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It is well known that a system S weakly coupled to a heat bath B is described by the canonical ensemble
when the composite S! B is described by the microcanonical ensemble corresponding to a suitable
energy shell. This is true for both classical distributions on the phase space and quantum density matrices.
Here we show that a much stronger statement holds for quantum systems. Even if the state of the
composite corresponds to a single wave function rather than a mixture, the reduced density matrix of the
system is canonical, for the overwhelming majority of wave functions in the subspace corresponding to
the energy interval encompassed by the microcanonical ensemble. This clarifies, expands, and justifies
remarks made by Schrödinger in 1952.
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A quantum system in thermal equilibrium at inverse
temperature ! is described by the canonical density matrix

"! #
1

Z
exp$"!H$S%%; (1)

where H$S% is the system Hamiltonian and

Z # tr exp$"!H$S%%:
The usual justification for (1) is that it is the reduced
density matrix of the system when it is weakly coupled
to a heat bath, and the composite system is described by the
microcanonical density matrix at a suitable total energy E.

More explicitly, one assumes that it is permissible to
neglect the relatively small interaction between the system
and the bath, so that the total Hamiltonian of the composite
S! B is given by

H # H$S!B % # H$S% !H$B %: (2)

The composite S! B is then assumed to be represented by
a microcanonical ensemble in some energy interval
&E;E! #', where # is small on the macroscopic scale,
#( E, but large enough for the interval to contain very
many eigenvalues. The corresponding microcanonical den-
sity matrix is

"E;# # $dimH &E;E!#'%"1PH &E;E!#'
; (3)

with PH &E;E!#'
the projection to H &E;E!#', the spectral

subspace for H associated with energies in the interval
&E;E! #' in the Hilbert space H #H $S!B % #H $S% )
H $B %. One readily proves (see below) that in the thermo-
dynamic limit, when the size, i.e., the number of compo-
nents N of the heat bath, goes to infinity while E=N ! e,
the reduced density matrix of the system S,

"$S% # tr$B %"E;#; (4)

is equal to "!. Here tr$B % denotes the partial trace over
H $B % and ! # !$e%.

In this Letter we show how this result can be substan-
tially strengthened: we prove that, in the thermodynamic
limit, the reduced density matrices of the overwhelming
majority of the wave functions of S! B are canonical. We
call this statement canonical typicality. As a consequence
of canonical typicality, it follows that the canonical en-
semble is even more inevitable in quantum mechanics—
arising as it does there without the invocation of any
genuine randomness—than it is classically. Results in
this direction were first obtained by Schrödinger [1], and
later by Gemmer and Mahler [2]; related results have been
obtained by Tasaki [3] (see later).

Typicality in quantum mechanics, as well as in classical
mechanics, involves a probability distribution on the pos-
sible microstates of the system, the distribution in terms of
which ‘‘overwhelming majority’’ is to be understood. In
classical mechanics these microstates are points in the
appropriate phase space and the distribution is then a
measure on this phase space. To define typicality for
quantum systems we shall take the microstates to be
wave functions, i.e., points on the unit sphere of H (up
to a phase). Even with this identification it may not be clear
which distribution is appropriate for the (composite) sys-
tem described by the density matrix "E;#. Here we take that
to be the probability distribution proposed long ago by
Schrödinger [1,4] and Bloch [5]: it is the (normalized)
uniform (surface area) measure uE;# on the unit sphere in
the subspace H &E;E!#', i.e., the uniform probability distri-
bution over all normalized wave functions ! with energies
in &E;E! #'. If we expand ! in terms of energy eigen-
functions jE$i of H, ! # P

c$jE$i, where the sum is
restricted to levels with energies in the interval &E;E!
#', then uE;# corresponds to the uniform distribution on the
surface of the sphere

P jc$j2 # 1. This measure was
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Statistical mechanics is one of the most successful areas

of physics. Yet, almost 150 years since its inception,

its foundations and basic postulates are still the subject

of debate. Here we suggest that the main postulate

of statistical mechanics, the equal a priori probability

postulate, should be abandoned as misleading and

unnecessary. We argue that it should be replaced by a

general canonical principle, whose physical content is

fundamentally different from the postulate it replaces: it

refers to individual states, rather than to ensemble or

time averages. Furthermore, whereas the original postulate

is an unprovable assumption, the principle we propose

is mathematically proven. The key element in this proof

is the quantum entanglement between the system and

its environment. Our approach separates the issue of

finding the canonical state from finding out how close a

system is to it, allowing us to go even beyond the usual

boltzmannian situation.

