# Introduction to Resurgence and Non-perturbative Physics 

## Gerald Dunne

## University of Connecticut

# Kavli Pan Asian Winter School Strings, Particles and Cosmology Sogang University, Seoul, January 2019 

GD \& Mithat Ünsal, reviews: 1511.05977, 1601.03414, 1603.04924
recent KITP Program: Resurgent Asymptotics in Physics and Mathematics, Fall 2017 future Isaac Newton Institute Programme: Universal Resurgence, 2020/2021

## Resurgence and Non-perturbative Physics

1. Lecture 1: Basic Formalism of Trans-series and Resurgence

- asymptotic series in physics; Borel summation
- trans-series completions \& resurgence
- examples: linear and nonlinear ODEs

2. Lecture 2: Applications to Quantum Mechanics and QFT

- instanton gas, saddle solutions and resurgence
- infrared renormalon problem in QFT
- Picard-Lefschetz thimbles

3. Lecture 3: Resurgence and Large $N$

- Mathieu equation and Nekrasov-Shatashvili limit of $\mathcal{N}=2$ SUSY QFT

4. Lecture 4: Resurgence and Phase Transitions

- Gross-Witten-Wadia Matrix Model
recall: Mathieu Equation: $-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\cos (x) \psi=u \psi$

$u_{ \pm}(\hbar, N)=u_{\text {pert }}(\hbar, N) \pm \frac{\hbar}{\sqrt{2 \pi}} \frac{1}{N!}\left(\frac{32}{\hbar}\right)^{N+\frac{1}{2}} \exp \left[-\frac{8}{\hbar}\right] \mathcal{P}_{\text {inst }}(\hbar, N)+\ldots$
$\mathcal{P}_{\text {inst }}(\hbar, N)=\frac{\partial u_{\text {pert }}(\hbar, N)}{\partial N} \exp \left[S \int_{0}^{\hbar} \frac{d \hbar}{\hbar^{3}}\left(\frac{\partial u_{\text {pert }}(\hbar, N)}{\partial N}-\hbar+\frac{\left(N+\frac{1}{2}\right) \hbar^{2}}{S}\right)\right.$
GD \& Ünsal (2013); Basar \& GD (2015): applies to bands \&gaps


## recall: Resurgence of $\mathcal{N}=2 \mathrm{SUSY} \operatorname{SU}(2)$

- moduli parameter: $u=\left\langle\operatorname{tr} \Phi^{2}\right\rangle$
- electric: $u \gg 1 ;$ magnetic: $u \sim 1 ;$ dyonic: $u \sim-1$
- $a=\langle$ scalar $\rangle, \quad a_{D}=\langle$ dual scalar $\rangle, \quad a_{D}=\frac{\partial \mathcal{W}}{\partial a}$
- Nekrasov twisted superpotential $\mathcal{W}(a, \hbar, \Lambda)$ :
- Mathieu equation:

$$
-\frac{\hbar^{2}}{2} \frac{d^{2} \psi}{d x^{2}}+\Lambda^{2} \cos (x) \psi=u \psi \quad, \quad a \equiv \frac{N \hbar}{2}
$$

- Mathieu P/NP relation $\equiv$ (quantum) Matone relation:

$$
u(a, \hbar)=\frac{i \pi}{2} \Lambda \frac{\partial \mathcal{W}(a, \hbar, \Lambda)}{\partial \Lambda}-\frac{\hbar^{2}}{48}
$$

- $\mathcal{N}=2^{*} \quad \leftrightarrow \quad$ Lamé equation


## Classical Genus 1 Structure

- energy-momentum relation defines a Riemann surface

$$
\begin{aligned}
u & =\frac{p^{2}}{2}+V(x) \\
p^{2} & =2 u-2 V(x)
\end{aligned}
$$



## Classical Genus 1 Structure

- energy-momentum relation defines a Riemann surface

$$
\begin{aligned}
u & =\frac{p^{2}}{2}+V(x) \\
p^{2} & =2 u-2 V(x)
\end{aligned}
$$

