On dimensional reduction of N=1 Lagrangians for Argyres-Douglas theories

Prarit Agarwal (Seoul National University) East Asia Joint Workshop on Fields and Strings KIAS, 5 Nov' 2018 based on arXiv:1809.10534

1

Plan of the talk

- □ Argyres-Douglas (AD) theories and N=1 Lagrangians
- □ 3d reduction of the N=1 Lagrangians
- □ Summary and conclusion

Argyres-Douglas (AD) theories

- 4d N=2 Superconformal theories (SCFTs)
- Describe the low energy physics at special loci on the Coulomb branch of generic 4d N=2 theories [Argyres-Douglas `95] [Argyres-Plesser-Seiberg-Witten '95]
- At these special loci, magnetic monopoles and electrically charged particles simultaneously become massless

AD theories are Non-Lagrangian

- Impossible to write a manifestly Lorentz invariant Lagrangian with electrons as well as monopoles as elementary degrees of freedom
- Therefore AD theories are inherently non-perturbative
- Their Coulomb phase is well understood; much less is known about their conformal phase
- How to compute their partitions function on $S^4, \; S^3 imes S^1$ etc ?

- Partial answer : N=1 Lagrangians for (A_1, A_n) and (A_1, D_n) AD theories [Maruyoshi-Song`16] [PA-Maruyoshi-Song`16] [PA-Sciarappa-Song`17]
- Can use these to compute RG protected quantities such as the superconformal index

Generic features of these N=1 Lagrangians

- Many gauge invariant operators of the UV Lagrangian decouple as free fields in the IR
- The IR central charges *a* and *c* match exactly with the corresponding AD theories
- A subset of chiral operators give the Coulomb branch of the AD theory

3d reduction of N=1 Lagrangians

- Decoupling of an operator ${\mathcal O}$ can be automatically accounted for by including a flipping field $\beta_{\mathcal O}$

$$\delta W = \beta_{\mathcal{O}} \mathcal{O}$$

- Upon dim. red. to 3d, R-charges have to be fixed via Z- extremization
- Generically, extremization point is different if the flipping field β is included or not
- If $\beta_{\mathcal{O}}$ is not included, \mathcal{O} may or may not decouple upon dimensional reduction

- Proposal: the flipping fields are necessary for correct dimensional reduction [Benvenuti-Giacomelli `17]
- (A₁, A_{2n-1}) Lagrangians : no SUSY enhancement in 3d without flipping fields [Benvenuti-Giacomelli `17]
- flow to the mirror of (A_1, A_{2n-1}) AD theory upon including the flipping fields [Benvenuti-Giacomelli `17]
- Let's study the expected necessity of including flipping fields further

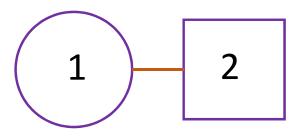
Lagrangian for the (A_1, D_3) AD theory

fields	$SU(2)_{\rm color}$	$SO(3)_b$	$U(1)_T$	$U(1)_q$	$U(1)_R$	$U(1)_T - \frac{3}{2}U(1)_q$
q_1	2	3	$\frac{1}{4}$	$\frac{1}{2}$	$1 - rac{r_\phi}{2}$	$-\frac{1}{2}$
q_2	2	1	$-\frac{1}{4}$	$\frac{3}{2}$	$1 - \frac{r_{M_3} + r_{\phi}}{2}$	$-\frac{5}{2}$
ϕ	adj	1	$-\frac{1}{2}$	-1	r_{ϕ}	1
M_3	1	1	1	-2	r_{M_3}	4
β	1	1	1	2	$2-2r_{\phi}$	-2

 $W = Tr q_1 \phi q_1 + M_3 Tr q_2 \phi q_2 + \beta Tr \phi^2$

In 4d, non-anomalous R-charge : $r_{M_3} - 4 r_{\phi} = 0$

• The mirror of the (A_1, D_3) theory : T[SU(2)] theory (self-mirror)

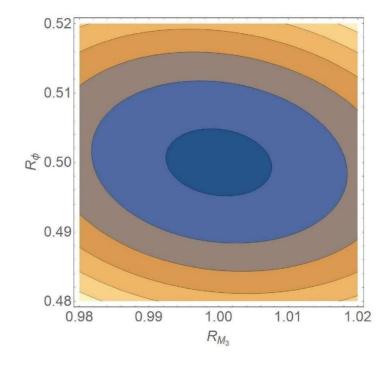


• Thus we expect the above Lagrangian to flow to the T[SU(2)] theory upon 3d reduction

0.6760 • Upon Z – extremization: $R_{M_3} \sim 0.95$, $R_{\phi} \sim 0.67$ 0.6755 • The *SU*(2) monopole operator 0.6750 decouples 0.6745 Remove the monopole operator contribution and re-extremize 0.6740 0.9490 0.9495 0.9500 0.9505 0.9510 0.9515 0.9520 $R_{M_3} \sim 0.92$, $R_{\phi} \sim 0.68$ R_{M_3}

- No SUSY enhancement to N=4 !
- How can we fix this?
- The short answer: remove the flipping field β from the Lagrangian

Z – extremization without the flipping field



The SU(2) monopole operator has dimension ½ and decouples as a free field

• The superconformal Index also matches with T[SU(2)]

• There is a systematic way of understanding why adding the flipping field β spoils the expected match.

- The T[SU(2)] theory has an $SU(2)_T \times SU(2)_b$, global symmetry
- The 3d N=4 current multiplets of $SU(2)_T \times SU(2)_b$ contain chiral scalar operators called the moment map
- In (A_1, D_3) Lagrangian, the $SU(2)_b$ moment map corresponds to

$$q_1^i q_2$$
 $i = 1,2,3$

• The $SU(2)_T$ moment map is generated by

 M_3 , {m ϕ } and $Tr\phi^2$

- Including β in the Lagrangian, removes $Tr\phi^2$ from the chiral ring
- This stops the (A_1, D_3) Lagrangian from flowing to T[SU(2)]
- (A_1, D_3) contradicts the prescription to include "flipping fields"

Summary and Conclusion

- Argyres Douglas theories are simplest N=2 SCFTs
- Their non-Lagrangianity poses a major hurdle in understanding their conformal phase
- We have been successful in constructing N=1 Lagrangians whose IR fixed points describe AD theories
- Can use these to compute RG protected quantities such as the superconformal index

It is also interesting to study dimensional reduction of these Lagrangians

- For (A_1, A_{2n-1}) type cases, correct dimensional reduction requires flipping fields
- However, including the flipping field does not always work
- (A_1, D_3) Lagrangian is a counter example to this expected necessity

- Is there a uniform way to understand when to include the flipping fields ?
- Need to understand the caveats which arise due non-commutation of the RG flow and dimensional reduction

THANK YOU!