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Introduction

The research on M2-brane was boosted by the discovery of

ABJM theory. [BLG][ABJM 08]

This describes N M2 probing C4/Zk singularity.

M2

Several techniques, e.g.

1. SUSY localization [Kapustin,Willett,Yaakov 09]

2. Matrix model [TS 09][Marino,Putrov 09]

3. Fermi gas [Marino,Putrov 11]
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A generalization of ABJM: circular quiver CSMs.

[Hosomichi,Lee3,Park 08][Imamura,Kimura 08][Jafferis,Tomasiello 08]

Such a theory describes M2 probing orbifold singularities.

For example,

Gauge group: U(N1)k1 × U(N2)k2 × · · · × U(Nn)kn

1 bi-fundamental matter for each U(Na)× U(Na+1).
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Linear quiver limits:

1. Nn → 0

(1,pi)5

D3

M2 becomes fractional.
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Linear quiver limits:

2. kn → ∞ (a suitable limit for pi)

(1,pi)5

D3

U(Nn) becomes global symmetry.

Some bi-fundamentals become fundamentals.
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In both limits, their gravity duals seem to be complicated.

Interestingly, field theory (matrix model) analysis for linear

quiver CSM turns out to be quite simple!

In this talk, we will see how to explicitly obtain resolvents

which contain a lot of information. From them, we obtain

• ’t Hooft couplings,

•Wilson loops,

• free energy, and

•moments.
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Matrix models

Start with the localized partition function:

Z =

∫ n∏
a=1

dNaua exp

[
i

4π

n∑
a=1

Na∑
i=1

ka(u
a
i )

2

] n∏
a=1

Na∏
i>j

sinh2
uai − uaj

2

n−1∏
a=1

Na∏
i=1

Na+1∏
j=1

cosh
uai − ua+1

j

2

.

Planar limit:

k → ∞ with κa :=
ka
k
, ta :=

2πiNa

k
fixed.

⇒ Saddle point equation determines distribution of {uai}.

E.g. Wilson loop: ⟨Wa⟩ = lim
k→∞

1

Na

Na∑
i=1

eu
a
i
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The distribution is encoded in the resolvents

va(z) := lim
k→∞

ta
Na

Na∑
i=1

z ± zai
z ∓ zai

, zai := eu
a
i .

as branch cuts. They give:

• ’t Hooft coupling:

ta =
1

2
(va(∞)− va(0)) =

1

2

∫ ∞

0

dz v′a(z).

•Wilson loops:

⟨Wa⟩ = − 1

2ta
v′a(0).

⇒ Determine v′a(z).
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Introduce Ωa(z) (a = 0, 1, · · · , n), linear combinations of v′a(z).

The saddle point equations can be written as

Ωa(x+) = Ωa+1(x−).
.
.
x+

x-

cut
pa qa

⇒ They define Ω(s) on CP1 made by gluing n+1 sheets with cuts.

Ω2(s)

Ω1(s)

Ω0(s)

Ω(s) has simple poles at branch points.
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Fact: A function with poles on CP1 is a rational function.

⇒ Ω(s) is a rational function:

Ω(s) = A +

n∑
a=1

[
Ba

s− σa
+

Ca

s− τa

]
.

The map from CP1 (s-plane) to C (z-plane) is also rational:

z(s) = s

n∏
a=1

s− ξa
s− ηa

.

Ω(s) and z(s) contains all the information.

⇒ We only need to fix the parameters A,Ba, σa, τa, ξa, ηa.
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Example: pure Chern-Simons

Pure CS theory corresponds to n = 1.

Ω(s) = A +
B

s− σ
+

C

s− τ
, z(s) = s

s− ξ

s− η
.

The 7 parameters are fixed by

• zv′(0) = zv′(∞) = 0 (by construction, fixing 3 parameters),

• s = σ, τ are branch points (fixing 2 parameters),

• z(σ)z(τ ) = 1 (by symmetry, fixing 1 parameter).

⇒ The solution is parametrized by one parameter, which is then

related to ’t Hooft coupling t.
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• Parameters:

A = −1, B = 2σ
ξ − η

σ − τ
, C = −2τ

ξ − η

σ − τ
, ξ =

2στ

σ + τ
, η =

σ + τ

2
,

with σ−1 + τ−1 = 2.

• ’t Hooft coupling:

t =
1

2

∫ ∞

0

ds
z′(s)

z(s)
(Ω(s)− Ω(ξ)) = 2 log

z(σ)
1
2 + z(σ)−

1
2

2
.

(Integrand is a rational function.)

•Wilson loop:

W (C) = lim
s→0

Ω(s)− Ω(0)

z(s)
=

et − 1

t
.
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Summary

•Matrix model analysis of linear quiver CSM is quite simple.

• Explicit expressions for physical quantities.

• Possibility to give information on gravity duals.

Open issues

• Explicit solutions for n > 1.

• Free energy, moments.

•Adding fundamental matters.

• Implications to gravity duals.

• etc.
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