Gravitational waves from first order electroweak phase transition in models with the U(1)_x gauge symmetry

15

Toshinori Matsui (松井 俊憲)¹

Collaborators:

Katsuya Hashino^{2,3}, Mitsuru Kakizaki², Shinya Kanemura³, Pyungwon Ko¹

¹KIAS (Korea), ²U. of Toyama (Japan), ³Osaka U. (Japan)

JHEP 1806, 088 (2018) [arXiv:1802.02947]

Physics behind EWSB

• Although SM has been established as a low-energy eff. theory, we have not yet understood the structure of Higgs sector.

Classification of models w/1stOPT

	5	Minimal models	GW	$\Delta \lambda_{hhh} / \lambda_{hhh}^{\rm SM}$	$h\gamma\gamma$	$\left(\begin{array}{c} (hVV, hff) \\ \kappa_V, \kappa_F \end{array} \right)$	Type
	: Ф _{SM} +Ф'	2HDM	0	0	\bigcirc	0	Ι
		MSSM	[Light stops excluded at LHC]				II
-(B)	: Ф _{SM} +S	rHSM (real singlet scalar)	0	0	-	0	III
		NMSSM	0	0	\bigcirc	0	IV
] -(A) &(B)	: Ф _{SM} + <mark>S</mark>	ISM (singlet scalar w/Z_2)	0	0	-	-	V
	: Ф _{SM} +Ф'	IDM (doublet scalar w/Z_2)	0	0	\bigcirc	-	VI

We propose GWs as a new technique to explore BSM, in addition to collider experiments!

/15

Toshinori MATSUI [KIAS] The 8th KIAS Workshop on Particle Physics and Cosmology, Oct. 29 - Nov. 2, 2018

Sensitivity of GW detectors

15

Toshinori MATSUI [KIAS] The 8th KIAS Workshop on Particle Physics and Cosmology, Oct. 29 - Nov. 2, 2018

GWs from 1stOPT

 α ~ Normalized difference of the potential minima β^{-1} ~ Transition time \propto Bubble size

5/15

We can discuss the detectability at GW observations with model predictions.

Model

U(1)_x model

- Particle contents
 - $U(1)_{\chi}$ gauge field (dark photon) X_{μ}
 - Complex scalar (dark Higgs) S with U(1)_x-charge $Q_s = 1$
- Lagrangian

 $\mathcal{L} = -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\epsilon}{2} X_{\mu\nu} B^{\mu\nu} + |D_{\mu}S|^2 - V_0(\Phi, S) \quad \text{[B. Holdom, PLB166, 196 (1986)]}$ $V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$

6/15

- $U(1)_X$ gauge symmetry is spontaneously broken by nonzero VEV of S

 $D_{\mu}S = (\partial_{\mu} + ig_X Q_S X_{\mu})S \rightarrow m_X \equiv g_X |Q_S|v_S$ (Dark Higgs mechanism)

- Scalar mixing: $(\phi_{\Phi}, \phi_s) \rightarrow (\underline{h, H})$ with the mixing angle $\underline{\theta}$
- Parameters (m_h = 125 GeV, v_{ϕ} = 246 GeV; $\underline{m_H}$, θ ; $\underline{m_X}$, $\underline{g_X}$; ϵ)

Multi-step phase transition

Toshinori MATSUI [KIAS]

The 8th KIAS Workshop on Particle Physics and Cosmology, Oct. 29 - Nov. 2, 2018

7/15

Results 2/5

1 Detectability at GW observations

The 8th KIAS Workshop on Particle Physics and Cosmology, Oct. 29 - Nov. 2, 2018

Results 3/5

~ Current bounds ~

5

Results 4/5

2 Collider measurements

~ Precision measurements of к @ILC 250GeV 2ab⁻¹ ~ Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947 (JHEP)

 $\Delta \kappa_{Z(W)}$: **0.38** (1.8)%@ILC250GeV 2ab⁻¹ [Fujii et al., 1710.07621]

10/15

Results 5/5

③ Dark photon searches

• Prediction: Detectable GW signal $\rightarrow m_X \gtrsim 25 \text{GeV}, g_X \gtrsim 0.5$

1/15

Toshinori MATSUI [KIAS] The 8th KIAS Workshop on Particle Physics and Cosmology, Oct. 29 - Nov. 2, 2018

Summary

We can explore the model by complementarity of collider measurements and GW observations!

