Various Quantum Properties

The 4th KIAS Workshop on Quantum Information and Thermodynamics

20-22 December 2018

Hyunseok Jeong

Center for Macroscopic Quantum Control Department of Physics and Astronomy Seoul National University

Seoul National University Department of Physics and Astronomy

Nonclassical properties of quantum states

- Bell-type nonlocality
- Nonclassicality based on quasi-probability functions
- Macroscopic superpositions 'quantum macroscopicity'
- Coherence based on off-diagonal elements of the density matrix
- Entanglement, discord, steerability...

Quantum superposition principle

The principle of quantum superposition: Any two states may be superposed to give a new state.

Quantum entanglement

• Quantum superposition of two (or more than two) physical systems (e.g. for systems 1 and 2).

$$\Psi \rangle = |\uparrow\rangle_1 |\downarrow\rangle_2 + |\downarrow\rangle_1 |\uparrow\rangle_2$$

• Such a state cannot be represented by a product of two separate states.

$$|\Psi\rangle \neq |A\rangle_1|B\rangle_2$$

- We then say that the physical systems 1 and 2 are "entangled."
- "Spooky action at a distance" Albert Einstein.

Quantum entanglement

• Quantum superposition of two (or more than two) physical systems (e.g. for systems 1 and 2).

$$\Psi \rangle = |\uparrow\rangle_1 |\downarrow\rangle_2 + |\downarrow\rangle_1 |\uparrow\rangle_2$$

• Such a state cannot be represented by a product of two separate states.

$$|\Psi\rangle \neq |A\rangle_1|B\rangle_2$$

- We then say that the physical systems 1 and 2 are "entangled."
- "Spooky action at a distance" Albert Einstein.

Quantum mechanics vs local realism

- Einstein-Podolsky-Rosen (EPR) paradox (1935): Is quantum mechanics a complete physical theory? [A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).]
- Local realism: *locality* + *realism*

- *Locality*: "Distant objects cannot have direct influence on one another."

- **Realism**: "The results of observations are a consequence of properties carried by physical systems, i.e., an external reality exists independent of observation."

Violation of local realism

- Bell's inequality: an inequality which must be obeyed by any local-realistic theory [J. S. Bell, Physics 1, 195 (1964)].
- Bell's inequality is violated by quantum mechanics, *i.e.*, quantum mechanics is *inconsistent* with local realism. $|C(a,b)+C(a',b)+C(a,b')-C(a',b')| \le 2$

• Loophole-free Bell violations were recently demonstrated [B. Hensen *et al.*, Nature 2005 *etc.*]

John S. Bell

Schrödinger's cat paradox

E. Schrödinger, Naturwissenschaftern. 23 (1935)

The Brussels Journal (29 October 2007)

$$\frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)|Alive\rangle \longrightarrow \frac{1}{\sqrt{2}}(|e\rangle|Alive\rangle + |g\rangle|Dead\rangle)$$

Quantum superposition or entanglement of macroscopically distinguishable states

Classical gun – if we are really living in a *quantum* universe...

Environment

Very good magnifier

Decoherence

[W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003) and references therein]

$$\rho_{a}' = \operatorname{Tr}_{b}[|tot'\rangle\langle tot'|] = \frac{1}{2}(|\psi'\rangle\langle\psi'|+|\varphi'\rangle\langle\varphi'|)_{a}$$

- It is difficult to isolate macroscopic objects from their environment.
- Macroscopic quantum states decohere (lose their quantum properties) faster than microscopic states.

Some examples with microscopic and macroscopic systems (Tegmark, 1993)

3 Decoherence Through Interaction with the Environment

Table 3.2. Some values of the localization rate Λ given by Tegmark (1993). T values given for the case of a dust particle agree well with those of earlier wc (Table 3.1).

	Free electron	10^{-3} cm	Bowling b	all
		dust particle	$ cm^{-2}s^{-1} $	
300 K air at 1 atm pressure	10 ³¹	1037	1045	
300 K air in lab vacuum	1018	10 ²³	1031	
Sunlight (on earth)	10 ¹	10 ²⁰	1028	4
300 K photons	10 ⁰	1019	1027	t. ≈
Background radioactivity	10-4	10 ¹⁵	1023	$\int X - X' ^2$
Quantum gravity	10 ⁻²⁵	1010	1022	
GRW effect	10^{-7}	10 ⁹	1021	
Cosmic background radiation	10 ⁻¹⁰	10^{6}	1017	
Solar neutrinos	10^{-15}	10 ¹	1013	

A tiny dust particle of the size of a virus (10^{-5} cm), scattering of air molecules leads to a decoherence time scale of the order of 10^{-13} s.

