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Nonclassical properties of quantum states

• Bell-type nonlocality

• Nonclassicality based on quasi-probability functions

• Macroscopic superpositions – ‘quantum 

macroscopicity’

• Coherence based on off-diagonal elements of the 

density matrix

• Entanglement, discord, steerability…



Quantum superposition principle

The principle of quantum superposition: Any two states may 

be superposed to give a new state.

“The superposition principle lies at the very heart 

of quantum mechanics.”

P.  A. M. Dirac



Double split experiment with electrons
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2

?

Quantum

interference!

• Researchers led by Pier Giorgio Merli, 

the University of Milan (1974).

• Tonomura et al., Hitachi in Japan (1989).



By Charles Addams



Quantum entanglement

• Quantum superposition of two (or more than two) physical 
systems (e.g. for systems 1 and 2). 

• Such a state cannot be represented by a product of two 
separate states.

• We then say that the physical systems 1 and 2 are “entangled.”

• “Spooky action at a distance” – Albert Einstein.

Particle 1 Particle 2

Observed here
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Quantum entanglement

• Quantum superposition of two (or more than two) physical 
systems (e.g. for systems 1 and 2). 

• Such a state cannot be represented by a product of two 
separate states.

• We then say that the physical systems 1 and 2 are “entangled.”

• “Spooky action at a distance” – Albert Einstein.

Observed here Determined over there!
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Quantum mechanics vs local realism

• Einstein-Podolsky-Rosen (EPR) paradox (1935):   
Is quantum mechanics a complete physical theory?
[A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).]

• Local realism: locality + realism

- Locality: “Distant objects cannot have direct 
influence on one another.”

- Realism: “The results of observations are a 
consequence of properties carried by physical systems, 
i.e., an external reality exists independent of 
observation.”



Violation of local realism

John S. Bell

• Bell’s inequality: an inequality which must be obeyed 

by any local-realistic theory [J. S. Bell, Physics 1, 195 

(1964)].

• Bell’s inequality is violated by quantum mechanics, i.e., 

quantum mechanics is inconsistent with local realism.

• Loophole-free Bell violations were recently

demonstrated [B. Hensen et al., Nature 2005 etc.]
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Schrödinger’s cat paradox
E. Schrödinger, Naturwissenschaftern. 23 (1935)
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Quantum superposition or entanglement of macroscopically distinguishable states

The Brussels Journal (29 October 2007)



Classical gun – if we are really 

living in a quantum universe…
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Very good magnifier

?
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Decoherence

• It is difficult  to isolate macroscopic objects from their environment.

• Macroscopic quantum states decohere (lose their quantum  properties)

faster than microscopic states.

[W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003) and references therein]



Some examples with microscopic and 

macroscopic systems (Tegmark, 1993)

12  scm

A tiny dust particle of the size of a virus (10-5cm), scattering of air

molecules leads to a decoherence time scale of the order of 10 -13 s.
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Macroscopic quantum interference

• Superconducting quantum interference device (SQUID)   
[J. R. Friedman et al., Nature 406, 43 (2000)]

• Interference with C60 molecules

[M. Arndt et al., Nature 401, 680 (1999)]

• “Schrödinger cat” states of light
[A. Ourjoumtsev et al., Nature 448, 784 (2007)]

(Interference with C60 molecules,

Nature 401, 680, 1999)



Glauber–Sudarshan P representation
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 Coherent states are most classical among all pure states: an analogy of classical 

point-particles in the quantum phase space [Schrödinger, Naturwissenschaften 14 

(1926)] and most robust against decoherence.

• Coherent state:
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• Coherent state:



Q function (Husimi-Q distribution)

(Left) Five-photon coherent state and (Right) Five-photon Fock state

Picture from Haroche group’s website



Q function (Husimi-Q distribution)

Limitation of Q function

(Left) Q functions for a 5 photon phase Schrödinger cat and (Right) a statistical

mixutre of two five photons coherent states with opposite phases. 

Picture from Haroche group’s website



• The Wigner function is a quasi-probability distribution: an 

analogy of the classical probability distribution in the 

quantum phase space.