- quartic $V$ (or less) $\Rightarrow$ genus 1: torus
- two independent cycles: $\alpha=$ "well" $\quad, \quad \beta=$ "barrier"

$$
\begin{array}{ll}
a_{0}(u)=\sqrt{2} \oint_{\alpha} d x \sqrt{u-V(x)}, \quad \omega_{0}(u)=\frac{1}{\sqrt{2}} \oint_{\alpha} \frac{d x}{\sqrt{u-V(x)}} \\
a_{0}^{D}(u)=\sqrt{2} \oint_{\beta} d x \sqrt{u-V(x)}, \quad \omega_{0}^{D}(u)=\frac{1}{\sqrt{2}} \oint_{\beta} \frac{d x}{\sqrt{u-V(x)}}
\end{array}
$$

## Classical Genus 1 Structure

- energy-momentum relation defines a Riemann surface

$$
\begin{aligned}
u & =\frac{p^{2}}{2}+V(x) \\
p^{2} & =2 u-2 V(x)
\end{aligned}
$$

- quartic $V$ (or less) $\Rightarrow$ genus 1: torus
- two independent cycles: $\alpha=$ "well" $\quad, \quad \beta=$ "barrier"

$$
\begin{array}{ll}
a_{0}(u)=\sqrt{2} \oint_{\alpha} d x \sqrt{u-V(x)}, \quad \omega_{0}(u)=\frac{1}{\sqrt{2}} \oint_{\alpha} \frac{d x}{\sqrt{u-V(x)}} \\
a_{0}^{D}(u)=\sqrt{2} \oint_{\beta} d x \sqrt{u-V(x)}, \quad \omega_{0}^{D}(u)=\frac{1}{\sqrt{2}} \oint_{\beta} \frac{d x}{\sqrt{u-V(x)}}
\end{array}
$$

- periods and actions are elliptic functions: $\mathbb{K}, \mathbb{E}, \mathbb{T}$
- periods satisfy 2 nd order ODE with respect to $u$
- actions satisfy $2 \mathrm{nd} / 3 \mathrm{rd}$ order ODE (Picard-Fuchs) w.r.t.


## Quantization: "All-orders WKB", "Exact WKB"

- formal expansion in $\hbar^{2}$

$$
a(u, \hbar)=\sum_{n=0}^{\infty} \hbar^{2 n} a_{n}(u) \quad, \quad a^{D}(u, \hbar)=\sum_{n=0}^{\infty} \hbar^{2 n} a_{n}^{D}(u)
$$

- explicit expansion (Dunham, 1932)

$$
\begin{aligned}
a(u, \hbar)= & \sqrt{2}\left(\oint_{\alpha} \sqrt{u-V} d x-\frac{\hbar^{2}}{2^{6}} \oint_{\alpha} \frac{\left(V^{\prime}\right)^{2}}{(u-V)^{5 / 2}} d x\right. \\
& \left.-\frac{\hbar^{4}}{2^{13}} \oint_{\alpha}\left(\frac{49\left(V^{\prime}\right)^{4}}{(u-V)^{11 / 2}}-\frac{16 V^{\prime} V^{\prime \prime \prime}}{(u-V)^{7 / 2}}\right) d x-\ldots\right) \\
a^{D}(u, \hbar)= & \sqrt{2}\left(\oint_{\beta} \sqrt{u-V} d x-\frac{\hbar^{2}}{2^{6}} \oint_{\beta} \frac{\left(V^{\prime}\right)^{2}}{(u-V)^{5 / 2}} d x\right. \\
& \left.-\frac{\hbar^{4}}{2^{13}} \oint_{\beta}\left(\frac{49\left(V^{\prime}\right)^{4}}{(u-V)^{11 / 2}}-\frac{16 V^{\prime} V^{\prime \prime \prime}}{(u-V)^{7 / 2}}\right) d x-\ldots\right)
\end{aligned}
$$

- identical integrands !


