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3D AdS gravity
BTZ

3D Einstein-Hilbert gravity

S3D =
1

2κ2
3

(ˆ
d3x
√
−g3

(
R[g3]− 2Λ3

)
+

ˆ
d2x
√
−γ2 2K[γ2]

)

A circle reduction using the Kaluza-Klein ansatz

ds23 = e−2ψ (dz +Aadx
a)2 + gabdx

adxb

leads to the 2D Einstein-Maxwell-Dilaton model

S2D =
1

2κ2
2

(ˆ
d2x
√
−g e−ψ

(
R[g] +

2

L2
−

1

4
e−2ψFabF

ab
)

+

ˆ
dt
√
−γ e−ψ2K

)

In the UV this model exhibits a generalized conformal structure [Taylor ’17]

Analogous to non-conformal branes [Kanitscheider, Skenderis, Taylor ’08], e.g. D4
branes can be uplifted to M5 branes.

The existence of a UV fixed point allows us to define a notion of a conformal
anomaly in the lower dimensional non-conformal theory.
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The (ungauged) STU model in 4D
Subtracted Geometries

The 4D action

S4D =
1

2κ2
4

ˆ
M

d4x
√
−g
(
R[g]−

3

2
∂µη∂

µη −
3

2
e2η∂µχ∂

µχ−
1

4
e−3ηF 0

µνF
0µν

−
3

4
e−η(F + χF 0)µν(F + χF 0)µν

)
−

1

8κ2
4

ˆ
M

d4x
√
−gεµνρσ

(
χ3F 0

µνF
0
ρσ + 3χ2F 0

µνFρσ + 3χFµνFρσ
)

is a consistent truncation of the STU model and admits a class of asymptotically
conformally AdS2×S2 black hole solutions, provided Fµν carries non-zero
magnetic flux. Generically they are rotating and electrically charged.

Such solutions are known as subtracted geometries [Cvetič, Larsen ’12; Cvetič,
Gibbons ’12] and have been obtained by various methods from the corresponding
asymptotically flat black holes (e.g. Harrison transformations [Virmani ’12; M. Cvetič,
Guica, Saleem ’13]).
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Subtracted geometries as a decoupling limit

In a suitable parameterization, subtracted geometries correspond to turning off
certain integration constants in the harmonic functions that enter in the
asymptotically flat black hole solutions [Baggio, de Boer, Jottar, Mayerson ’13].

This procedure does not involve any scaling limit and allows for a simpler
parameterization of the resulting solutions [An, I.P., Cvetič ’16]:

eη =
B2/`2√

r + `2ω2 sin2 θ
, χ =

`3ω

B2
cos θ

A0 =
B3/`3

r + `2ω2 sin2 θ

(√
r+r− kdt+ `2ω sin2 θdφ

)
A =

B cos θ

r + `2ω2 sin2 θ

(
−ω√r+r− kdt+ rdφ

)
ds2 =

√
r + `2ω2 sin2 θ

(
`2dr2

(r − r−)(r − r+)
−

(r − r−)(r − r+)

r
k2dt2 + `2dθ2

)
+

`2r sin2 θ√
r + `2ω2 sin2 θ

(
dφ−

ω
√
r+r−

r
kdt

)2
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Kaluza-Klein reduction ansatz

The 4D truncation of the STU model can be consistently Kaluza-Klein reduced on
S2 by means of the one-parameter family of KK ansätze [Cvetič, I.P.:1608.07018]

e−2η = e−2ψ + λ2B2 sin2 θ, χ = λB cos θ

e−2ηA0 = e−2ψA(2) + λB2 sin2 θdφ, A+ χA0 = B cos θdφ

eηds24 = ds22 +B2

(
dθ2 +

sin2 θ

1 + λ2B2e2ψ sin2 θ
(dφ− λA(2))2

)
where λ is an arbitrary parameter. For any value of λ, the resulting 2D theory is
the Einstein-Maxwell-Dilaton theory we considered above – λ drops out in 2D!

By comparing the KK ansatz with the 4D black hole solutions we see that
λ = ω`3/B3, i.e. λ is the angular parameter of the 4D black hole.