• Negative values in the Wigner function are a definite sign 

of non-classicality.

Wigner function
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Wigner function

• Vacuum state

Picture from Lvovsky group’s website



Wigner function

• Coherent state

Picture from Lvovsky group’s website



Wigner function

• Thermal state

Picture from Lvovsky group’s website



Wigner function

• Squeezed state

Picture from Lvovsky group’s website



Wigner function

• n=1 Fock state

Picture from Tzu-Chieh Wei’s website



Wigner function

• n=2 Fock state

Picture from Tzu-Chieh Wei’s website



Wigner function

• n=3 Fock state

Picture from Tzu-Chieh Wei’s website



• Schrodinger cat state (α=1.5+1.5i )

Picture from Tzu-Chieh Wei’s website

   Ncat



Time evolution

• Coherent state

Picture from Wikipedia



Time evolution

• Superposition of n=0 and n=1 Fock states

Picture from Wikipedia



Schrödinger cat states in optical fields
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 Coherent states are most classical among all pure states: an analogy of classical 

point-particles in the quantum phase space [Schrödinger, Naturwissenschaften 14 

(1926)] and most robust against decoherence.

 The two coherent states | α > and | -α > are “classically” (or macroscopically) 

distinguishable for α >>1, i.e., they can be well discriminated by a homodyne 

measurement (HD) with limited efficiency.

(For 70% of HD efficiency: D≈99.7% for α=1.6 and D>99.9% for α=2.0.)

α >>1

• Coherent state:

• Schrödinger cat states:
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• The Wigner function is a quasi-probability distribution: an 

analogy of the classical probability distribution in the 

quantum phase space.

• Negative values in the Wigner function are a definite sign 

of non-classicality.

Wigner function

]ˆ)(ˆ[Tr)(  DC 




 2**

2
)(]exp[

1
)( dCW  

ipx 

aaeD
ˆˆ *

)(ˆ  



Coherent state α=2

2  with  



Coherent state α=-2

2  with  



Statistical mixture
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Quantum superposition 
(Schrödinger cat state)

  

Evidence of quantum

interference



Generating a Schrödinger cat state using a two-

photon state and homodyne detection

• A two-photon state can be used to generate a Schrodinger cat state of 

α=1.6 with F=99%.

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

Schrödinger 

cat state 



Experimental setup

Experiment: n=2, |α|=1.6, r=0.4, ε=0.1, 7.5% of success probability. 

Homodyne efficiency: about 70%

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

Fidelity of the two photon sate: about 55%
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Evidence of quantum

interference
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri

and Ph. Grangier, Nature 448, 784 (2007)

6.1

Wigner function Success probability 7.5%

           ( 0.1) 

Experimental Wigner function:

Schrödinger cat state



Nonclassical properties of quantum states

• Bell-type nonlocality

• Nonclassicality based on quasi-probability functions

• Macroscopic superpositions – ‘quantum 

macroscopicity’

• Coherence based on off-diagonal elements of the 

density matrix

• Entanglement, discord, steerability…



Nonclassical properties of quantum states

• Bell-type nonlocality

• Nonclassicality based on quasi-probability functions

• Macroscopic superpositions – ‘quantum 

macroscopicity’

• Coherence based on off-diagonal elements of the 

density matrix

• Entanglement, discord, steerability…



Macroscopic and quantum?

The Brussels Journal (29 October 2007)

E. Schrödinger, Naturwissenschaftern. 23 (1935)



Interference of large molecules

• Interference with C60 molecules [M. Arndt et al., Nature 401, 680 (1999)]

(Interference with C60 molecules,

Nature 401, 680, 1999)
https://www.univie.ac.at/qfp/research/matterwave/c60/



Superposition of supercurrents

• Quantum superposition of left- and right- circulating supercurrents [R. Friedman 
et al., Nature 406, 43 (2000)]

Copyright: C. Kohstall and R. Grimm, University of Innsbruck



Schrödinger cat states of light
A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

Evidence of 

quantum 

interference

Wigner function

• Cavity field: S. Deléglise et al., Nature 455, 510-514 (2008)

• Cavity field (circuit QED): Vlastakis et al. Science 342, 607 (2013)

• And many more... (atomic systems, mechanical systems etc...)