## Origin of Perturbative/Non-Perturbative Relation for Genus 1

1. classical geometry (Riemann): $a_{0}(u)$ determines $a_{0}^{D}(u)$

## Origin of Perturbative/Non-Perturbative Relation for Genus 1

1. classical geometry (Riemann): $a_{0}(u)$ determines $a_{0}^{D}(u)$
2. perturbation theory is equivalent to inversion of all-orders Bohr-Sommerfeld (here, a monodromy condition):

$$
a(u, \hbar)=2 \pi \hbar\left(N+\frac{1}{2}\right) \quad, \quad N=0,1,2, \ldots
$$

## Origin of Perturbative/Non-Perturbative Relation for Genus 1

1. classical geometry (Riemann): $a_{0}(u)$ determines $a_{0}^{D}(u)$
2. perturbation theory is equivalent to inversion of all-orders Bohr-Sommerfeld (here, a monodromy condition):

$$
a(u, \hbar)=2 \pi \hbar\left(N+\frac{1}{2}\right) \quad, \quad N=0,1,2, \ldots
$$

3. all higher order terms, $a_{n}(u)$ and $a_{n}^{D}(u)$, are generated by action of differential operators on $a_{0}(u)$ and $a_{0}^{D}(u)$

$$
a_{n}(u)=\mathcal{D}_{u}^{(n)} a_{0}(u) \quad, \quad a_{n}^{D}(u)=\mathcal{D}_{u}^{(n)} a_{0}^{D}(u)
$$

where $\mathcal{D}_{u}^{(n)}$ and $\mathcal{D}_{u}^{(n)}$ are the same! (Legendre, Weierstrass, ...)

## Origin of Perturbative/Non-Perturbative Relation for Genus 1

1. classical geometry (Riemann): $a_{0}(u)$ determines $a_{0}^{D}(u)$
2. perturbation theory is equivalent to inversion of all-orders Bohr-Sommerfeld (here, a monodromy condition):

$$
a(u, \hbar)=2 \pi \hbar\left(N+\frac{1}{2}\right) \quad, \quad N=0,1,2, \ldots
$$

3. all higher order terms, $a_{n}(u)$ and $a_{n}^{D}(u)$, are generated by action of differential operators on $a_{0}(u)$ and $a_{0}^{D}(u)$

$$
a_{n}(u)=\mathcal{D}_{u}^{(n)} a_{0}(u) \quad, \quad a_{n}^{D}(u)=\mathcal{D}_{u}^{(n)} a_{0}^{D}(u)
$$

where $\mathcal{D}_{u}^{(n)}$ and $\mathcal{D}_{u}^{(n)}$ are the same! (Legendre, Weierstrass, ...)
4. knowing $a(u, \hbar)$ to some order $\Leftrightarrow$ knowledge of $\mathcal{D}_{u}^{(n)}$
$\Rightarrow$ we therefore know $a^{D}(u, \hbar)$ to the same order

## Origin of Perturbative/Non-Perturbative Relation for Genus 1

1. classical geometry (Riemann): $a_{0}(u)$ determines $a_{0}^{D}(u)$
2. perturbation theory is equivalent to inversion of all-orders Bohr-Sommerfeld (here, a monodromy condition):

$$
a(u, \hbar)=2 \pi \hbar\left(N+\frac{1}{2}\right) \quad, \quad N=0,1,2, \ldots
$$

3. all higher order terms, $a_{n}(u)$ and $a_{n}^{D}(u)$, are generated by action of differential operators on $a_{0}(u)$ and $a_{0}^{D}(u)$

$$
a_{n}(u)=\mathcal{D}_{u}^{(n)} a_{0}(u) \quad, \quad a_{n}^{D}(u)=\mathcal{D}_{u}^{(n)} a_{0}^{D}(u)
$$

where $\mathcal{D}_{u}^{(n)}$ and $\mathcal{D}_{u}^{(n)}$ are the same! (Legendre, Weierstrass, ...)
4. knowing $a(u, \hbar)$ to some order $\Leftrightarrow$ knowledge of $\mathcal{D}_{u}^{(n)}$
$\Rightarrow$ we therefore know $a^{D}(u, \hbar)$ to the same order
$\Rightarrow$ "perturbation theory encodes all non-perturbative physics""

## Origin of Perturbative/Non-Perturbative Relation for Genus 1

Exercise 7:
(i) For the Mathieu system, evaluate the classical actions and periods in terms of hypergeometric functions, and identify the 2nd order Picard-Fuchs equation that they satisfy, as a function of energy $u$.
(ii) Use Dunham's expressions for the all-orders WKB expansion to show that the first quantum correction actions $a_{1}(u)$ and $a_{1}^{D}(u)$ can be expressed as simple differential operators (w.r.t. $u$ ) acting on $a_{0}(u)$ and $a_{0}^{D}(u)$, respectively. Note that the differential operator is the same in the two cases.

