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Group study: Linear response theory

Project 1: Plasmon dispersion

Consider the density response to a scalar potential vext that couples linearly to the
density ρ̂. Then the external perturbation is given by

V̂ext(t) =

∫
dx ρ̂(x, t)vext(x, t).

Up to first order in V̂ext, the density-density response function is given by

δ 〈ρ̂(x, t)〉 =

∫
dx′

∫
dt′χ(x, t,x′, t′)vext(x

′, t′),

where δ 〈ρ̂(x, t)〉 = 〈ρ̂(x, t)〉ext − 〈ρ̂(x, t)〉 and

ih̄χ(x, t,x′, t′) = Θ(t− t′)
〈
[ρ̂(x, t), ρ̂(x′, t′)]

〉
.

1. Noninteracting response function: Derivation

Consider a homogeneous noninteracting electron gas in d dimensions.

(a) Show that

ih̄χ0(q, t) =
Θ(t)

V

∑
k,σ

∑
k′,σ′

〈[
â†k′−q,σ′ âk′,σ′e

i(ωk′−q−ωk′ )t, â†k+q,σâk,σ

]〉
=

Θ(t)

V

∑
k,σ

〈
â†k,σâk,σ − â

†
k+q,σâk+q,σ

〉
ei(ωk−ωk+q)t.

(b) After Fourier transformation with respect to time, obtain

χ0(q, ω) = gs

∫
ddk

(2π)d
fk − fk+q

h̄ω + εk − εk+q + iη
,

where fk =
[
eβ(εk−µ) + 1

]−1
is the Fermi distribution function, gs = 2 is the spin

degeneracy factor, and η is a positive infinitesimal number.

(c) Explain the reason why η is necessary, and discuss the relation between causality
and analytic properties of the response function.

(d) From now on, assume that the energy spectrum is isotropic, εk = ε|k|. Show
that the density of states (per unit volume) at the Fermi energy εF is given by

N0 ≡ gs

∫
ddk

(2π)d
δ(εk − εF) = gs

Ωd

(2π)d
kd−1

F

h̄vF

where kF is the Fermi wave vector, vF is the Fermi velocity and Ωd =
∫
dΩd is the

angular part of the d-dimensional integral. What is Ωd for d = 1, 2, 3?
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(e) Show that we can rearrange the equation in (b) as

χ0(q, ω) = −gs

∫
ddk

(2π)d
fk

[
1

εk+q − εk + h̄ω+
+

1

εk+q − εk − h̄ω+

]
= − N0

q/kF

[
Ψd

(
q

kF
,
ω+

vFq

)
+ Ψd

(
q

kF
,− ω

+

vFq

)]
where ω+ = ω + iη. The function Ψd(k̃,±ω̃) is defined by

Ψd(q̃,±ω̃+) =

∫ ∞
0

k̃d−1dk̃fk̃

∫
dΩd

Ωd

1

∆q̃(k̃)± ω̃+
,

where k̃ = k/kF, q̃ = q/kF, ω̃ = ω/vFq and ∆q̃(k̃) =
εk+q−εk
h̄vFq

. Here ω̃+ = ω̃ + iη̃
where η̃ is a (dimensionless) positive infinitesimal number.

∗ Further reading: Giuliani and Vignale, Ch.4.3 and Ch. 4.4.

2. Noninteracting response function: Analytic form

Consider a 3D electron gas with εk = h̄2k2

2m at zero temperature. Let us define

−χ0(q, ω)/N0 ≡ g
(
q
kF
, ω
vFq

)
.

(a) Show that

Ψ3(q̃,±ω̃+) =
1

2

∫ 1

0
k̃2dk̃

∫ 1

−1
d cos θ

1

k̃ cos θ + q̃
2 ± ω̃+

.

(b) Show that
1

2

∫ 1

0
x2dx

∫ 1

−1
dµ

1

xµ+ z
= zF (z)

where F (z) is the Lindhard function defined by

F (z) =
1

2
− z2 − 1

4z
ln

(
z + 1

z − 1

)
.

(c) Assuming real z, draw F (z) and ∂F (z)
∂z numerically as a function of z for 0 < z < 2.

∗ Note that ∂F (z)
∂z is singular at z = 1 (or q = 2kF with ω = 0), which has some

physical implications such as the Friedel oscillations.

(d) Prove that for real x,

Arg(x+ iη) = π [1−Θ(x)] ,

Im

[
ln
x+ 1 + iη

x− 1 + iη

]
= −πΘ(1− x2),

where η is a positive infinitesimal number, thus we have

F (x± iη) =
1

2
− x2 − 1

4x

[
ln

∣∣∣∣x+ 1

x− 1

∣∣∣∣∓ iπΘ(1− x2)

]
.



(e) Using the results of (b) and (c), show that Ψ3(q̃,±ω̃+) in (a) is reduced to

Ψ3(q̃,±ω̃+) = ν±F (ν±)± iπ
ν2
± − 1

4
Θ(1− ν2

±),

where ν± = q̃
2 ± ω̃.

