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Group study: Linear response theory

Project 2: Correlation energy

Let’s consider an interacting electron gas in 3D which provides a first approximation
to a metal or a plasma. We will calculate corrections to the ground-state energy due to
the Coulomb interaction:

Û =
1

2V

∑
k1,k2,q,σ1,σ2

u(q)â†k1+q,σ1
â†k2−q,σ2

âk2,σ2 âk1,σ1

where u(q) = 4πe2

|q|2 in 3D and σ1, σ2 represent the spin index.

1. (20 pts) Exchange energy of 3D electron gas

The exchange contribution to the Coulomb interaction, which arises from the anti-
symmetry of the wave functions, is given by

Û (ex) =
∑
k,σ

ε
(ex)
k â†k,σâk,σ −

〈
Û (ex)

〉
,

where

ε
(ex)
k = − 1

V

∑
k′

u(k − k′)nk′,σ.

(a) Show that at T = 0,

ε
(ex)
k = −2e2kF

π
F

(
k

kF

)
,

where F (z) is defined by

F (z) =

∫
|z′|<1

d3z′

4π

1

|z − z′|2
.

(b) Show that F (z) is given by

F (z) =
1

2
− z2 − 1

4z
ln

∣∣∣∣z + 1

z − 1

∣∣∣∣.
For convenience, locate z along the z-axis and integrate with z′ using the spherical
coordinates.

∗ This is the Lindhard function which also appeared in Problem 2 of Project 1.

(c) The exchange energy Eex =
〈
Û (ex)

〉
is then given by

Eex =
V

2

∫
d3k

(2π)3

∑
σ

ε
(ex)
k nk,σ.
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Show that the exchange energy per particle is given by

εex =
Eex

N
= −3e2

4π
kF.

This means that the ground-state energy per particle up to first-order correction is
given by

E

N
≈ 3

5

(
h̄2k2

F

2m

)
− 3e2

4π
kF.

∗ Further reading: Giuliani and Vignale, Ch.2.4; Fetter and Walecka, Sec.10.

2. Fluctuation-dissipation theorem

For an operator Â, consider

S(t− t′) =
〈
Â(t)Â†(t′)

〉
,

ih̄χ(t− t′) = Θ(t− t′)
〈[
Â(t), Â†(t′)

]〉
.

(a) Show that

S(t) =
∑
m

Pm 〈m| e
iĤt
h̄ Âe−

iĤt
h̄ Â† |m〉 =

∑
m,n

Pme
−iωnmt |Amn|2

where Pm = eβ(Ω−Em)/Z is the probability for a state m and ωnm = ωn − ωm.

(b) Prove that there exists a connection between S(ω) which describes the fluctuation
and Imχ(ω) which characterizes the dissipation in a system, called the fluctuation-
dissipation theorem:

S(ω) = − 2h̄

1− e−βh̄ω
Imχ(ω) = −2h̄ [1 + nB(ω)] Imχ(ω)

where nB(ω) = 1
eβh̄ω−1

.

∗ The fluctuation-dissipation theorem is quite general and a large class of experiments
in which a system is subjected to a weak controllable external probe is characterized
by simple correlation functions of operators at different times.

∗ Further reading: Coleman, Ch.9.4; Giuliani and Vignale, Ch.3.2.6.

3. Static structure factor

For the density operator ρ̂(q, t) =
∑

k,σ â
†
k−q,σâk,σ, we can define

S(q, t− t′) =
1

N

〈
ρ̂(q, t)ρ̂(−q, t′)

〉
,

ih̄χ(q, t− t′) =
1

V
Θ(t− t′)

〈[
ρ̂(q, t), ρ̂(−q, t′)

]〉
.

(a) For the Coulomb interaction, show that the interaction energy per particle is
given by 〈

V̂
〉

N
=

1

2

∫
ddq

(2π)d
v(q) [S(q)− 1]



where S(q) = S(q, t = 0) is called the static structure factor.

(b) Show that from the fluctuation-dissipation theorem, we have

S(q, ω) = −2h̄

n
[1 + nB(ω)] Imχ(q, ω)

where n = N/V is the density of the system.

(c) Show that at zero temperature the static structure factor is given by

S(q) = − h̄
n

∫ ∞
0

dω

π
Imχ(q, ω).

(d) Due to causality, the response function is analytic in the upper half of the complex
frequency plane, thus the integration path can be changed from the real to the
imaginary axis. Then show that the structure factor in (c) can be rewritten as

S(q) = − h̄
n

∫ ∞
0

dω

π
χ(q, iω).

∗ Further reading: Giuliani and Vignale, Ch.3.3.5.

4. Noninteracting response function in imaginary frequency

Consider the Lindhard function at imaginary frequencies for a 3D electron gas with
εk = h̄2k2

2m at zero temperature:

χ0(q, iω) = gs

∫
ddk

(2π)d
fk − fk+q

ih̄ω + εk − εk+q
.