## Quantization of Mathieu System

- P/NP relations in terms of (all-orders) quantum actions
- Mathieu has all-orders quantum Matone relation:

$$
\frac{\partial u(a, \hbar)}{\partial a}=\frac{i \pi}{2}\left(a^{D}(a, \hbar)-a \frac{\partial a^{D}(a, \hbar)}{\partial a}-\hbar \frac{\partial a^{D}(a, \hbar)}{\partial \hbar}\right)
$$

Flume et al (2004)

- Mathieu has all-orders quantum Wronskian relation:

$$
\left[a(u, \hbar)-\hbar \frac{\partial a(u, \hbar)}{\partial \hbar}\right] \frac{\partial a^{D}(u, \hbar)}{\partial u}-\left[a^{D}(u, \hbar)-\hbar \frac{\partial a^{D}(u, \hbar)}{\partial \hbar}\right] \frac{\partial a(u, \hbar)}{\partial u}=\frac{2 i}{\pi}
$$

## Analytic Continuation of Path Integrals: Lefschetz Thimbles

$$
\int \mathcal{D} A e^{-\frac{1}{g^{2}} S[A]}=\sum_{\text {thimbles } k} \mathcal{N}_{k} e^{-\frac{i}{g^{2}} S_{\text {imag }}\left[A_{k}\right]} \int_{\Gamma_{k}} \mathcal{D} A e^{-\frac{1}{g^{2}} S_{\text {real }}[A]}
$$

Lefschetz thimble = "functional steepest descents contour" remaining path integral has real measure:
(i) Monte Carlo
(ii) semiclassical expansion
(iii) exact resurgent analysis
resurgence: asymptotic expansions about different saddles are closely related
requires a deeper understanding of complex configurations and analytic continuation of path integrals ...

Stokes phenomenon: intersection numbers $\mathcal{N}_{k}$ can change with phase of parameters

## Thimbles from Gradient Flow

gradient flow to generate steepest descent thimble:

$$
\frac{\partial}{\partial \tau} A(x ; \tau)=-\overline{\frac{\delta S}{\delta A(x ; \tau)}}
$$

- keeps $\operatorname{Im}[S]$ constant, and $\operatorname{Re}[S]$ is monotonic

$$
\begin{gathered}
\frac{\partial}{\partial \tau}\left(\frac{S-\bar{S}}{2 i}\right)=-\frac{1}{2 i} \int\left(\frac{\delta S}{\delta A} \frac{\partial A}{\partial \tau}-\overline{\frac{\delta S}{\delta A}} \frac{\overline{\partial A}}{\partial \tau}\right)=0 \\
\frac{\partial}{\partial \tau}\left(\frac{S+\bar{S}}{2}\right)=-\int\left|\frac{\delta S}{\delta A}\right|^{2}
\end{gathered}
$$

- Chern-Simons theory (Witten 2010)
- comparison with complex Langevin (Aarts 2013, ...)
- lattice (Aurora, 2013; Tokyo/RIKEN): Bose-gas $\checkmark$
- generalized thimble method: (Alexandru, Basar, Bedaque, et alı, 2016)辰,


## Thimbles and Gradient Flow

Exercise 8:
use complexified gradient flow to find the steepest descent contours for the Airy function integral, as a function of the phase of $x$, the argument of $A i(x)$. Compare with the plots in Lecture 2.