Macroscopic quantum interference

- Superconducting quantum interference device (SQUID) [J. R. Friedman *et al.*, *Nature* 406, 43 (2000)]
- Interference with C60 molecules

[M. Arndt et al., Nature 401, 680 (1999)]

• *"Schrödinger cat" states of light* [A. Ourjoumtsev *et al., Nature* 448, 784 (2007)]

(Interference with C60 molecules, *Nature* 401, 680, 1999)

Glauber–Sudarshan P representation

Coherent states are most classical among all pure states: an analogy of *classical* point-particles in the quantum phase space [Schrödinger, *Naturwissenschaften* 14 (1926)] and most robust against decoherence.

Glauber–Sudarshan P representation

• **Coherent state:**
$$|\alpha\rangle = e^{-|\alpha|^2/2} \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle$$

$$\hat{\rho} = \int P(\alpha) |\alpha\rangle \langle \alpha | d^2 \alpha, \qquad d^2 \alpha \equiv d \operatorname{Re}(\alpha) d \operatorname{Im}(\alpha).$$
$$\chi_N(\beta) = \operatorname{tr}(\hat{\rho} \cdot e^{i\beta \cdot \hat{a}^{\dagger}} e^{i\beta^* \cdot \hat{a}})$$
$$P(\alpha) = \frac{1}{\pi^2} \int \chi_N(\beta) e^{-\beta \alpha^* + \beta^* \alpha} d^2 \beta.$$

Q function (Husimi-Q distribution)

$$\begin{split} Q(\alpha) &= \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle = \frac{1}{\pi} \mathrm{Tr}(|0\rangle \langle 0 | \rho(-\alpha)) \ , \\ \rho(-\alpha) &= D(-\alpha) \rho D(\alpha) \ . \end{split}$$

(Left) Five-photon coherent state and (Right) Five-photon Fock state

Picture from Haroche group's website

Q function (Husimi-Q distribution)

$$Q(\alpha) = \frac{1}{\pi} \langle \alpha | \rho | \alpha \rangle = \frac{1}{\pi} \mathrm{Tr}(|0\rangle \langle 0 | \rho(-\alpha)) ,$$

$$\rho(-\alpha) = D(-\alpha)\rho D(\alpha)$$
.

Limitation of Q function

(Left) Q functions for a 5 photon phase Schrödinger cat and (Right) a statistical mixutre of two five photons coherent states with opposite phases.

$$W(\beta) = \frac{1}{\pi^2} \int \exp[\xi^* \beta - \xi \beta^*] C(\xi) d^2 \xi$$
$$\hat{D}(\xi) = \operatorname{Tr}[\hat{D}(\xi)\hat{\rho}] \qquad \hat{D}(\xi) = e^{\xi \hat{a}^* - \xi^* \hat{a}}$$
$$\hat{\beta} = x + ip$$

- The Wigner function is a quasi-probability distribution: an analogy of the classical probability distribution in the quantum phase space.
- Negative values in the Wigner function are a definite sign of non-classicality.

Picture from Lvovsky group's website

Picture from Lvovsky group's website

Picture from Lvovsky group's website

• n=1 Fock state

• n=2 Fock state

• n=3 Fock state

• Schrödinger cat state (α =1.5+1.5i)

$$|cat
angle = N(|a
angle + |-a
angle)$$

Time evolution

• Coherent state

Time evolution

• Superposition of n=0 and n=1 Fock states

Schrödinger cat states in optical fields

Schrödinger cat states:

$$|cat\rangle = N(|\alpha\rangle + e^{i\varphi}|-\alpha\rangle)$$
 $|\alpha\rangle > 1$

$$\hat{X} = \hat{a} + \hat{a}^+$$

$$\hat{P} = -i(\hat{a} - \hat{a}^+)$$

- Coherent state: $|\alpha\rangle = e^{-|\alpha|^{2}/2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} |n\rangle$ -1.6
 1.6 \otimes $\sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}} |n\rangle$
- ✓ Coherent states are most classical among all pure states: an analogy of *classical* point-particles in the quantum phase space [Schrödinger, *Naturwissenschaften* 14 (1926)] and most robust against decoherence.
- ✓ The two coherent states $| \alpha >$ and $| -\alpha >$ are "classically" (or macroscopically) distinguishable for $\alpha >>1$, *i.e.*, they can be well discriminated by a homodyne measurement (HD) with *limited* efficiency.