The parameter λ allows any solution of the 2D EMD theory to be uplifted to a
family of 4D solutions, i.e. it acts as a solution generating mechanism.
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3 =

κ2
5

πL2

κ2
5 = Rzκ

2
4

kωL ∈ Z

κ2
2 =

κ2
4

πL2

χ = 0 (ω = 0)

κ2
2 =

κ2
3

Rz

Rz = 2πLk
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ℓ
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5D AdS gravity
Kerr-AdS5 with equal angular momenta

5D Einstein-Hilbert gravity:

I5D =
1

2κ2
5

ˆ
d5x

√
−g(5)

(
R(5) +

12

`25

)
where `5 is the AdS5 radius

We include the asymptotically flat case `5 →∞

For finite `5 a holographic description can be provided within N = 4 SYM, but the
effective action for near-extremal black hole excitations cannot be obtained
analytically, except very near the IR
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Kerr-AdS5 with equal angular momenta

We focus on the Kerr-AdS5 black hole with two equal angular momenta and its
Myers-Perry limit (`5 →∞)

The rotation breaks the isometry group as

SO(4) ∼= SU(2)L × SU(2)R → SU(2)L × U(1)R

The corresponding metric can be written as

ds25 = ds22 + e−U1dΩ2
2 + e−U2

(
σ3 +A

)2
where

ds22 =
r2dr2

(r2 + a2)∆(r)
−

1

Ξ
∆(r)eU2−U1dt2

A = Atdt =
a

2Ξ

(
r2 + a2

`25
−

2m

r2 + a2

)
eU2dt

and

e−U2 = r2+a2

4Ξ
+ ma2

2Ξ2(r2+a2)
, e−U1 =

r2 + a2

4Ξ

Ξ = 1− a2

`25
, ∆(r) = 1 +

r2

`25
−

2mr2

(r2 + a2)2
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Kaluza-Klein reduction ansatz

Our KK ansatz is (note Weyl rescaling of 2D metric)

ds2(5) = eψ+χds2(2) +R2e−2ψ+χdΩ2
2 +R2e−2χ

(
σ3 +A

)2
where ψ, χ and A depend only on 2D base

Inserting this in the 5D action leads to the 2D effective theory

I2D =
1

2κ2
2

ˆ
d2x
√
−g e−2ψ

(
R−

R2

4
e−3χ−ψF 2

−
3

2
(∇χ)2 +

1

2R2

(
4e3ψ − e5ψ−3χ

)
+

12

`25
eψ+χ

)
where 1

κ2
2

= 16π2R3

κ2
5

and R is an arbitrary length parameter

Have checked that this is a consistent truncation! Not a standard sphere
reduction – internal manifold is not supported by flux (cf. [Gouteraux, Smolic, Smolic,
Skenderis, Taylor ’11])

A holographic understanding of this 2D theory can provide direct insight into the
microstates of the Kerr-AdS5 black hole!
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3D AdS gravity: Running dilaton solutions

The general solution with running dilaton takes the form

e−ψ = β(t)eu/L

√(
1 +

m− β′2(t)/α2(t)

4β2(t)
L2e−2u/L

)2

−
Q2L2

4β4(t)
e−4u/L

√
−γ =

α(t)

β′(t)
∂te
−ψ

At = µ(t) +
α(t)

2β′(t)
∂t log

(
4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t)− 2Q/L

4L−2e2u/Lβ2(t) +m− β′2(t)/α2(t) + 2Q/L

)

where α(t), β(t) and µ(t) are arbitrary functions of time, while m and Q are
arbitrary constants.

This solution is regular provided m > 0.

The leading asymptotic behavior of this solution is

γtt = −α2(t)e2u/L+O(1), e−ψ ∼ β(t)eu/L+O(e−u/L), At = µ(t)+O(e−2u/L)

and so the arbitrary functions α(t), β(t) and µ(t) should be identified with the
sources of the corresponding dual operators.
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3D AdS gravity: The hairy 2D black hole

For constant sources αo, βo, µo and generic m > 0 and |Q| < mL/2, this is a
non-extremal asymptotically AdS2 black hole. It becomes extremal when
Q = ±mL/2.

The Hawking temperature is

T =
αoβo

πL1/2

√
m2L2 − 4Q2

√
mL+ 2Q+

√
mL− 2Q

which indeed vanishes when m = 2Q/L.

