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(Juestion; [un|known information

* How different is the quantum

o(A)o(B) = 1/2[(|A, B])|

5(p) = Tr[pln p]

H(A)+ H(B) > —2Inc

uncertainty when it is
expressed in entropy?

* How does the quantum state of |
light behave differently when it c(4,B) = I%?X<az’|bj> or 1/Vmeh
is optimized by Shannon
entropy?
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Comparison between the UR’s |

Hyyy (X) + Hyy (Y)
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The entropic uncertainty
relation is optimized to
characterize the state in the
same plane of the
measurements.

The Heisenberg’s uncertainty
relation defines spin coherent

state.

(a) =0
2.57
=0
=
‘= Entropy
€15
-5}
o
51 E
Bound
0.5 ‘ ‘ ‘
0 /8 /4 31/8 /2
Azimuthal angle ¢(rad)
(c) 6 =4n/9
2.5
22
=
Sl 5
Nl Entropy
o
5 1 .-m_‘.
Bound
0.5 ‘ ‘ :
0 /8 /4 37/8 /2

Azimuthal angle ¢(rad)

2 F
J=0
S1.5
g | e S
) Entropy
R
) Bound
0.5 : : :
0 /8 /4 3r/8 /2
Azimuthal angle ¢(rad)
(d) 0 ~7/2
2.5]
22
=
Sl 5
. Entropy
Qo
=
=) .

=
n

/8 /4 38 x)2
Azimuthal angle ¢(rad)



Comparison between the UR’s 11

+ Continuous variable entropy is upper

bounded by logarithm of the standard )
deviation & the inequality is saturated by H(:E) = ln( 27T60_$)

(Gaussian state.

* The composite entropies are lower bounded by uncertainty and upper
bounded by Gaussianity. [Entropic UR is general than Heisenberg UR]

In(meh) < H(z) + H(p) < In(2meo,0,)

J(x) = Ha(z) — H(z)
= logo,V2me — H(x)




NGI1-Number state
IN>
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* The wave function for the 5 e B

-10 =5 - 5 10
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quadrature is give by Gaussian
times Hermit polynomial

-0.2

* The Heisenberg uncertainty is .
linearly increased as N
increased.

* Entropic uncertainty / Neg-
entropy is also increasing log-
linearly along N.




* Fourier transformed to Lorenz

NG2-Laplace distribution

* Exp(-\lambda [ x1)

distribution;

1/(p/"2+\lambda”2)
* Quantum uncertainty is Entropy

constant over \lambda - log(re) < log(8r/e) < log(v/2re)
* Entropic uncertainty 1s quite

24

saturated to the lower bound.
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NG3-Schrodinger Cat state

la>+-a>

* Heisnberg uncertainty
\delta_x\delta_p is linear
increasing over | \alphal.

* Entropic uncertainty H(x)
+H(p) become saturated at
large alpha.

* Neg-entropy is diverging.




Non-Gaussian upper bound

* Non-gaussian upper bound
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(a) Photon number state. The (b) Possion/Laplace state. 8 and
difference B — N becomes larger AN remain constant for any value
as the photon number increased. of standard deviation.
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(c) Photon added coherent state. (d) Schrodinger Cat state. The
The bound becomes zero as the difference between B and N
state approaches to gaussian state. ~ becomes constant at the large a.

N=JX)+J(@P) JX) +J(P) < In(2oyop).
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FIG. 3: Comparison of the total neg-entropy N versus the state-
dependent bound 8 for different examples of quantum states together
with the randomly generated pure state. It shows that the coherent
superposition state behaves closely to the lower bounds while there
exists more optimal state.



GV Entropic uncertainty & Gaussianity
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Optimized entropic uncertainty for successive projective measurements

Kyungayur Back,' Tristan Farmow,™” and Warmin Scn -
'Devr e of Phocacs, Sugeme Uaceesie Maen-vn, Stiovew-dong, Sron! [20-792, Kovva
“Atawic & Lasee Plysice, Clarenden Loberetoir, Uan ciatty of Qaford OXI 20U, Umited Kavpaom
"Contew for Qoo Tecampammies, Nanowe! Gonecmy of Swigupore. 3 3oence uvie 2, 117543, Stgapory

ieawd 4 Decer ser 2013 sablished [0 March 200140

We loous Lere un the coseramly ol an oosenabbe ¥ ocaused by o peecise osssursaeat of X We Hlusale
the etlect by aalyring the oaneral coeano of Taw successnve measurer s of spet conpensate N oamd ¥ We
Cotive w ogrinciaed enlropic uneentainty liecl Csl e Gnies e meossaany amounl of useriainly obesrvald in g
sunssquert peasureoaent of Y. We comgare 1 s ound to recently derved erordivurnagce relations aad € ecuse
Fome e bosndd o imtithes U | doerman o OoF SUCescslve © Jamam e asuren s,