(For 70% of HD efficiency: $D\approx99.7\%$ for $\alpha=1.6$ and D>99.9% for $\alpha=2.0$.)

$$\beta = x + ip$$

- The Wigner function is a quasi-probability distribution: an analogy of the classical probability distribution in the quantum phase space.
- Negative values in the Wigner function are a definite sign of non-classicality.

Generating a Schrödinger cat state using a twophoton state and homodyne detection

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

• A two-photon state can be used to generate a Schrodinger cat state of $\alpha = 1.6$ with F = 99%.

Experimental setup

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

Experiment: n=2, $\alpha = 1.6$, r=0.4, $\varepsilon = 0.1$, 7.5% of success probability.

Homodyne efficiency: about 70%

Fidelity of the two photon sate: about 55%

Experimental Wigner function: Schrödinger cat state

$$|cat\rangle = N(|\alpha\rangle + e^{i\varphi}|-\alpha\rangle)$$

 $\begin{vmatrix} \hat{X} = \hat{a} + \hat{a}^+ \\ \hat{P} = -i(\hat{a} - \hat{a}^+) \end{vmatrix}$

Nonclassical properties of quantum states

- Bell-type nonlocality
- Nonclassicality based on quasi-probability functions
- Macroscopic superpositions 'quantum macroscopicity'
- Coherence based on off-diagonal elements of the density matrix
- Entanglement, discord, steerability...

Nonclassical properties of quantum states

- Bell-type nonlocality
- Nonclassicality based on quasi-probability functions
- Macroscopic superpositions 'quantum macroscopicity'
- Coherence based on off-diagonal elements of the density matrix
- Entanglement, discord, steerability...

Macroscopic *and* quantum?

The Brussels Journal (29 October 2007)

E. Schrödinger, Naturwissenschaftern. 23 (1935)

Interference of large molecules

https://www.univie.ac.at/qfp/research/matterwave/c60/

(Interference with C60 molecules, *Nature* 401, 680, 1999)

• Interference with C60 molecules [M. Arndt et al., Nature 401, 680 (1999)]

Superposition of supercurrents

Copyright: C. Kohstall and R. Grimm, University of Innsbruck

• Quantum superposition of left- and right- circulating supercurrents [R. Friedman *et al.*, *Nature* 406, 43 (2000)]

Schrödinger cat states of light

A. Ourjoumtsev, H. Jeong, R. Tualle-Brouri and Ph. Grangier, Nature 448, 784 (2007)

Wigner function

• And many more... (atomic systems, mechanical systems *etc...*)

Evidence of quantum interference

Macroscopic quantum phenomena

- Superconductivity
- Superfluidity
- Bose-Einstein Condensates

Macroscopic quantum phenomena

- Superconductivity
- Superfluidity
- Bose-Einstein Condensates

• However, these are *not* macroscopic superpositions nor macroscopic entanglement.

Can we quantify 'Schrödinger's-cattiness' or 'macroscopic quantumness'?

"What is the correct measure of 'Schrödinger's-cattiness'? Ideally, one would like a quantitative measure which corresponds to our intuitive sense; I shall attempt one below, but would emphasize that the choice between this and a number of similar and perhaps equally plausible definitions is, with one important exception (see below), very much a matter of personal taste, and that I very much doubt that 50 years from now anything of importance will be seen to have hung on it."