The Bekenstein-Hawking entropy is not given by the area law in 2D, but can be
computed e.g. using Wald’s formula. For 2D black holes with a non trivial dilaton
profile ones finds that the entropy is given by the value of the dilaton on the outer
horizon [Myers ’94; Cadoni, Mignemi ’99]:

S =
2π

κ2
2

e−ψ(u+) =
2π

κ2
2

L1/2

2

(√
mL+ 2Q+

√
mL− 2Q

)
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3D AdS gravity: Constant dilaton solutions

Another family of solutions is [Castro, Grumiller, Larsen, McNees ’08 ]

e−2ψ = LQ

√
−γ = α̃(t)eu/L̃ +

β̃(t)
√
LQ

e−u/L̃

At = µ̃(t)−
1
√
LQ

(
α̃(t)eu/L̃ −

β̃(t)
√
LQ

e−u/L̃

)

where α̃(t), β̃(t) and µ̃(t) are arbitrary functions, Q > 0 is an arbitrary constant,
and L̃ = L/2.

As above, the functions α̃(t) and µ̃(t) are going to be identified with sources of
local operators, but we shall see that the function β̃(t) corresponds to the
one-point function of an irrelevant scalar operator of dimension 2.

Notice that the gauge field diverges at the boundary u→ +∞. This is a generic
property of rank p ≥ d/2 antisymmetric tensor fields in AdSd+1 and leads to
certain subtleties in the holographic dictionary.
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3D AdS gravity: The bald black hole

For constant α̃, µ̃ and β̃ < 0 this is a non-extremal asymptotically AdS2 black hole
with

T 2D =

√
−α̃oβ̃o

πL̃(LQ)1/4
, S2D =

2π

κ2
2

√
LQ , M2D = 0 .

Uplifting to 3D (along a null circle) gives instead

T 3D =
(LQ)1/4

√
−α̃oβ̃o

πL̃
(√

LQ+

√
−2β̃o
LQ

) , S3D =
2π

κ2
2

(√
LQ+

√
−2β̃o

LQ

)
, M3D =

1

4κ2
2L̃

(
LQ−

2β̃o

LQ

)

This black hole becomes extremal when β̃o = 0.

The two black holes cannot be compared directly since they satisfy different
boundary conditions. The hairy black hole is asymptotically AdS2 with AdS radius
L, while the bald solution is asymptotically AdS2, with AdS radius L̃ = L/2.

However, they both uplift to the BTZ black hole in 3D, with AdS3 radius L.
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3D AdS gravity: An RG flow

Since the two classes of solutions have different AdS radii, one expects that there
is an RG flow from the running dilaton solution to the constant dilaton solution.

For the extremal solutions this is indeed the case. Setting
m− β′2/α2 = 2Q/L > 0 and µ = −α/β and expanding the hairy solution for
u→ −∞ gives

e−ψ =
√
LQ+

β2

2
√
LQ

e2u/L +O(e4u/L)

√
−γ =

αβ
√
LQ

e2u/L
(

1−
β2

2LQ
e2u/L +O(e4u/L)

)
At = −

αβ

LQ
e2u/L

(
1−

β2

LQ
e2u/L +O(e4u/L)

)
The limit β → 0 keeping αβ fixed results in an exact bald solution with
α̃ = αβ/

√
LQ. This limit sets m = 2Q/L and µ→ −∞, and corresponds to the

“Very-Near-Horizon Region” [Strominger ’98].
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5D AdS gravity: Structure of 2D solutions

The gauge field can be integrated out:

Fab = Qe3ψ+3χεab, F 2 = −2Q2e6ψ+6χ

where Q ∼ J5. Different boundary conditions can be imposed if not integrated out!

For `5 →∞, χ can be consistently set to a constant with ψ non-trivial. Such
solutions uplift to Taub-NUT in 5D with a 4D Reissner-Nordström base

The attractor solutions are obtained for χ and ψ both constant and Q 6= 0. They
correspond to the very-near horizon region of extremal Kerr-AdS5 and to the IR
fixed point in the dual quantum mechanics

For finite `5 the scalar field χ cannot be decoupled and the 2D equations of motion
cannot be integrated completely. We will focus on the general near IR solutions
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5D AdS gravity: IR fixed point solutions

The constant values of the scalars are determined by the two equations

e−2ψ0 = e−3χ0 −
R4Q2

2
e3χ0

1−R4Q2e6χ0 +
2R2

`25
e−2χ0

(
2−R4Q2e6χ0

)2
= 0

In the radial (Fefferman-Graham) gauge

ds2 = dρ2 + γtt(ρ, t)dt
2, Aρ = 0

the general attractor solution takes the form

√
−γ0 = α(t)eρ/`2 + β(t)e−ρ/`2

A0
t = µ(t)−Q`2e3χ0+3ψ0

(
α(t)eρ/`2 − β(t)e−ρ/`2

)
where γtt = −(

√
−γ)2 and

`−2
2 =

1

R2
e3ψ0 (1 + 12q), q ≡

1

8
e2ψ0 (R4Q2e3χ0 − e−3χ0 ) (q → 0 as `5 →∞)
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5D AdS gravity: Perturbations near IR fixed point