(a) Show that χ0(q, iω) is real and given by

− χ0(q, iω)

N0
=

2

q/kF
Re

[
Ψ3

(
q

2kF
+

iω

vFq

)]
where N0 is the density of states (per unit volume) at the Fermi energy,

Ψ3(z) =
1

2

∫ 1

0
k̃2dk̃

∫ 1

−1
d cos θ

1

k̃ cos θ + z
= zF (z)

and

F (z) =
1

2
− z2 − 1

4z
ln

(
z + 1

z − 1

)
.

(b) Prove that for z = q̃
2 + iω̃ with real q̃ and ω̃,

ln

(
z + 1

z − 1

)
=

1

2
ln

∣∣∣∣∣∣∣
(
q̃
2 + 1

)2
+ ω̃2(

q̃
2 − 1

)2
+ ω̃2

∣∣∣∣∣∣∣+ i

[
tan−1

(
ω̃

q̃
2 + 1

)
− tan−1

(
ω̃

q̃
2 − 1

)]
.

Note that the complex logarithm ln z = ln |z| + iArg(z) is defined with the branch
cut along the negative real axis so that Arg(z) takes the value between −π and π.



(c) Show that finally, we have −χ0(q, iω)/N0 = g
(
q
kF
, iωvFq

)
where

g (q̃, iω̃) =
1

2
+

1− q̃2

4 + ω̃2

4q̃
ln

∣∣∣∣∣∣∣
(
q̃
2 + 1

)2
+ ω̃2(

q̃
2 − 1

)2
+ ω̃2

∣∣∣∣∣∣∣+
ω̃

2

[
tan−1

(
ω̃

q̃
2 + 1

)
− tan−1

(
ω̃

q̃
2 − 1

)]
.

(d) Draw −χ0(q, iω)/N0 map for 0 < q/kF < 3 and 0 < h̄ω/εF < 3.

∗ The equation in (c) is the main expression of the noninteracting response function
in imaginary frequencies for the 3D electron gas. This will be used to calculate
the correlation energy. Note that χ0(q, iω) is a smooth real function thus easier to
handle than χ0(q, ω). Compare the map in (d) with that of −Im [χ0(q, ω)/N0] in
Problem 2(h) of Project 1.

∗ Further reading: Giuliani and Vignale, Ch.5.3.6; Altland and Simons, Ch.5.2 and
Eq.5.30.

5. Exchange and correlation energies of electron gas

(a) Let’s consider a Hamiltonian with a variable coupling constant λ as

Ĥλ = Ĥ0 + λV̂ .

Then show that the total energy E = Eλ=1 is given by

E = E0 +

∫ 1

0

dλ

λ
〈Ωλ|λV̂ |Ωλ〉

where E0 = 〈Ω0| Ĥ0 |Ω0〉 and |Ωλ〉 is the ground-state of Ĥλ.

(b) From the perturbation theory, the first-order correction to the ground-state en-
ergy is given by the expectation value of V̂ in the noninteracting ground-state,
∆E(1) = 〈Ω0| V̂ |Ω0〉. For the Coulomb interaction in a homogeneous electron gas,
∆E(1) = Eex is known as the exchange energy. Using the result of Prob. 3, show
that

Eex

N
=

1

2

∫
ddq

(2π)d
v(q)

[
− h̄
n

∫ ∞
0

dω

π
χ0(q, iω)− 1

]
.

(c) Using the result of (b), draw the exchange energy per particle in units of the
Rydberg energy for a 3D electron gas as a function of rs for 0 < rs < 20. Compare
the result with that of Problem 1.

∗ For the definition of the rs parameter, see Problem 4 of Project 1.

(d) The remaining higher order correction is called the correlation energy defined by
Ecorr = E − E0 −∆E(1). Show that the correlation energy can be expressed as the
integration over the density response function as follows:

Ecorr

N
= − h̄

2n

∫
ddq

(2π)d
v(q)

∫ ∞
0

dω

π

∫ 1

0
dλ [χλ(q, iω)− χ0(q, iω))] .



(e) In RPA, χλ(q, iω) = χ0(q,iω)
1−λv(q)χ0(q,iω) . Show that the correlation energy in RPA is

given by

ERPA
corr

N
=

h̄

2n

∫
ddq

(2π)d

∫ ∞
0

dω

π
[v(q)χ0(q, iω) + ln (1− v(q)χ0(q, iω))]

=
h̄

2n

∫
ddq

(2π)d

∫ ∞
0

dω

π
[1− εRPA(q, iω) + ln εRPA(q, iω)]

where εRPA(q, iω) = 1− v(q)χ0(q, iω).

(f) Draw the correlation energy per particle in units of the Rydberg energy for a 3D
electron gas as a function of rs for 0 < rs < 20.

∗ Further reading: Giuliani and Vignale, Ch.1.8.3 and Ch.5.3.6, and see Fig.5.11.
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