## Generalized Thimble Method

- idea: compromise by "just getting close to" the thimbles

$$
\operatorname{Ai}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(\frac{1}{3} t^{3}+x t\right)} d t
$$

- exact value: $\mathrm{Ai}(5)=0.000108344428136074$
- real parts of integrand at $x=5$ :


$$
\mathrm{Ai}(5)=0 . \underline{00010834443} 8640742 \quad \mathrm{Ai}(5)=0 . \underline{000108344428136076}
$$

- reduces the sign problem to a manageable level


## Thimbles from Gradient Flow

- generalized thimble method: (Alexandru, Başar, Bedaque et al, 2016)



## Resurgence and Phase Transitions

idea:
phase transition $\longleftrightarrow$ Stokes jump

## Resurgence and Phase Transitions: Examples

- particle-on-circle (Schulman PhD thesis 1968): sum over spectrum versus sum over winding (saddles)
- Bose gas (Cristoforetti et al, Alexandru et al)
- Thirring model (Alexandru et al)
- Hubbard model (Tanizaki et al; ...)
- Ising model (GD, 1901.02076; Coger, GD, to appear)
- Hydrodynamics: short time/late time (Heller et al; Basar, GD)
- Large N matrix, localization (Mariño, Schiappa, Couso, Russo, ...)
- Gross-Witten-Wadia model (Mariño, 2008; Ahmed, GD, 2017)
- Painlevé systems (Costin, GD, to appear)


## Phase Transition in $1+1$ dim. Gross-Neveu Model

$$
\mathcal{L}=\bar{\psi} i \not \partial \psi+\frac{g^{2}}{2}(\bar{\psi} \psi)^{2}
$$

- large $N_{f}$ chiral symmetry breaking phase transition

- saddles: exact solution of inhomogeneous gap equation

$$
\sigma(x ; T, \mu)=\frac{\delta}{\delta \sigma(x ; T, \mu)} \operatorname{Tr}_{T, \mu} \ln (i \not \partial-\sigma(x ; T, \mu))
$$

(Thies 2003; Basar, GD, Thies, 2011; Ahmed, 2018)

## Phase Transition in $1+1$ dim. Gross-Neveu Model

- tricritical point: divergent Ginzburg-Landau expansion

$$
\Psi(T, \mu)=\sum_{n} \alpha_{n}(T, \mu) f_{n}[\sigma(x ; T, \mu)]
$$

- successive orders of GL expansion reveal the full crystal phase (Basar, GD, Thies, 2011; Ahmed, 2018)



Order $\lambda^{10}$


- most difficult point: $\mu_{c}=\frac{2}{\pi}, T=0$


## Phase Transition in $1+1$ dim. Gross-Neveu Model

- $T=0$ : exact (implicit transcendental) expressions: expansions change character
- large $\mu$ expansion $\Rightarrow$ location of critical point $\mu_{c}=\frac{2}{\pi}$
- non-perturb. $e^{-\frac{1}{\rho}}$ effects at phase transition at $\mu_{c}=\frac{2}{\pi}$
- high density (convergent !)

$$
\mathcal{E}(\rho) \sim \frac{\pi}{2} \rho^{2}\left(1-\frac{1}{32(\pi \rho)^{4}}+\frac{3}{8192(\pi \rho)^{8}}-\ldots\right)
$$

- low density (non-perturbative !)

$$
\mathcal{E}(\rho) \sim-\frac{1}{4 \pi}+\frac{2 \rho}{\pi}+\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{e^{-k / \rho}}{\rho^{k-2}} \mathcal{F}_{k-1}(\rho)
$$

- analogous for $\mu$ expansion


## 2d Yang-Mills: Douglas-Kazakov Large $N$ Phase Transition

- 2d Yang-Mills on a sphere
- "spectral sum" for partition function

$$
Z(a, N)=\sum_{R}(\operatorname{dim} R)^{2} e^{-\frac{a}{2 N} C_{2}(R)}
$$

- large $N$ phase transition at $a_{c}=\pi^{2} \quad$ (Douglas-Kazakov)
- "instanton condensation" (Gross-Matytsin)