(A. J. Leggett, J. Phys.: Condens. Matter 14 (2002) R415–R451)

Previous studies

- Number of effective particles that involve the superposition (e.g. Leggett (1980); Dur, Simon and Cirac, PRL 2002)
- "Distance" or "distinguishability" between the component states (e.g. Bjork and Mana, J. Opt. B 2004; Korsbakken *et al.*, PRA 2007)
 - [3] A.J. Leggett, J. Phys.: Condens. Matter 14 (2002) R415.
 - [4] A.J. Leggett, Prog. Theor. Phys. Suppl. 69 (1980) 80.
 - [5] W. Dür, C. Simon, J.I. Cirac, Phys. Rev. Lett. 89 (2002) 210402.
 - [6] A. Shimizu, T. Miyadera, Phys. Rev. Lett. 89 (2002) 270403.
 - [7] G. Björk, P.G.L. Mana, J. Opt. B: Quantum Semiclassical Opt. 6 (2004) 429.
 - [8] A. Shimizu, T. Morimae, Phys. Rev. Lett. 95 (2005) 090401.
 - [9] E.G. Cavalcanti, M.D. Reid, Phys. Rev. Lett. 97 (2006) 170405.
 - [10] J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys. Rev. A 75 (2007) 042106.
 - [11] F. Marquardt, B. Abel, J. von Delft, Phys. Rev. A 78 (2008) 012109.
 - [12] J.I. Korsbakken, F.K. Wilhelm, K.B. Whaleyl, Europhys. Lett. 89 (2010) 30003.
 - [13] C.-W. Lee, H. Jeong, Phys. Rev. Lett. 106 (2011) 220401.
 - [14] F. Fröwis, W. Dür, New J. Phys. 14 (2012) 093039.
 - [15] S. Nimmrichter, K. Hornberger, Phys. Rev. Lett. 110 (2013) 160403.
 - [16] P. Sekatski, N. Sangouard, N. Gisin, Phys. Rev. A 89 (2014) 012116.

References taken from

H. Jeong, M. Kang and H. Kwon, Special Issue on Macroscopic Quantumness, Optics Communications 337, 12 (2015) (Review Article).

Previous studies

- Number of effective particles that involve the superposition (e.g. Leggett (1980); Dur, Simon and Cirac, PRL 2002)
- "Distance" or "distinguishability" between the component states (e.g. Bjork and Mana, J. Opt. B 2004; Korsbakken *et al.*, PRA 2007)

Measures for macroscopic superpositions and quantum states

- A. Summary of measures
 - 1. Leggett (1980, 2002)
 - 2. Dür et al. (2002)
 - 3. Shimizu and Miyadera (2002) and followups
 - 4. Björk and Mana (2004)
 - 5. Cavalcanti and Reid (2006, 2008)
 - 6. Korsbakken et al. (2007)
 - 7. Marquardt et al. (2008)
 - 8. Lee and Jeong (2011) and Park *et al.* (2016)
 - 9. Fröwis and Dür (2012b) and followups
 - 10. Nimmrichter and Hornberger (2013)
 - 11. Sekatski et al. (2014c, 2017b)
 - 12. Laghaout et al. (2015)
 - 13. Yadin and Vedral (2015)
 - 14. Kwon et al. (2017)
- F. Fröwis et al., Rev. Mod. Phys. 90, 025004 (2018)

Disconnectivity

A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980); J. Phys. 14, R415 (2002)

• *D* quantifies genuine multipartite quantum correlation such as:

$$\langle \phi \rangle^{\otimes N} + | \phi^{\perp} \rangle^{\otimes N}$$

• *D* for ρ_N is defined as the largest number *n* that makes δ_n the smallest where

$$\delta_n = \frac{S_n}{\min_m (S_m + S_{n-m})} \qquad S_n = -\operatorname{Tr}[\rho_n \ln \rho_n]$$

and ρ_n (n < N) is a reduced density operator from ρ_N .

- Leggett pointed out that so-called "macroscopic quantum phenomena" such as superconductivity or superfluidity do not require the existence of a high-*D* state.
- Superfluidity can be explained by a product of identical bosonic states of which disconnectivity is obviously 1.
- A superconducting system described by Cooper pairs also shows a small value of *D*.

Disconnectivity

A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980); J. Phys. 14, R415 (2002)

• *D* quantifies genuine multipartite quantum correlation such as:

$$|\phi\rangle^{\otimes N} + |\phi^{\perp}\rangle^{\otimes N}$$

• *D* for ρ_N is defined as the largest number *n* that makes δ_n the smallest where

$$\delta_n = \frac{S_n}{\min_m (S_m + S_{n-m})} \qquad S_n = -\operatorname{Tr}[\rho_n \ln \rho_n]$$

and ρ_n (n < N) is a reduced density operator from ρ_N .

• Applicable only to certain types of pure states.