12/15

Conclusions

- We have investigated models with $U(1)_X$ gauge symmetry.
 - Mass of a dark photon (X_{μ}) , which can be vector DM by imposing Z_2 , is generated by spontaneous breaking of a dark Higgs field (S).
- We have explored comprehensively the patterns of PT and the detectability of GWs from 1stOPT as well as various collider and theoretical bounds.
- We expect the model with 1stOPT will be tested by the complementarity of GW observations and (in)direct searches for 2nd Higgs boson and dark photon (or DM).
 - We have found that GW signals are detectable only for larger dark photon mass region ($m_{\chi} \gtrsim 25$ GeV with $g_{\chi} \gtrsim 0.5$).

15

Back Up

A numerical result on (m_H, θ) by fixing (m_X, g_X)

Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947

A numerical result on (m_H, θ) by fixing (m_X, g_X)

Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947

A numerical result on (m_H, θ) by fixing (m_X, g_X)

Hashino, Kakizaki, Kanemura, Ko, TM, 1802.02947

Two cases in $U(1)_{X}$ model

- <u>Model A</u> (A general case for nonzero ε)
 - The parameter space (m_{χ}, ε) is constrained by various experiments of **dark photon search**.
 - We investigate the complementarity of dark photon searches and GW observations. [Addazi and Marciano, 1703.03248 (CPC)]
- <u>Model B</u> (An optional case for $\varepsilon \rightarrow 0$)
 - X_{μ}^{0} boson can be a DM candidate if we assume it to be odd under the Z_{2} sym. (Vector DM) [cf. Baek, Ko, Park, Senaha, 1212.2131 (JHEP)]
 - The Z_2 symmetry removes the kinetic mixing term, making X_{μ}^{0} stable; $\epsilon \rightarrow 0$ limit.
 - We consider current DM constraints as a scenario.

A case for dark photon as Vector DM

Higgs portal DM w/1stOPT

• <u>Singlet scalar DM</u> (5 parameters) <u>1210.4196, 1409.0005, 1611.02073, 1702.06124, 1704.03381, ...</u>

 $\mathcal{L}_{\mathrm{SSDM}} = -V_0(\Phi, S)$

- $V_{0}(\Phi,S) = -\mu_{\Phi}^{2}|\Phi|^{2} + \frac{1}{2}\mu_{S}^{2}S^{2} + \lambda_{\Phi}|\Phi|^{4} + \frac{1}{4}\lambda_{S}S^{4} + \frac{1}{2}\lambda_{\Phi S}|\Phi|^{2}S^{2}$ $\langle S \rangle = 0 \qquad m_{S}^{2} = \mu_{S}^{2} + \lambda_{HS}v^{2}$
- Scalar potential is imposed unbroken Z_2 symmetry.
- PT can be caused by thermal loop effect, but excluded by DM direct searches. [Curtin, Meade, Yu, 1409.0005 (JHEP)]

 \rightarrow Z₃ extension [Z. Kang, P. Ko, TM, 1706.09721 (JHEP)]

• <u>Singlet Fermion DM</u> (10 parameters) 1112.1847, 1209.4163, 1305.3452, 1402.3087, ...

 $\mathcal{L}_{\text{SFDM}} = \overline{\psi}(i\partial \!\!\!/ - m_{\psi_0})\psi - \lambda S \overline{\psi}\psi - V_0(\Phi, S)$ $V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4 + \mu_{\Phi S} |\Phi|^2 S + \frac{\lambda_{\Phi S}}{2} |\Phi|^2 S^2 + \mu_S^3 S + \frac{m_S^2}{2} S^2 + \frac{\mu_S'}{3} S^3 + \frac{\lambda_S}{4} S^4$ $S = v_S + \phi_2 \qquad m_{\psi} \equiv m_{\psi_0} + \lambda v_S$

- Scalar potential is general shape with a real Higgs singlet scalar field (HSM).
- PT is dominantly caused by tree level (scalar mixing) effect. [Hashino, Kakizaki, Kanemura, Ko, TM, 1609.00297 (PLB)]
- DM contributes as the loop effect. [Li, Zhou, 1402.3087 (JHEP)]

• Vector DM (6 parameters) 1212.2131, 1412.3823, ...

$$\mathcal{L}_{\text{VDM}} = -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^2 + V_0(\Phi, S) \qquad V_0(\Phi, S) = -\mu_{\Phi}^2 |\Phi|^2 - \mu_S^2 |S|^2 + \lambda_{\Phi} |\Phi|^4 + \lambda_S |S|^4 + \lambda_{\Phi S} |\Phi|^2 |S|^2$$

$$D_{\mu}S = (\partial_{\mu} + ig_X Q_S X_{\mu})S \qquad S = \frac{1}{\sqrt{2}} (v_S + \phi_2 + ix) \qquad m_X \equiv g_X |Q_S| v_S$$
- Scalar potential is a case for the spontaneously broken Z₂ symmetry in HSM.