## 2d Yang-Mills: Douglas-Kazakov Large $N$ Phase Transition

- 2d Yang-Mills on a sphere
- "spectral sum" for partition function

$$
Z(a, N)=\sum_{R}(\operatorname{dim} R)^{2} e^{-\frac{a}{2 N} C_{2}(R)}
$$

- large $N$ phase transition at $a_{c}=\pi^{2} \quad$ (Douglas-Kazakov)
- "instanton condensation" (Gross-Matytsin)
- other limit: saddles $=$ monopole solutions: $A_{\mu}=\vec{n} \mathcal{A}_{\mu}$

$$
Z(a, N)=\sum_{\vec{n}} \mathcal{F}(\vec{n}) e^{-\frac{2 \pi^{2} N}{a} \vec{n}^{2}}
$$

- dual descriptions: generalized Poisson duality
- phase transition $=$ change of saddles


## Resurgence in Matrix Models: Mariño: 0805.3033, Ahmed \& GD: 1710.01812

 Gross-Witten-Wadia Unitary Matrix Model$$
Z\left(g^{2}, N\right)=\int_{U(N)} D U \exp \left[\frac{1}{g^{2}} \operatorname{tr}\left(U+U^{\dagger}\right)\right]
$$

- one-plaquette matrix model for 2d lattice Yang-Mills
- two variables: $g^{2}$ and $N$ ('t Hooft coupling: $t \equiv g^{2} N / 2$ )
- 3rd order phase transition at $N=\infty, t=1$ (universal!)
- double-scaling limit: Painlevé II
- physics of phase transition $=$ condensation of instantons
- similar to 2d Yang-Mills on sphere and disc


## Gross-Witten-Wadia $N=\infty$ Phase Transition

3rd order transition: kink in the specific heat


FIG. 2. The specific heat per degree of freedom, $C /$ $N^{2}$, as a function of $\lambda$ (temperature).
D. Gross, E. Witten, 1980

## Gross-Witten: beta function at infinite $N$

- infinite $N: \quad \beta(\lambda)=\left\{\begin{array}{lc}-2 \lambda \log \lambda & \lambda \geq 2 \\ 2(\lambda-4) \log \frac{4}{4-\lambda} & \lambda \leq 2\end{array}\right.$


FIG. 1. The $\beta$ function as a function of $\lambda$. The dashed lines are the (invalid) extrapolation of the weak- and strong-coupling results beyond the phase transition at $\lambda=2$.

Wilson loop:

$$
W(\lambda, N)=\langle\operatorname{tr} U\rangle:=e^{-a^{2} \Sigma}
$$

$$
\beta(\lambda, N):=-\frac{\partial \lambda(a, N)}{\partial \ln \lambda}
$$

- naive large $N$ incorrectly predicts new fixed points at $\lambda=1$ and $\lambda=4$
D. Gross, E. Witten, 1980


## Gross-Witten: beta function at large $N$

- for any $N: \beta(\lambda)=\frac{2}{\frac{d}{d \lambda} \log \log W_{N}(\lambda)} \quad \rightarrow \underline{\text { trans-series }}$ for $\beta$

- resurgent large $N$ smoothly passes from weak-coupling to strong-coupling curve, developing a kink at $N=\infty$


## Resurgence in Gross-Witten-Wadia Model

- random matrix theory/orthogonal polynomials result: partition function $=N \times N$ Toeplitz determinant

$$
Z\left(g^{2}, N\right)=\operatorname{det}\left(I_{j-k}(x)\right)_{j, k=1, \ldots N} \quad, \quad x \equiv \frac{2}{g^{2}}
$$

- explicit, but not particularly efficient for $N \rightarrow \infty$


## Gross-Witten-Wadia Phase Transition and Lee-Yang zeros

Lee-Yang: complex zeros of $Z$ pinch the real axis at the phase transition point in the thermodynamic limit


Fig. 1. The first quadrant of the conjectured domain $U_{\infty}$ that is filled densely with zeros in the limit $N \rightarrow \infty$

## Gross-Witten-Wadia Unitary Matrix Model

P. Buividovich, GD, S. Valgushev, 1512.09021

- 'brute force' numerical search for saddles
- in terms of eigenvalues $e^{i z_{j}}$ :

$$
Z=\int_{-\pi}^{\pi} \prod_{i=1}^{N} d z_{i} \exp \left[-\frac{2 N}{\lambda} \sum_{i} \cos \left(z_{i}\right)+\ln \prod_{i<j} \sin ^{2}\left(\frac{z_{i}-z_{j}}{2}\right)\right]
$$

- saddle point approach: $\partial S / \partial z_{i}=0$
- which saddles (real/complex?) govern large $N$ behavior?
- how to see the "phase transition" at finite $N$ ?


