh\theta \cdot D$$

 $D \equiv \text{dilatation in 2d CFT}$

The null limit corresponds to $\theta=\infty$

⇒ The quantum circuit is the dilatation!

[see also Milsted-Vidal 2018]

Case 3:
$$\Gamma PQ = Light-like surface$$

⇒ Non-scrambling Unitary gates

$$\Delta I_3(A1:A2:B1)=0!$$

4) Gravitational Force from Quantum Circuits

Consider a massive particle in general relativity. It is dual to a localized excitation in quantum circuits.

A basic idea: The presence of many quantum gates becomes an obstruction for the massive particle propagation because the excitation will be scattered off.

Our proposed formula (assume AdS3/CFT2) leads to

[# of scrambling gates] =
$$\frac{1}{4G} \int ds \sqrt{-g}$$

A particle moves toward the direction with a lower gravitational potential.

The wave function Ψm which corresponds to the excitation in the quantum circuits can be estimated:

$$\Psi_m \approx e^{-i\Delta\theta \cdot \int ds \sqrt{-g}}$$
of Quantum gates

Universal Phase Shift for each quantum gate

$$\Delta \theta \approx E(=\Delta) = m$$

[as expected from Lloyd's conjecture 2000]

This explains the particle action in curved spacetime $S_m = -m \int ds \, \sqrt{-g} \quad \text{and gravitational force !}$

⑤ Conclusions

In AdS/CFT, we argued the following correspondence:

- 1. A codim.2 space-like surface $\Sigma \Leftrightarrow A$ quantum state $|\Psi(\Sigma)\rangle$
- 2. A codim.1 slice $M\Sigma \Leftrightarrow A$ path-integral quantum circuit $V\Sigma$
- 3. The gravitational action surround by $M\Sigma$
 - = The path-integral complexity \rightarrow Hol. Complexity
- 4. The area of codim.2 surface $\Gamma = \#$ of scrambling gates

Gtt and Gravitational force emerges from the density of unitary gates.

Future Problems

Derivation of Einstein equation ?, Sub AdS locality ?, dS/CFT ? Flat space holography ?, ...

http://www2.yukawa.kyoto-u.ac.jp/~qist2019/index.php

YITP long-term workshop

Quantum Information and String Theory 2019

May 27 - June 28, 2019 Yukawa Institute for Theoretical Physics, Kyoto University

It from Qubit school/workshop

June 17 - June 28, 2019

Registration is open now! Deadline: Feb.10th, 2019

Organizers:

Pawel Caputa (YITP), Tadashi Takayanagi (YITP, co-chair), Tatsuma Nishioka (Tokyo), Yasuaki Hikida (YITP), Keisuke Fujii (Kyoto), Tomoyuki Morimae (YITP, co-chair), Beni Yoshida (Perimeter), Yu Watanabe (YITP)

Thank you very much!