The great conceptual puzzle of statistical mechanics is how a
physical system, despite always being in some definite state,
and evolving deterministically, can exhibit thermodynamical

properties pertinent to statistical averages, such as the entropy1.
Here we consider an alternative approach to the foundations

of statistical mechanics, suggested to one of us by Yakir Aharonov
about twenty years ago. In this approach the usual devices of
subjective randomness, ensemble-averaging or time-averaging2,
are not required. We show that, although the universe (that
is, the system together with a sufficiently large environment)
is in a quantum pure state subject to a global constraint,
thermalization results from entanglement between the system and
the environment. This leads to a finite entropy of the system, despite
the universe itself having zero entropy. Significant results along
similar lines have been obtained by Bocchieri and Loinger3, Lloyd4

and Gemmer et al.5; see also very recent work by Goldstein et al6.
We formulate and prove a ‘general canonical principle’, which

states that the system will be thermalized (that is, in the canonical
state) for almost all pure states of the universe, and provide
rigorous quantitative bounds. In fact, we actually go beyond
ordinary thermalization: in the standard statistical setting, energy
constraints are imposed on the state of the universe, which
determine a corresponding temperature and thermal canonical
state for the system. In contrast, we allow completely arbitrary
constraints, which leads to the system being in a corresponding
generalized canonical state.

Our results are kinematic, rather than dynamical, as we do not
consider any particular evolution of the state. However, because
almost all states of the universe are such that the system is
thermalized, we anticipate that most evolutions will quickly carry
any initial state to a thermal state. Furthermore, as information
about the system will tend to leak into the environment over time,
we might expect that their entanglement, and hence entropy, will
increase. It is conceivable that this is the mechanism behind the
second law of thermodynamics.

Consider a large isolated quantum mechanical system, ‘the
universe’, that we decompose into two parts, the ‘system’ S and
the ‘environment’ E. We will assume that the dimension of the
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Statistical Mechanics

• Microcanonical ensemble
- equal a priori postulate
- ρ(E) ∝ I in an energy shell E0 < E < E0 + δE
- ergodicity, chaos, mixing, ...

• Canonical ensemble
- ρS(ES) ∝ ΓB(E− ES) ∝ e−ES/kT

- k log ΓB(E− ES) ≃ SB(E)−
ES
T

3

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>



Canonical Typicality

• |Ψ⟩ =
∑
E
cE|ΨE⟩

cE: uniform random in the energy shell

• ρS = TrB|Ψ⟩⟨Ψ| → e−ES/kT

“Almost always”, i.e., “Typical”

• Entanglement

• Meaning?

4

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>



<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit> <latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

<latexit sha1_base64="(null)">(null)</latexit>

Origin of ENTROPY?
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Coin Tossing

• + vj = 1 - vj = 1 v = 1
N
∑N

j=1 vj → intensive quantity

• N = 2
+ + : |Ψ1⟩ v = 1
+ - : |Ψ1⟩ v = 0
- + : |Ψ1⟩ v = 0
- - : |Ψ1⟩ v = −1

⟨v⟩ = 0 → ensemble average
⟨|∆v|⟩ = 1

2 → thermal fluctuation

• N → ∞ (thermodynamic limit)

+ - - + - + · · · v → 0
- + - + + - · · · v → 0

...
+ + + + + + · · · v ̸= 0 : measure 0

...