LM DO HIEOPE g Ren A <0052 FAUCS mumbete bk 805 055,000, £ 0000 X0, Ut —a

PHYSICAL REVIEW A 92, 012114 (2015)

Role of guantum non-Gaussian distance in entropic uncertainty relations

Wonmin Son”
Department of Physics, Sogeany University, Mapo-gu, Shinsu-cewng, Seawl 121-742. Korea
and University of Oxfod, Department of Physics, Parks Road, Oxford OXT 3PU, United Kingdom
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A Gaussian distrihution of & quantum state with continuous spectra 15 known to maxirmze the Shannon
entropy at a fixed variance. Applying 1t 1o a pair of cancnically conjugate quantum observables © and p, the
quantum entropic uncertainty relation can take a suggestve form, where the standard deviations v, and o,
ore featured explicitly. From the construction of the entropic uncertainty relation, it follows in o transparent
manner that (i) the entropic uncertainty relation implies the Kennard-Robertson uncertainty relation in a modified
form, oo, = ,"uv"'_.-"l; (i} the additional tactor N7 quantities the quantum non-Ganssianity of the probability
distbutions of two observahles; and (iir) the lower bound of the entropic uncertainty relation for o non-Gaussian
continuous-variable (CV) mixed state hecomes stranger with purity. The optimality of specific non-Gaussian CV
states tor the refined uncertainty relation has been investigated and the existence ot a new class of CV quantum
state 15 identfied.
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Remarks

* For the case of discrete variable system, the Heisenberg
UR and Entropic UR characterizes uncertainty of the
systems differently. (Provide state sensitive
characterization.)

For the case of continuous variable state, entropic UR
provide stronger condition then Heisenberg UR. (i.e. The
lower bound of the Heisenberg UR is needed to be

changed when it is not Gaussian.) 1

Oz0p =



Further remarks

* As like coherent state is ‘O{> A:cAp Z h/ 2
optimised for the Heisenberg
uncertainty,

“ Schrodinger Cat state is |a> —+ | — Oé>

optimised for the entropic

uncertainty relation.
H(A)4+ H(B) > —2Inc

c(A, B) = max(a;|b;) or 1/vVmeh
iJ



'Quantifiable simulation of quantum computation

beyond Stochastic ensemble computation;
Quantum advantage in a calculation



The first (BIG) question(s)

*  Benchmark of quantum

advantage for the extra
ordinary computation

How much does the causality
take part in at the process of
computation?




(Quantum computation vs Stochastic ensemble comp.

.

N Standard pI‘OCeSS for quantum Grover diffusion operator
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* Stochastic ensemble computation
(Probabilitistic Turing machine)

1
Sk GS. §; =‘(51,32,"-)4 m(sx) € M ;

. 1 N & -.‘l&( ! -l
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* P(so,...,8;) = C(sj|Sj—1,...,80) -~ C(s1|s0) P(So)




Basic assumptions and readout inequality

* Basic assumptions for the read out probabilities

(Bayesian & Marginals + consistency hypothasis)
Stochastic Ensemble Process

Fims1,m)) IS S emats = Bl el e ol = o' melee | -
P(mylm,_1) = # There s no way "o watch” | i g
"ty 1) Ihe process — eachcopy —awalP
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(Quantum violation of the read out inequalities

+ Evolution of quantum state and its
measurements

A
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Pg(m;) = Te(p; TT,)
) 2
Po(m;lmj_1) = |{m; |G" | my_y)
2 (ra/L)jt

~ IL)" - A
where p; = |u)(y;] = G*'™ po Gy

* Relevant read out inequality and its
violation

h (ng©) < Lh (%@)

h(x) = —(cos? x) log, (cos? x) — (sin” x) log, (sin” x)

Quantum Process
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Quantifiable Simulation of Quantum Computation beyond
Stochastic Ensemble Computation

Jeongho Bang,* funghee Ryu, Chang-Woo Lee, Ki Hyuk Yee, finhyoung Lee, ™
and Wonmin Son*

a fareaal wgwerem har a Q7™ ran he mara
In this study, 8 distinctive feature of quantum computation (QC) Is powerfal han 2 PTH was provides K5
choructienized. To this end, o secmingly-powerful classical computing model, wd vuartam compatatior (@) i Leen
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Further studies: Contextuality-LHV model (KCBS and Bell -

CHSH)

Sum of joint probabilities for the
KCBS scenario

NCHV

4
S PO, 1i,i+1) < 2 < V5
1=0

|\
b | O

Bell-CHSH graph from the joint
probabilities

Z P(a, blx, y) NCH%,LHV 3 C%l\{ 2 + \/5 E,SNS 4’

Generalization for the arbitrary

graph
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Recent arrival of an
advanced textbook
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