Distinguishability-based measure

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).

- For an *N*-partite superposition state |A>+|B>
- n_{min} : number of measurements (with limited efficiency δ) required to distinguish between |A> and |B>.

$$C_{\delta}(|\psi_N\rangle) = \frac{N}{n_{\min}}$$

Effective size of N-particle superposition state

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).

• Example: the effective size of the flux qubits, as a genuine macroscopic superposition, is surprisingly (but not trivially) *small* despite the apparent large difference in macroscopic observables with billions of electrons.

Just another "kitten"...

Distinguishability-based measure

J.I. Korsbakken, K.B. Whaley, J. Dubois, J.I. Cirac, Phys.Rev.A75, 042106 (2007).

- For an *N*-partite superposition state |A>+|B>
- n_{min} : number of measurements (with limited efficiency δ) required to distinguish between |A> and |B>.

$$C_{\delta}(|\psi_N\rangle) = \frac{N}{n_{\min}}$$

- *C* does not distinguish between a pure superposition and a classical mixture.
- *C* is decomposition-dependent.

General measure?

- It should be applicable to a wide range of states, not limited to a specific type of states.
- It should be able to quantify the degree of a genuine superposition against a classical mixture together with its effective size factor.

General (and useful) measure?

- It should be applicable to a wide range of states, not limited to a specific type of states.
- It should be able to quantify the degree of a genuine superposition against a classical mixture together with its effective size factor.
- Independent of decomposition of the superposition
- *Easy to calculate*
- *Experimentally measurable (without full tomography)*

Double slit experiment Feynman, *Lectures on Physics*, *Volume 3*

Double slit experiment Feynman, *Lectures on Physics*, *Volume 3*

Interference-based general measure for bosonic systems

C.-W. Lee and H. Jeong, Phys. Rev. Lett. 106, 220401 (2011)

$$\mathcal{I}(\rho) \sim \int d^2 \xi \left(\xi_r^2 + \xi_i^2\right) \left|\chi\left(\xi\right)\right|^2$$

$$\chi(\xi) = \operatorname{Tr}[\hat{D}(\xi)\hat{
ho}]$$

$$\hat{D}(\xi) = e^{\xi \hat{a}^{+} - \xi^{*} \hat{a}}$$
$$\mathcal{W}(\beta) = \frac{1}{\pi^{2}} \int \exp\left[\xi^{*} \beta - \xi \beta^{*}\right] \chi(\xi) d^{2} \xi$$

General measure for bosonic systems C.-W. Lee and H. Jeong, *Phys. Rev. Lett.* 106, 220401 (2011)

$$\int d^2 \xi \left(\xi_r^2 + \xi_i^2 \right) \left| \chi \left(\xi \right) \right|^2$$
$$\chi(\xi) = \operatorname{Tr}[\hat{D}(\xi)\hat{\rho}]$$

- For an *arbitrary* state, it simultaneously quantifies (1) how far-separate the component states of the superposition are and (2) the degree of genuine quantum coherence between the component states against their classical mixture.
- It can be applied to *any* harmonic oscillator systems such as light fields.
- Independent of the decomposition of the component states: easy to calculate.

General measure for bosonic systems C.-W. Lee and H. Jeong, *Phys. Rev. Lett.* 106, 220401 (2011)

$$\mathcal{I}(\rho) = \frac{1}{2\pi^M} \int d^2 \boldsymbol{\xi} \sum_{m=1}^M \left[|\boldsymbol{\xi}_m|^2 - 1 \right] |\boldsymbol{\chi}(\boldsymbol{\xi})|^2$$
$$= \frac{\pi^M}{2} \int d^2 \boldsymbol{\alpha} W(\boldsymbol{\alpha}) \sum_{m=1}^M \left[-\frac{\partial^2}{\partial \alpha_m \partial \alpha_m^*} - 1 \right] W(\boldsymbol{\alpha})$$

• $\mathcal{I}(\rho)$ is equivalent to the purity decay rate of the state as

$$\mathcal{I}(\rho) = -\frac{1}{2} \frac{d\mathcal{P}(\rho)}{d\tau}$$

where
$$\mathcal{P}(\rho) = \text{Tr}[\rho^2]$$

for a standard decoherence model (loss for a photonic system).