Small fluctuations on top of the attractor solutions can be parameterized as

Y ≡ e−2ψ − e−2ψ0 , X ≡ χ− χ0 ,
√
−γ1 ≡

√
−γ −

√
−γ0

and satisfy a system of coupled linear equations that can be solved exactly

From the linearized equations we read off the AdS2 masses of the scalar
fluctuations, and hence the conformal dimension of the dual operators:

∆Y = 2, ∆X =
1

2

(
1 + 5

√
1 + 28

5
q

1 + 12q

)

where
2 <

1

6
(3 +

√
105) ≤ ∆X ≤ 3

with ∆X = 3 corresponding to the Myers-Perry black hole (`5 →∞)
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In the Fefferman-Graham gauge the general near IR solutions take the form

Y = ν(t)eρ/`2 + ϑ(t)e−ρ/`2

X =
2q

1 + 2q
e2ψ0Y

+ ζ(t)e(∆χ−1)ρ/`2 (1 + . . .)−
2`2e2ψ0c1ζ(t)

∆χ
1−∆χ e−∆χρ/`2

3(∆χ − 1)(2∆χ − 1)
(1 + · · · )

√
−γ1 = −

(1 + 10q + 8q2)

(1 + 2q)(1 + 12q)
e2ψ0

[√
−γ0Y + 2`22∂t

(
∂tν

α

)]
+ (ζ(t) terms)

where

β(t) = −
`22
4

α

∂tν
∂t
( 1

ν

(
c0 +

(∂tν)2

α2

))
ϑ(t) = −

`22
4ν

(
c0 +

(∂tν)2

α2

)
−
`2

2
c1ζ

1
1−∆χ

and c0, c1 are arbitrary constants

Perturbation theory is valid for

|ν(t)|eρ/`2 << e−2ψ0 , |ζ(t)|e(∆χ−1)ρ/`2 << χ0
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Radial Hamiltonian formulation of the dynamics

Inserting the radial ADM decomposition

ds2 = (N2 +NtN
t)du2 + 2Ntdudt+ γttdt

2

of the metric in the 2D action gives the radial Lagrangian

L =
1

2κ2
2

ˆ
dt
√
−γN

(
−

2

N
K(ψ̇ −Nt∂tψ)−

1

2N2
e−2ψFutFu

t +
2

L2
− 2�t

)
e−ψ

where K = γttKtt and the extrinsic curvature Ktt is given by

Ktt =
1

2N
(γ̇tt − 2DtNt)

with the dot denoting a derivative with respect to the radial coordinate u, and Dt
standing for the covariant derivative with respect to the induced metric γtt.
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The canonical momenta are

πtt =
δL
δγ̇tt

= −
1

2κ2
2

√
−γe−ψ

1

N
γtt
(
ψ̇ −Nt∂tψ

)
πt =

δL
δȦt

= −
1

2κ2
2

√
−γe−3ψ 1

N
γttFut

πψ =
δL
δψ̇

= −
1

κ2
2

√
−γe−ψK

The canonical momenta conjugate to N , Nt and Au vanish identically and, hence,
these fields are Lagrange multipliers imposing the first class constrains

H = −
κ2

2√
−γ

eψ
(

2ππψ + e2ψπtπt
)
−
√
−γ
κ2

2

(
L−2 − �t

)
e−ψ = 0

Ht = −2Dtπ
tt + πψ∂

tψ = 0

F = −Dtπt = 0
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Holographic dictionary

The canonical momenta can alternatively be expressed as gradients of Hamilton’s
principal function S as

πtt =
δS
δγtt

, πt =
δS
δAt

, πψ =
δS
δψ

where S[γ, ψ,A] is a functional of the induced fields γtt, At and ψ and their
t-derivatives only and coincides with the on-shell action.