Macroscopic quantum phenomena

• Superconductivity

• Superfluidity

• Bose-Einstein Condensates



Macroscopic quantum phenomena

• Superconductivity

• Superfluidity

• Bose-Einstein Condensates

• However, these are not macroscopic superpositions nor 
macroscopic entanglement.



Can we quantify ‘Schrödinger’s-cattiness’  

or ‘macroscopic quantumness’?

“What is the correct measure of ‘Schrödinger’s-cattiness’?

Ideally, one would like a quantitative measure which 

corresponds to our intuitive sense; I shall attempt one 

below, but would emphasize that the choice between this 

and a number of similar and perhaps equally plausible 

definitions is, with one important exception (see below), 

very much a matter of personal taste, and that I very much 

doubt that 50 years from now anything of importance will 

be seen to have hung on it.”

(A. J. Leggett, J. Phys.: Condens. Matter 14 (2002) R415–R451)



Previous studies

• Number of effective particles that involve the superposition (e.g. 

Leggett (1980); Dur, Simon and Cirac, PRL 2002)

• “Distance” or “distinguishability” between the component states 

(e.g. Bjork and Mana, J. Opt. B 2004; Korsbakken et al., PRA 2007)

References taken from

H. Jeong, M. Kang and H. Kwon, Special Issue on Macroscopic Quantumness, 

Optics Communications 337, 12 (2015) (Review Article).



Previous studies

• Number of effective particles that involve the superposition (e.g. 

Leggett (1980); Dur, Simon and Cirac, PRL 2002)

• “Distance” or “distinguishability” between the component states 

(e.g. Bjork and Mana, J. Opt. B 2004; Korsbakken et al., PRA 2007)

F. Fröwis et al., Rev. Mod. Phys. 90, 025004 (2018)



Disconnectivity

• D quantifies genuine multipartite quantum correlation such as:

• D for 𝜌𝑁 is defined as the largest number 𝑛 that makes 𝛿𝑛 the 

smallest where

and 𝜌𝑛 (𝑛 < 𝑁) is a reduced density operator from 𝜌𝑁.

• Leggett pointed out that so-called “macroscopic quantum 

phenomena” such as superconductivity or superfluidity do not require 

the existence of a high-D state.

• Superfluidity can be explained by a product of identical bosonic 

states of which disconnectivity is obviously 1.

• A superconducting system described by Cooper pairs also shows a 

small value of D.

A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980); J. Phys. 14, R415 (2002)



Disconnectivity

• D quantifies genuine multipartite quantum correlation such as:

• D for 𝜌𝑁 is defined as the largest number 𝑛 that makes 𝛿𝑛 the 

smallest where

and 𝜌𝑛 (𝑛 < 𝑁) is a reduced density operator from 𝜌𝑁.

• Applicable only to certain types of pure states.

A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980); J. Phys. 14, R415 (2002)



Distinguishability-based measure

• For an N-partite superposition state |A>+|B>

• nmin: number of measurements (with limited efficiency 𝛿) 

required to distinguish between |A> and |B>.

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).



Effective size of N-particle superposition state

• Example: the effective size of the flux qubits, as a genuine 

macroscopic superposition, is surprisingly (but not trivially) small

despite the apparent large difference in macroscopic observables with 

billions of electrons. 

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).

Just another “kitten”…



Distinguishability-based measure

• For an N-partite superposition state |A>+|B>

• nmin: number of measurements (with limited efficiency 𝛿) 

required to distinguish between |A> and |B>.

• C does not distinguish between a pure superposition and a 

classical mixture.

• C is decomposition-dependent.

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).



General measure?

• It should be applicable to a wide range of states, not limited 

to a specific type of states.

• It should be able to quantify the degree of a genuine 

superposition against a classical mixture together with its 

effective size factor.



General (and useful) measure?

• It should be applicable to a wide range of states, not limited 

to a specific type of states.