## Gross-Witten-Wadia Model: weak coupling: $\lambda<2$



- "eigenvalue tunneling" of saddles into the complex plane
- number of complex eigenvalues: $m=$ instanton number
- dominant non-perturbative saddle has $m=1$


## Gross-Witten-Wadia Model: strong coupling: $\lambda>2$



- "eigenvalue tunneling" of saddles into the complex plane
- number of complex eigenvalues: $m=$ instanton number
- dominant non-perturbative saddle has $m=2$


## Gross-Witten-Wadia Model: non-vacuum saddles

- weak coupling $(\lambda<2)$ : $m=1$ dominant
- strong coupling $(\lambda>2): m=2$ dominant


$$
\begin{array}{rll}
\lambda<2: & S_{I}^{(\text {weak })} & =4 / \lambda \sqrt{1-\lambda / 2}-\operatorname{arccosh}((4-\lambda) / \lambda) \\
\lambda>2: & S_{I}^{(\text {strong })} & =2 \operatorname{arccosh}(\lambda / 2)-2 \sqrt{1-4 / \lambda^{2}}
\end{array}
$$

- microscopic view of strong-coupling "instanton/saddle"


## Resurgence in Gross-Witten-Wadia Model

- random matrix theory/orthogonal polynomials result: partition function $=N \times N$ Toeplitz determinant

$$
Z\left(g^{2}, N\right)=\operatorname{det}\left(I_{j-k}(x)\right)_{j, k=1, \ldots N} \quad, \quad x \equiv \frac{2}{g^{2}}
$$

- weak coupling: resurgent trans-series for $I_{j-k}(x)$
- strong coupling: convergent series for $I_{j-k}(x)$
- interesting transition between the two, esp. at large $N$


## All-Orders Steepest Descents: Darboux Theorem

Exercise 3: the modified Bessel function has the large $x$ asymptotic expansion:

$$
I_{j}(x) \sim \frac{e^{x}}{\sqrt{2 \pi x}} \sum_{n=0}^{\infty}(-1)^{n} \frac{\alpha_{n}(j)}{x^{n}} \pm i e^{i j \pi} \frac{e^{-x}}{\sqrt{2 \pi x}} \sum_{n=0}^{\infty} \frac{\alpha_{n}(j)}{x^{n}}, \quad\left|\arg (x)-\frac{\pi}{2}\right|<\pi
$$

where the coefficients are

$$
\alpha_{j}(n)=\frac{\cos (\pi j)}{\pi}\left(-\frac{1}{2}\right)^{n} \frac{\Gamma\left(n+\frac{1}{2}-j\right) \Gamma\left(n+\frac{1}{2}+j\right)}{\Gamma(n+1)}
$$

(i) show that the large-order growth $(n \rightarrow \infty)$ is
$\alpha_{n}(j) \sim \frac{\cos (j \pi)}{\pi} \frac{(-1)^{n}(n-1)!}{2^{n}}\left(\alpha_{0}(j)-\frac{2 \alpha_{1}(j)}{(n-1)}+\frac{2^{2} \alpha_{2}(j)}{(n-1)(n-2)}-\ldots\right)$
(ii) what is the significance of the $\cos (j \pi)$ prefactor?