- Approximately measurable without full tomography (Jeong *et al.*, J. Opt. Soc. Am. 2014)
- *I*(ρ) can be applied to arbitrary spin systems with some modifications (C.-Y. Park *et al.*, Phys. Rev. A 94, 052105 (2016)).

Macroscopic quantumness $\angle of |\alpha > + |-\alpha >$ with increasing α

Wigner function

Macroscopic quantumness $\angle of$ $\rho_{scs} = N_{\Gamma}[|\alpha\rangle\langle\alpha| + |-\alpha\rangle\langle-\alpha| + \Gamma(|\alpha\rangle\langle-\alpha| + |-\alpha\rangle\langle\alpha|)]$

Macroscopically quantum?

- Coherent state: $I(|\alpha\rangle) = 0$ regardless of the value of α .
- Invariant under passive linear optics operations such as the displacement operations and phase shifts.
- Well known states in the "Schrödinger-cat family" with the maximum values of "quantum macroscopicity" *I*, i.e., the average photon number of the corresponding state:

✓ Superposition of coherent states: $|\alpha\rangle + |-\alpha\rangle$

- ✓ NOON state: $|n\rangle|0\rangle+|0\rangle|n\rangle$
- $\checkmark \text{ GHZ state: } |H\rangle^{N} + |V\rangle^{N}$
- ✓ Hybrid entanglement: $\frac{1}{\sqrt{2}} (|H\rangle |\alpha\rangle + |V\rangle |-\alpha\rangle)$

General measure for spin systems F. Fröwis, W. Dür, New J. Phys. 14 (2012) 093039

• A quantum system is 'macroscopic' *if* there exists \hat{A} such that

$$\max_{\hat{A} \in \mathcal{A}} F(\rho, \hat{A}) = O(N^2)$$

where *F* is quantum Fisher information and \hat{A} is an additive operator $A = \sum_{i=1}^{N} A^{(i)}$.

$$F(\rho, \hat{A}) = 2\sum_{i,j} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} \left| \langle i | \hat{A} | j \rangle \right|^2, \text{ where } \rho = \sum_i \lambda_i \left| i \rangle \left\langle i \right|$$

✓ F = O(N) for a product state $|\psi^-\rangle^{\otimes N/2}$ ✓ $F = O(N^2)$ for a GHZ state $|\text{GHZ}_L\rangle = \frac{1}{\sqrt{2}} \left(|0_L\rangle^{\otimes N} + |1_L\rangle^{\otimes N} \right)$

- Applicable to arbitrary spin systems.
- Operational meaning in relation to quantum metrology.

General measures

- It should be applicable to a wide range of states, not limited to a specific type of states.
- It should be able to quantify the degree of a genuine superposition against a classical mixture together with its effective size factor.

[13] C.-W. Lee, H. Jeong, Phys. Rev. Lett. 106 (2011) 220401.[14] F. Fröwis, W. Dür, New J. Phys. 14 (2012) 093039.

- [13] corresponds to sensitivity to decoherence while [14] is sensitivity to phase shifts.
- For pure states, these two measures become 'identical' the *maximum variance* of an arbitrarily chosen observable *A*.

General framework for quantum macroscopicity

B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016)

- Assume ρ in terms of eigenbasis $|i\rangle$ of observable $A = \sum_{i} a_i |i\rangle\langle i|$
- δ -coherence: $\rho^{(\delta)} := \sum_{i,j:a_i-a_j=\delta} \rho_{i,j} |i\rangle\langle j|$
- Free-operation: $\mathcal{E}(\rho)^{(\delta)} = \mathcal{E}(\rho^{(\delta)}) \ \forall \delta \in \Delta$
- Conditions for a macroscopic coherence measure $M(\rho)$

(M1): $M(\rho) \ge 0$ and $M(\rho) = 0 \iff \rho = \rho^{(0)}$. (M2a): $M(\rho) \ge M(\mathcal{E}(\rho))$ for a trace-preserving free operation \mathcal{E} . (M2b): $M(\rho) \ge \sum_{\alpha} p_{\alpha} M(\mathcal{E}_{\alpha}(\rho)/p_{\alpha})$, where $\operatorname{Tr}\mathcal{E}_{\alpha}(\rho) = p_{\alpha}$. (M3): $M(\sum_{i} p_{i}\rho_{i}) \le \sum_{i} p_{i}M(\rho_{i})$. (M4): $M(|i\rangle + |j\rangle) > M(|k\rangle + |l\rangle)$, when $|a_{i} - a_{j}| > |a_{k} - a_{l}|$.