S[γ, ψ,A] coincides with the on-shell action:

1 Canonical momenta are one-point functions – do not need on-shell action!

2 Boundary counterterms can be obtained by solving the Hamilton-Jacobi equation for S.
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Holographic dictionary for running dilaton solutions

For the running dilaton solutions the boundary counterterms are

Sct = −
1

κ2
2

ˆ
dt
√
−γ L−1 (1− uoL�t) e−ψ

The renormalized one-point functions are given by the renormalized radial
canonical momenta:

T = 2π̂tt , Oψ = −π̂ψ , J t = −π̂t

where

π̂tt =
1

2κ2
2

lim
u→∞

eu/L
(
∂ue
−ψ − e−ψL−1

)
π̂t = lim

u→∞

eu/L
√
−γ

πt

π̂ψ = −
1

κ2
2

lim
u→∞

eu/Le−ψ
(
K − L−1

)
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Holographic dictionary for running dilaton solutions

Evaluating these expressions using the general solutions with running dilaton
gives the one-point functions

T = −
L

2κ2
2

(
m

β
−

β′2

βα2

)
, J t =

1

κ2
2

Q

α
, Oψ =

L

2κ2
2

(
m

β
−

β′2

βα2
− 2

β′α′

α3
+ 2

β′′

α2

)
All three operators are crucial to describe the physics. In particular, these
one-point functions satisfy the Ward identities

∂tT − Oψ∂t log β = 0, DtJ t = 0

T +Oψ =
L

κ2
2

(
β′′

α2
−
β′α′

α3

)
=

L

κ2
2α
∂t

(
β′

α

)
≡ A

From these relations we deduce that the scalar operator Oψ is a marginally
relevant operator and the theory has a conformal anomaly due to the source of
the scalar operator.
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The renormalized on-shell action can be obtained (up to a constant that depends
on global properties) by integrating the relations

T =
δSren

δα
, Oψ =

β

α

δSren

δβ
, J t = −

1

α

δSren

δµ

using the above expressions for the one-point functions.

This gives the exact generating function:

Sren[α, β, µ] = −
L

2κ2
2

ˆ
dt
(
mα

β
+
β′2

βα
+

2µQ

L

)
+ Sglobal

Sglobal involves terms evaluated on the horizon and its explicit form is given in
[Castro, Larsen, I.P.:1807.06988].
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Residual local symmetries

Under bulk diffeomorphisms and U(1) gauge transformations the non-dynamical
components of the bulk fields transform as

δξguu = Lξguu = ξ̇u, δξgtt = Lξgut = γtt(ξ̇
t + ∂tξu)

(δξ + δΛ)Au = LξAu + δΛAu = ξ̇tAt + Λ̇

where Lξ denotes the Lie derivative with respect to the vector ξa.

To preserve the Fefferman-Graham gauge we must demand

Lξguu = Lξgut = 0, (Lξ + δΛ)Au = 0

which determines the form of the residual local symmetries to be

ξu = σ(t), ξt = ε(t)+∂tσ(t)

ˆ ∞
u
dūγtt(ū, t), Λ = ϕ(t)−σ′(t)

ˆ ∞
u
dūγtt(ū, t)At(ū, t)

where ε(t), σ(t) and ϕ(t) are arbitrary functions of time.

Under these residual symmetries the dynamical fields transform as

δξγtt = Lξγtt+2Kttξ
u, (Lξ+δΛ)At = LξAt+ξ

uȦt+∂tΛ, δξψ = Lξψ+ξuψ̇.
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Schwarzian effective action

All three sources can be generated by the residual gauge transformations:

α = eσ(1+ε′+εσ′)+O(ε2), β = eσ(1+εσ′)+O(ε2), µ = ϕ′+ε′ϕ′+εϕ′′+O(ε2),

where the primes ′ denote a derivative with respect to t.

Inserting these expressions in the renormalized action and absorbing total
derivative terms in Sglobal we obtain

Sren =
L

κ2
2

ˆ
dt ({τ, t} −m/2) + Sglobal, σ = log τ ′,

where the Schwarzian derivative is given by

{τ, t} =
τ ′′′

τ ′
−

3

2

τ ′′2

τ ′2

The Schwarzian derivative action is a manifestation of the conformal anomaly!
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Holographic dictionary for constant dilaton solutions

The holographic dictionary for constant dilaton solutions is a bit more subtle,
mainly due to the fact that the AdS2 gauge field diverges close to the boundary:

At ∼ µ̃(t)−
α̃(t)
√
LQ

eu/L̃

Two different boundary counterterms have been proposed to cancel the
corresponding divergences of the on-shell action:

[Castro, Grumiller, Larsen, Mc Nees ’08]

∼
ˆ

dt
√
−γAtAt

[Grumiller, McNees, and Salzer ’14; Grumiller, Salzer, Vassilevich ’15]

∼ −
ˆ

dt πtAt +
ˆ

dt
√
−γ

√
1 + α0πtπt

Although both types of counterterms cancel the divergences of the on-shell action,
neither respects the symplectic structure on the space of solutions, which can
lead to inconsistencies at the level of correlation functions.
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Holographic renormalization as a canonical transformation

In order for the variational problem to be well posed the boundary counterterms
must correspond to a suitable canonical transformation [I. P. ’10].