(f) Show that finally, we have

g (q̃, ω̃) =
1

2
−
ν2

+ − 1

4q̃
ln

∣∣∣∣ν+ + 1

ν+ − 1

∣∣∣∣− ν2
− − 1

4q̃
ln

∣∣∣∣ν− + 1

ν− − 1

∣∣∣∣
+ i

π

4q̃

[
(ν2

+ − 1)Θ(1− ν2
+)− (ν2

− − 1)Θ(1− ν2
−)
]
.

∗ This is the main expression of the noninteracting response function of 3D electron
gas. This will be used to calculate the interacting response function and plasmon
dispersion, and more.

(g) Draw −Im [χ0(q, ω)/N0] map for 0 < q/kF < 3 and 0 < h̄ω/εF < 3.

(h) In (g), there is a region within which Im [χ0(q, ω)] is non-zero, which is called
the electron-hole continuum. Take the imaginary part of the equation in Prob. 1(b)

using the relation Im
[

1
x+iη

]
= −πδ(x), and find the boundary of the electron-

hole continuum. Explain that the electron-hole continuum is directly related to the
electron-hole pair excitations.

∗ Further reading: Giuliani and Vignale, Ch.4.4.

3. Noninteracting response function: Asymptotic form

Consider a 3D electron gas with εk = h̄2k2

2m at zero temperature, as in Prob. 2.

(a) In the static (ω → 0) limit, show that

g (q̃, ω̃ → 0) ≈ F
(
q̃

2

)
+ i

π

2
ω̃Θ

(
1− q̃

2

)
q̃→0−→ 1− q̃2

12
+ i

π

2
ω̃.

∗ This expression can be used for the static screening.

(b) In the long wavelength (|q| → 0) limit, show that

g (q̃ → 0, ω̃ →∞) ≈ − 1

3ω̃2
− 1

5ω̃4
.

∗ This expression will be used for the long wavelength plasmon dispersion.

(c) Find the plasmon dispersion in the long wavelength limit for the electron gas
in 3D. (You can define the Thomas-Fermi wave vector qTF in 3D, and express the
q-corrections with q/qTF.)

∗ Further reading: Giuliani and Vignale, Ch.4.4.3 and Ch.5.3.3.

4. Plasmon dispersion: Numerical calculation

The frequency and the lifetime of collective modes are determined by the poles of the
retarded density correlation function. In the random phase approximation (RPA),
χRPA(q, ω) = χ0(q, ω)/εRPA(q, ω) and the Lindhard function χ0(q, ω) has no poles



(but only a branch cut along the real axis). Thus the poles of χRPA(q, ω) arises from
the vanishing of the dielectric function εRPA(q, ω) = 0.

(a) In a 3D electron gas, the rs parameter, which plays a role of the interaction
coupling constant, is defined from 4

3(rsaB)3n = 1 where n is the electron density
and aB is the Bohr radius with a characteristic length scale rsaB. For rs = 2
and q = 0.2kF, draw the real and imaginary parts of the dielectric function obtained
within the RPA, εRPA(q, ω) = 1−vC(q)χ0(q, ω) as a function of ω for 0 < h̄ω/εF < 2.

(b) For rs = 2, draw the plasmon dispersion for a 3D electron gas. Along with the
numerical result, draw the corresponding asymptotic form in the long wavelength
limit obtained in Prob. 3(c) and add the boundary of the electron-hole continuum.

(c) Find the critical wave vector numerically where the plasmon dispersion enters
into the electron-hole continuum. Note that the electron-hole continuum is defined
by the region within which Im [χ0(q, ω)] is non-zero. See Prob. 2(h) for the discussion
of the electron-hole continuum.

∗ Further reading: Giuliani and Vignale, Ch.5.3.3 and Fig.5.8.

5. Loss function

(a) Show that the dielectric function and the interacting response function are related
as

1

ε(q, ω)
= 1 + v(q)χ(q, ω).

(b) The loss function is defined by −Im
[

1
ε(q,ω)

]
, which describes electronic energy

dissipation through electron-hole pair excitations or plasmon excitations. For rs = 2,

draw the loss function within the RPA in logarithmic scale (or log10

{
−Im

[
1

ε(q,ω)

]}
)

for 0 < q/kF < 3 and 0 < h̄ω/εF < 3. Along with the loss function, add the boundary
of the electron-hole continuum.

(c) Find the region that the loss function is large, and explain the source of the
energy dissipation.

∗ To capture the plasmon contribution which occurs at ε(q, ω) = 0, add a small
imaginary number iη in ε(q, ω), say η = 10−4. Otherwise, the loss function will
give infinity along the plasmon dispersion, which is not appropriate in numerical
calculations.

∗ Further reading: For the electron-hole continuum, see Giuliani and Vignale, Ch.4.4.2.
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