- \checkmark (M1, M2a, M2b): requirements for a monotone
- ✓ (M3): convexity
- ✓ (M4): requirement for a *macroscopicity* measure

General framework for quantum macroscopicity

B. Yadin and V. Vedral, Phys. Rev. A 93, 022122 (2016)

• When (M1-M4) are applied to quantum macroscopicity measure $\mathcal{I}(\rho)$, the (M2a) criterion is not satisfied.

> $\mathcal{I}(\rho)$ could increase under certain free operations $\rho \otimes \sigma \to \rho \otimes \tilde{\sigma}$ with $\mathrm{Tr}\sigma^2 < \mathrm{Tr}\tilde{\sigma}^2$ can increase $\mathcal{I}(\rho)$
Question: Are these criteria sufficient?

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

For given observable $\hat{A} = \sum_{i} a_{i} |i\rangle \langle i|$,

✓ Coarse-grained measurement: $\hat{Q}_x^{\sigma} = \sum_i \sqrt{q_i^{\sigma}(x)} |i\rangle \langle i|$ where $q_i^{\sigma}(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(a_i - x)^2}{2\sigma^2}}$ ✓ Quantum state after the measurement: $\Phi_{\sigma}(\rho) = \int_{-\infty}^{\infty} \hat{Q}_x^{\sigma} \rho \hat{Q}_x^{\sigma} dx$

✓ Quantum state disturbance by coarse-grained measurement

 $M_{\sigma}(\rho) := D(\rho, \Phi_{\sigma}(\rho))$

for the Bures distance $D_B(\rho, \tau) = 2 - 2\sqrt{\mathcal{F}(\rho, \tau)}$ and quantum relative entropy $D_R(\rho, \tau) = S(\rho||\tau)$

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

• Quantum state after measurement:

$$|k\rangle + |l\rangle \xrightarrow{\text{Measurement}} |k\rangle \langle k| + |l\rangle \langle l| + e^{-\frac{(a_k - a_l)^2}{8\sigma^2}} (|k\rangle \langle l| + |l\rangle \langle k|)$$

$$\begin{split} [\Phi_{\sigma}(\hat{\rho})]_{ij} &= \int_{-\infty}^{\infty} \hat{Q}_{x}^{\sigma} \hat{\rho} \hat{Q}_{x}^{\sigma} & \text{Macroscopic coherence } |a_{i} - a_{j}| \gg \sigma \text{ vanishes} \\ &= \sum_{i,j} e^{-\frac{(a_{i} - a_{j})^{2}}{8\sigma^{2}}} \rho_{ij} & \text{microscopic coherence } |a_{i} - a_{j}| \ll \sigma \text{ remains} \end{split}$$

- State disturbance after measurement = The amount of macroscopic coherence initially contained in the state
 - ✓ Disturbance based measure of macroscopic coherence:

$$\mathcal{M}_{\sigma}(\hat{
ho}) = D(\hat{
ho}, \Phi_{\sigma}(\hat{
ho}))$$

(e.g.) Bures distance: $D_B(\hat{\rho}, \hat{\tau}) = 2 - 2\sqrt{\mathcal{F}(\hat{\rho}, \hat{\tau})}$

Quantum relative entropy: $S(\hat{\rho}||\hat{\tau}) = \text{Tr}\hat{\rho}\log\hat{\rho} - \text{Tr}\hat{\rho}\log\hat{\tau}$

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

For given observable $\hat{A} = \sum_{i} a_{i} |i\rangle \langle i|$,

✓ Coarse-grained measurement: $\hat{Q}_x^{\sigma} = \sum_i \sqrt{q_i^{\sigma}(x)} |i\rangle \langle i|$ where $q_i^{\sigma}(x) \coloneqq \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(a_i - x)^2}{2\sigma^2}}$ ✓ Quantum state after the measurement: $\Phi_{\sigma}(\rho) = \int_{-\infty}^{\infty} \hat{Q}_x^{\sigma} \rho \hat{Q}_x^{\sigma} dx$

✓ Quantum state disturbance by coarse-grained measurement

 $M_{\sigma}(\rho) := D(\rho, \Phi_{\sigma}(\rho))$

for the Bures distance $D_B(\rho, \tau) = 2 - 2\sqrt{\mathcal{F}(\rho, \tau)}$

and quantum relative entropy $D_R(\rho, \tau) = S(\rho || \tau)$

satisfies all the conditions (M1) – (M4) for every $\sigma > 0$.