• It should be able to quantify the degree of a genuine 

superposition against a classical mixture together with its 

effective size factor.

• Independent of decomposition of the superposition

• Easy to calculate

• Experimentally measurable (without full tomography)
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2

Double slit experiment
Feynman, Lectures on Physics, Volume 3
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Very good magnifier

Double slit experiment
Feynman, Lectures on Physics, Volume 3



Wigner function of |α>+|-α>

α=2



α=4



α=6



Interference-based general measure for 

bosonic systems

C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011)
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General measure for bosonic systems

• For an arbitrary state, it simultaneously quantifies (1) how 

far-separate the component states of the superposition are 

and (2) the degree of genuine quantum coherence between 

the component states against their classical mixture.

• It can be applied to any harmonic oscillator systems such as 

light fields.

• Independent of the decomposition of the component states: 

easy to calculate.

C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011)

]ˆ)(ˆ[Tr)(  D



General measure for bosonic systems

• is equivalent to the purity decay rate of the state as

for a standard decoherence model (loss for a photonic system).

 Approximately measurable without full tomography (Jeong et al., 

J. Opt. Soc. Am. 2014)

• can be applied to arbitrary spin systems with some 

modifications (C.-Y. Park et al., Phys. Rev. A 94, 052105 (2016)).

C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011)



Macroscopic quantumness I of |α>+|-α>

with increasing α

Wigner function



Macroscopic quantumness I of

Wigner function



Macroscopically quantum?

• Coherent state: 𝐼(| ۧ𝛼 ) = 0 regardless of the value of 𝛼.

• Invariant under passive linear optics operations such as the 

displacement operations and phase shifts.

• Well known states in the “Schrödinger-cat family” with the 

maximum values of “quantum macroscopicity” I, i.e., the 

average photon number of the corresponding state:

 Superposition of coherent states: | ۧ𝛼 + | ۧ−𝛼

 NOON state: 

 GHZ state:

 Hybrid entanglement:  
1

 
2
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0 0n n
N N

H V



General measure for spin systems

• A quantum system is ‘macroscopic’ if there exists መ𝐴 such 

that 

where F is quantum Fisher information and መ𝐴 is an additive 

operator                       .

 F=O(N) for a product state

 F=O(N2) for a GHZ state 

• Applicable to arbitrary spin systems.

• Operational meaning in relation to quantum metrology.

where



General measures

• It should be applicable to a wide range of states, not limited 

to a specific type of states.

• It should be able to quantify the degree of a genuine 

superposition against a classical mixture together with its 

effective size factor.

• [13] corresponds to sensitivity to decoherence while [14] is 

sensitivity to phase shifts.

• For pure states, these two measures become ‘identical’ – the 

maximum variance of an arbitrarily chosen observable A.



General framework for quantum macroscopicity

• Assume     in terms of eigenbasis of observable                            

• δ-coherence: 

• Free-operation: 

• Conditions for a macroscopic coherence measure

 (M1, M2a, M2b): requirements for a monotone

 (M3): convexity

 (M4): requirement for a macroscopicity measure 

B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016)



• When (M1-M4) are applied to quantum macroscopicity 

measure         , the (M2a) criterion is not satisfied.

 could increase under certain free operations

with can increase 

General framework for quantum macroscopicity
B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016)



Question: Are these criteria sufficient?



For given observable                                ,

 Coarse-grained measurement: 

 Quantum state after the measurement: 

 Quantum state disturbance by coarse-grained measurement

where

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

for the Bures distance

and quantum relative entropy

Disturbance-based measure of macroscopic coherence



Disturbance-based measure of macroscopic coherence

• State disturbance after measurement = The amount of macroscopic coherence initially 

contained in the state

Disturbance based measure of macroscopic coherence:

• Quantum state after measurement:

microscopic coherence                         remains

Macroscopic coherence vanishes

(e.g.) Bures distance:

Quantum relative entropy: 

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)



For given observable                                ,

 Coarse-grained measurement: 

 Quantum state after the measurement: 

 Quantum state disturbance by coarse-grained measurement

where

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

satisfies all the conditions (M1) – (M4) for every σ>0.

for the Bures distance

and quantum relative entropy

Disturbance-based measure of macroscopic coherence



• Examples

※ For precise measurement (𝜎 → 0), product states have larger values of M than the GHZ-state

Is a product state                   more ‘macroscopically quantum’ than a GHZ state                    ?