For the usual gauge field asymptotics the counterterms satisfy

δ (Sreg + Sct[γ,A, ψ]) =

ˆ
dt
(
πt +

δSct

δAt

)
δAt + · · ·

so that Sct[γ,A, ψ] is the generating function of the canonical transformation(
At
πt

)
→
(
At
Πt

)
=

(
At

πt + δSct
δAt

)
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Since the gauge field modes are reversed for constant dilaton solutions, the
generating function of the relevant canonical transformation is

−
ˆ

dt πtAt + Sct[γ, π, ψ]

where

Sct = −
1

2κ2
2L

ˆ
dt
(√
−γ e−ψ +

(Lκ2
2)2

√
−γ

e3ψπtπt

)

This implements the canonical transformation(
At
πt

)
→
(
−πt
Aren
t

)
=

(
−πt

At − δSct
δπt

)
such that

πt ∼ −
1

κ2
2

Q, Aren
t = At −

δSct

δπt
∼ At +

1
√
LQ

√
−γ ∼ µ̃(t)

preserving both the symplectic structure and the gauge symmetries.
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Normalizability and boundary conditions
[O’Bannon,I.P., Probst: 1510.08123]

Abelian vector field (generically massive)

S = −
ˆ
dd+1x

√
−g
(

1

4
fmnf

mn +
1

2
m2
a g

mnaman

)
Equation of motion

∇mfmn −m2
aan = 0

The two linearly independent asymptotic solutions for am are of the form eδ±r with

δ± = −
d− 2

2
±

√(
d− 2

2

)2

+m2
a.

Dropping a boundary term from the action we define the new norm (cf. [Klebanov,
Witten: hep-th/9905104] for scalars)

S′ =
1

2

ˆ
dd+1x

√
−g ap gpn

(
∇mfmn −m2

aan
)

we find that both modes are normalizable provided

−
(d− 2)2

4
≤ m2

a <
d(4− d)

4
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Boundary counterterms and holographic dictionary

Since Q is constant it does not define a local dual operator, but µ̃(t) does define a
local current. The renormalized generating functional in the theory that possesses
a local current operator is

Sren = lim
u→∞

(
Sreg + Sct −

ˆ
dt πtAt+

ˆ
dt πtAren

t

)
If the finite term that implements the Legendre transformation is omitted one
obtains the generating function of a theory without a current operator. This is a
choice of boundary conditions.

The renormalized one-point functions obtained from this renormalized action are

T = 2π̂tt = 0, Oψ = −π̂ψ = −
2

κ2
2L̃

β̃

α̃
, J t = −π̂t =

1

κ2
2

Q

α̃

In particular, the non-extremality parameter β̃ of the constant dilaton solutions is
identified with the VEV of the (irrelevant) scalar operator Oψ .
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Ward identities

Besides the current conservation DtJ t = 0, the Ward identities are trivially
satisfied, but become non-trivial once a perturbative source ν̃ for the scalar
operator is turned on:

∂tT +Oψ∂tν̃ = O(ν̃2), T − ν̃Oψ = −
L̃(LQ)1/2

κ2
2α̃

∂t

(
ν̃′

α̃

)
+O(ν̃2)

These imply that Oψ has dimension 2, while the conformal anomaly matches that
of the running dilaton solutions.

The stress tensor is nonzero if and only if a source for the irrelevant scalar
operator is turned on.
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Outline

1 Exact 2D effective actions for rotating black holes

2 The space of 2D solutions

3 AdS2 holography

4 Conclusions
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Conclusions

2D dilaton gravity captures the effective dynamics of near extremal black holes

Consistent KK truncations are crucial for studying the RG flow away from IR fixed
point and for generating solutions in higher dimensions

Both modes of gauge fields in AdS2 are normalizable, which allows for more
general boundary conditions

Future directions
When does the AdS2 radius depend on AdS2 Maxwell charge?

Classification of supersymmetric boundary conditions

2D reductions of various supergravities

Reduction of e.g. N = 4 SYM to 1D using bulk consistent KK reduction
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