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

• Examples

※ For precise measurement ($\sigma \rightarrow 0$), product states have larger values of *M* than the GHZ-state Is a product state $(0) + |1\rangle^{\otimes N}$ more 'macroscopically quantum' than a GHZ state $|0\rangle^{\otimes N} + |1\rangle^{\otimes N}$?

H. Kwon, C.-Y. Park, K. C. Tan, H. Jeong, New J. Physics 19, 043024 (2017)

• Examples

※ For precise measurement (σ → 0), product states have larger values of *M* than the GHZ-state → *The criteria of macroscopic coherence by Yadin and Vedral, (M1)-(M4), are insufficient*.

 \checkmark Our solution: Take the coarse-graining scale to the classical measurement regime, $\sigma \gg \sqrt{N}$

 \rightarrow Quantifying the size of a superposition between (classically) distinct states.

• Two kinds of quantum properties:

Nonclassicality of Light

- Old: Roy Gauber et al. in 1960's
- A quantum state is expressed as a distribution over $\{|\alpha\rangle\}$, the eigenstates of the annihilation operator

 $\rho = \int d^2 \alpha P(\alpha) |\alpha\rangle \langle \alpha |$

- Identified by negativity in the quasiprobability function (P function)
- Continuous Variables

Coherence

- New: Martin Plenio et al. in 2014
- Identified by nonzero off-diagonal elements of the density matrix
- Discrete Variables
- Based on a resource theory (with 'free states' and 'free operations')

• Two kinds of quantum properties:

Nonclassicality of Light

- Old: Roy Gauber et al. in 1960's
- A quantum state is expressed as a distribution over $\{|\alpha\rangle\}$, the eigenstates of the annihilation operator

 $\rho = \int d^2 \alpha P(\alpha) |\alpha\rangle \langle \alpha |$

- Identified by negativity in the quasiprobability function (P function)
- Continuous Variables

Coherence

- Quantum states are expressed as a density matrix, for a given basis $\{|i\rangle\}$ which is called the incoherent basis.

- The state is nonclassical when it cannot be expressed as a diagonal state of the form $\delta = \sum_i \delta_i |i\rangle \langle i|$, implying some superposition of incoherent states within the system.

- The coherence is quantified in the coherent-state basis: α -coherence
- The α -coherence is zero iff the state is classical (the P function is positive definite); the coherence and nonclassicality are identical resources.
- Nonclassicality of light is a form of the coherence in a particular basis.
- Numerical examples show that the α-coherence is consistent with known phy sics and properties of nonclassical light.

FIG. 1. α -coherence for photonic states. (a) Even(solid line) and odd(dotted line) cat states $|\alpha\rangle \pm |-\alpha\rangle$, (b) Fock states $|n\rangle$, and (c) squeezed states $S(\xi) |0\rangle$ are compared. For cat states, α -coherence approaches to log 2, which is the maximum coherence for qubit states when α approaches infinity. α -coherence for Fock states and squeezed states increases as a photon number n and squeezing parameter ξ increase.

• The 'coherence' and 'quantum macroscopicity' are different quantities although they are somehow related.

- Linear optical operations (passive linear optics operations and the displacement operation) do not increase the α-coherence.
- Nonlinear optical effects are required to increase the α-coherence (which is consistent with the fact that nonlinearities are required to generate nonclassical light.)
- These observations lead to a resource theory of liner optics
 - Coherent states: free states

Ongoing work

- Linear optical operations: free operations
- Resource for what? We showed that any pure state with negativity in the *P* function (i.e. nonzero α-coherence) is useful for quantum metrology.

Clock–Work Trade-Off Relation for Coherence in Quantum Thermodynamics

H. Kwon, H. Jeong, D. Jennings, B. Yadin, and M. S. Kim, Phys. Rev. Lett. 120, 150602 (2018)

- Thermodynamic coherence
 - "Internal" coherence that admits an energetic value in terms of thermodynamic work
 - "External" coherence that does not have energetic value but that may be used as a "clock resource"

THANK YOU