⟨v⟩ = 0
⟨|∆v|⟩ → 0

“Almost Always”
v = 0
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Equilibration

|Ψ(t)⟩ =
∑
E
cEe−iEt|ΨE⟩

ρ =
∑
E,E′

cEc∗E′e−i(E−E′)t|ΨE⟩⟨ΨE′ |

⟨ρ⟩t =
∑
E

|cE|2|ΨE⟩⟨ΨE| ∵
⟨
e−i(E−E′)t

⟩
t
→ 0 for E− E′ ̸= 0

• Time scale

- τH ∼ ℏ
∆E : Heisenberg time

- ∆E ∼ Ne−N → 0 ex) N ∼ 1023

• Note also that the canonical ensemble is NOT to be “derived”.
- Regular (non-chaotic) systems
- Dynamical localisation

7
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Bottom Line
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From Quantum Dynamics to the Canonical Distribution: General Picture
and a Rigorous Example

Hal Tasaki*
Department of Physics, Gakushuin University, Mejiro, Toshima-ku, Tokyo 171, Japan

(Received 24 July 1997)
Derivation of the canonical (or Boltzmann) distribution based only on quantum dynamics is discussed.

Consider a closed system which consists of a mutually interacting subsystem and a heat bath, and
assume that the whole system is initially in a pure state (which can be far from equilibrium) with
small energy fluctuation. Under the “hypothesis of equal weights for eigenstates,” we derive the
canonical distribution in the sense that, at sufficiently large and typical time, the (instantaneous) quantum
mechanical expectation value of an arbitrary operator of the subsystem is almost equal to the desired
canonical expectation value. We present a class of examples in which the above derivation can be
rigorously established without any unproven hypotheses. [S0031-9007(98)05342-3]

PACS numbers: 05.30.–d, 02.50.Cw, 03.65.–w, 05.70.Ln

It is often said that the principles of equilibrium
statistical physics have not yet been justified. It is not
clear, however, what statement should be regarded as
the ultimate justification. Recalling the astonishingly
universal applicability of equilibrium statistical physics,
it seems likely that there are many independent routes
for justification which can be equally convincing and
important [1,2]. In the present paper, we concentrate
on one of the specific scenarios for obtaining canonical
distributions from quantum dynamics [3].
Let us outline our problem and the main result. We

consider an isolated quantum mechanical system which
consists of a subsystem and a heat bath. The subsystem
is described by Hamiltonian HS which have arbitrary
nondegenerate eigenvalues ´1, . . . , ´n. For convenience
we let ´j11 . ´j and ´1 ≠ 0. The heat bath is described
by a Hamiltonian HB with the density of states rsBd.
The inverse temperature of the heat bath at energy B is
given by the standard formula bsBd ≠ d lnrsBdydB. We
assume (as usual) bsBd is positive and decreasing in B.
The density of states rsBd is arbitrary except for a fine
structure that we will impose on the spectrum of HB.
The coupling between the subsystem and the heat bath

is given by a special Hamiltonian H 0 which almost con-
serves the unperturbed energy and whose magnitude is
kH 0k , l. We assume D´ ¿ l ¿ DB, where D´ is
the minimum spacing of the energy levels of HS, and
DB is the maximum spacing of that of HB. These con-
ditions guarantee a weak coupling between the subsystem
and the bath, as well as macroscopic nature of the bath.
The Hamiltonian of the whole system is H ≠ HS ≠ 1B 1
1S ≠ HB 1 H 0, where 1S and 1B are the identity opera-
tors for the subsystem and the heat bath, respectively.
Suppose that the whole system is initially in a pure state

Fs0d which has an energy distribution peaked around (but
not strictly concentrated at) E. It is possible to treat mixed
states as well, but such extensions are not essential. For
an operator A of the subsystem, we denote its quantum

mechanical expectation value at time t as

kAlt ≠ kFstd, sA ≠ 1BdFstdl , (1)

where k?, ?l stands for the inner product, and Fstd ≠
e2iHtFs0d is the state at time t. Note that k· · ·lt is a mixed
state on the subsystem. Our main result is the derivation
of the canonical distribution in the sense that

kAlt . kAlcan
bsEd, for any A , (2)

holds [4] for sufficiently large and typical t, where
kAlcan

b ≠ TrSfAe2bHSgyTrSfe2bHS g is the canonical ex-
pectation value. We show that (2) holds for rather gen-
eral systems under the “hypothesis of equal weights for
eigenstates.” For a special class of models, we prove (2)
rigorously without any unproven hypotheses.
We note the following points about the present deriva-

tion of the canonical distribution. (i) We do not intro-
duce any probability distributions by hand. (ii) We do
not make use of the microcanonical distribution. (iii) We
do not perform any time averaging. (iv) We do not take
any limits such as making the bath infinitely large or the
coupling infinitesimally small. (v) Quantum mechanics
seems to play essential roles.
In the present paper, we describe our main results and