1) 𝑁-particle spin system with 

total spin measurement:

2) Bosonic system with 

quadrature measurement:

Disturbance-based measure of macroscopic coherence

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

  N 10
NN 

 10



• Examples

※ For precise measurement (𝜎 → 0), product states have larger values of M than the GHZ-state

 The criteria of macroscopic coherence by Yadin and Vedral, (M1)-(M4), are insufficient.

Our solution: Take the coarse-graining scale to the classical measurement regime, 𝜎 ≫ 𝑁

 Quantifying the size of a superposition between (classically) distinct states.

1) 𝑁-particle spin system with 

total spin measurement:

2) Bosonic system with 

quadrature measurement:

Disturbance-based measure of macroscopic coherence

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)
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Unification of the coherence and nonclassicality

• Two kinds of quantum properties: 

Nonclassicality of Light

- Old: Roy Gauber et al. in 1960’s

- A quantum state is expressed as a 

distribution over           , the 

eigenstates of the annihilation 

operator

- Identified by negativity in the quasi-

probability function (P function)

- Continuous Variables

Coherence

- New: Martin Plenio et al. in 2014

- Identified by nonzero off-diagonal 

elements of the density matrix

- Discrete Variables

- Based on a resource theory (with ‘free 

states’ and ‘free operations’)
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Unification of the coherence and nonclassicality

• Two kinds of quantum properties: 

Coherence

- Quantum states are expressed as a 

density matrix, for a given basis           

which is called the incoherent basis.

- The state is nonclassical when it cannot 

be expressed as a diagonal state of the 

form                        , implying some 

superposition of incoherent states within 

the system.  

Nonclassicality of Light

- Old: Roy Gauber et al. in 1960’s

- A quantum state is expressed as a 

distribution over           , the 

eigenstates of the annihilation 

operator

- Identified by negativity in the quasi-

probability function (P function)

- Continuous Variables



Unification of the coherence and nonclassicality

• The coherence is quantified in the coherent-state basis: α-coherence

• The α-coherence is zero iff the state is classical (the P function is positive 

definite); the coherence and nonclassicality are identical resources.

• Nonclassicality of light is a form of the coherence in a particular basis.

• Numerical examples show that the α-coherence is consistent with known phy

sics and properties of nonclassical light.

K.-C. Tan, T. Volkoff, H. Kwon, and HJ, Phys. Rev. Lett. 119, 190405 (2017)



Unification of the coherence and nonclassicality

K.-C. Tan, T. Volkoff, H. Kwon, and HJ, Phys. Rev. Lett. 119, 190405 (2017)

• The ‘coherence’ and ‘quantum macroscopicity’ are different quantities 

although they are somehow related. 



Unification of the coherence and nonclassicality

• Linear optical operations (passive linear optics operations and the 

displacement operation) do not increase the α-coherence.

• Nonlinear optical effects are required to increase the α-coherence (which is 

consistent with the fact that nonlinearities are required to generate 

nonclassical light.)

• These observations lead to a resource theory of liner optics 

- Coherent states: free states

- Linear optical operations: free operations

• Resource for what? - We showed that any pure state with negativity in the 

P function (i.e. nonzero α-coherence) is useful for quantum metrology.

K.-C. Tan, T. Volkoff, H. Kwon, and HJ, Phys. Rev. Lett. 119, 190405 (2017)

Ongoing work



Clock–Work Trade-Off Relation for Coherence in Quantum Thermodynamics

H. Kwon, H. Jeong, D. Jennings, B. Yadin, and M. S. Kim, Phys. Rev. Lett. 120, 150602 (2018)

• Thermodynamic coherence

 “Internal” coherence that admits an energetic value in terms of 

thermodynamic work

 “External” coherence that does not have energetic value but that 

may be used as a “clock resource”
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