basic idea of proofs, leaving details to [5]. We also briefly
discuss a possible extension of the present scenario to
more general systems.
Coupling.—We diagonalize the (partial) Hamiltonians

as HSCj ≠ ´jCj with j ≠ 1, . . . , n, and HBGk ≠ BkGk
with k ≠ 1, . . . , N , where Cj , Gk are normalized. We
will impose a fine structure on the spectrum hBkj when
we discuss our rigorous results.
When the coupling H 0 is absent, the total Hamil-

tonian H0 ≠ HS ≠ 1B 1 1S ≠ HB has eigenstates
Qs j,kd ≠ Cj ≠ Gk with eigenvalues Us j,kd ≠ ´j 1 Bk .
We now introduce a new index , ≠ 1, . . . , nN for Q and
U. The index , is in a one-to-one correspondence with
the original index s j, kd such that U,11 $ U, holds for

0031-9007y98y80(7)y1373(4)$15.00 © 1998 The American Physical Society 1373

“It is often said that the principles of equilibrium statistical
physics have not yet been justified. It is not clear, however, what
statement should be regarded as the ultimate justification.
... it seems likely that there are many independent routes for
justification which can be equally convincing and important.”

Bottom line: Different scenarios shouldn’t be mixed up.
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One Possible Scenario
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H = H0 + H1 = (HS + HB) + H1

|Ψ(t)⟩ =
∑
j

cj(t)|Ψj⟩

Hjk = ⟨Ψj|H1|Ψk⟩ = eiϕjk |Hjk|

Assumptions

1. Random phase ensemble
- ϕjk : uniform random
- Hjk → ei(ϕj−ϕk)|Hjk| ϕj : uniform random

2. |Hjk| = |⟨ES, EB|H1|E′S, E′B⟩| → Quasi-continuous function of EB, E′B
- thermodynamic limit
- time scale t ≪ τH

3. Weak interaction
9
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Outline of the Logic (1/2)

• |j⟩ ≡ |ES, EB⟩, |Ψ(t)⟩ =
∑

j cj(t)|j⟩

• cj(t) =
∑

k Ujk(t, t0)ck(t0) interaction picture

• pj(t) ≡ |cj(t)|2 =
∑

k |Ujk|2pk(t0) + (off-diagonal terms)

• ⟨·⟩: ensemble average w.r.t. the phase randomness

•
⟨
pj(t)

⟩
=

∑
k |Ujk|2 ⟨pk(t0)⟩
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Outline of the Logic (2/2)

•
⟨
pj(t)

⟩
=

∑
k |Ujk|2 ⟨pk(t0)⟩

• d
dt |Ujk(t, t0)|2 → 2π|Hjk|2δ(Ej − Ek)

Fermi golden rule, wherein ΓB(EB) appears

• H =
⊕dS

µ=1 Hµ, Pµ(t) ≡
∑

|j⟩∈Hµ
pj(t)

• d
dt ⟨Pµ(t)⟩ = −

∑
ν ̸=µ

Wµ→νΓB(E− ESν)⟨Pµ(t0)⟩

+
∑
ν ̸=µ

Wν→µΓB(E− ESµ)⟨Pν(t0)⟩

Wµ→ν ≡ 2π|⟨ESν , E− ESν |H1|ESµ, E− ESµ⟩|2
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Dynamics of Average Populations
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• Interaction picture → Transition problem

• Fermi golden rule → Markov chain of dS nodes

• Detailed balancing → ⟨Pµ(t)⟩ ∝ ΓB(E− ESµ) Canonical ensemble
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What about the fluctuation?

• ⟨Pµ(t)⟩ ∝ ΓB(E− ESµ)

•
⟨
|∆Pµ(t)|2

⟩
≤ 2

√
1
d0

⟨Pµ(t)⟩

d0 ≡
1∑
j |cj|4

effective dimension

∴ For d0 → ∞,
Individual dynamics → Average dynamics
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Summary

• Composite system S+ B in an arbitrary pure state.

• Typical interaction in the interaction picture.

• The system part (S) is almost always driven to a canonical
ensemble under reasonable assumptions.
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