## Resurgence in Gross-Witten-Wadia Model

- partition function $=N \times N$ Toeplitz determinant

$$
Z\left(g^{2}, N\right)=\operatorname{det}\left(I_{j-k}(x)\right)_{j, k=1, \ldots . N} \quad, \quad x \equiv \frac{2}{g^{2}}
$$

- weak-coupling resurgent trans-series: $N+1$ instantons

$$
\begin{aligned}
Z(x, N) \sim & Z_{0}(x, N)\left[\sum_{n=0}^{\infty} \frac{a_{n}^{(0)}(N)}{x^{n}}+i \frac{(4 x)^{N-1}}{\Gamma(N)} e^{-2 x} \sum_{n=0}^{\infty} \frac{a_{n}^{(1)}(N)}{x^{n}}+\right. \\
& \left.\ldots+\frac{G(N+1)}{\prod_{i=0}^{N-1} \Gamma(N-i)} e^{-2 N x} \sum_{n=0}^{\infty} \frac{a_{n}^{(N)}(N)}{x^{n}}\right]
\end{aligned}
$$

- but strong-coupling expansion is convergent!

$$
Z(x, N) \sim e^{x^{2} / 4}\left[1-\left(\frac{(x / 2)^{N+1}}{(N+1)!}\right)^{2}\left(1-\frac{1}{2} \frac{(N+1) x^{2}}{(N+2)^{2}}+\ldots\right)+\ldots\right]
$$

## Resurgence in Gross-Witten-Wadia Model

- idea: map it to a Painlevé function (Painlevé III)

$$
\Delta(x, N) \equiv\langle\operatorname{det} U\rangle=\frac{\operatorname{det}\left[I_{j-k+1}(x)\right]_{j, k=1, \ldots, N}}{\operatorname{det}\left[I_{j-k}(x)\right]_{j, k=1, \ldots, N}}
$$

- for any $N, \Delta(x, N)$ satisfies a PIII-type equation:

$$
\Delta^{\prime \prime}+\frac{1}{x} \Delta^{\prime}+\Delta\left(1-\Delta^{2}\right)+\frac{\Delta}{\left(1-\Delta^{2}\right)}\left[\left(\Delta^{\prime}\right)^{2}-\frac{N^{2}}{x^{2}}\right]=0
$$

$\Rightarrow$ generate trans-series solutions: weak- \& strong-coupling

- $N$ is a parameter ! $\Rightarrow$ large $N$ limit by rescaling


## Resurgence in Gross-Witten-Wadia Model

- idea: map it to a Painlevé function (Painlevé III)

$$
\Delta(x, N) \equiv\langle\operatorname{det} U\rangle=\frac{\operatorname{det}\left[I_{j-k+1}(x)\right]_{j, k=1, \ldots, N}}{\operatorname{det}\left[I_{j-k}(x)\right]_{j, k=1, \ldots, N}}
$$

- for any $N, \Delta(x, N)$ satisfies a PIII-type equation:

$$
\Delta^{\prime \prime}+\frac{1}{x} \Delta^{\prime}+\Delta\left(1-\Delta^{2}\right)+\frac{\Delta}{\left(1-\Delta^{2}\right)}\left[\left(\Delta^{\prime}\right)^{2}-\frac{N^{2}}{x^{2}}\right]=0
$$

$\Rightarrow$ generate trans-series solutions: weak- \& strong-coupling

- $N$ is a parameter ! $\Rightarrow$ large $N$ limit by rescaling
- direct relation to the partition function:

$$
\Delta^{2}(x, N)=1-\frac{Z(x, N-1) Z(x, N+1)}{Z^{2}(x, N)}
$$

$Z(x, N)=\exp \left[\frac{1}{2} \int_{0}^{x} x d x\left(1-\Delta^{2}(x, N)\right)(1+\Delta(x, N-1) \Delta(x, N+1))\right]$

## Resurgence in Gross-Witten-Wadia Model

- weak-coupling expansion is a divergent series:
$\rightarrow$ trans-series non-perturbative completion
- strong-coupling expansion is a convergent series: but it still has a non-perturbative completion!


## Resurgence in Gross-Witten-Wadia Model

- weak-coupling expansion is a divergent series:
$\rightarrow$ trans-series non-perturbative completion
- strong-coupling expansion is a convergent series:
but it still has a non-perturbative completion!
- $\Delta$ small $\Rightarrow$ linearize $\rightarrow$ Bessel equation

$$
\begin{aligned}
& \Delta^{\prime \prime}+\frac{1}{x} \Delta^{\prime}+\Delta\left(1-\Delta^{2}\right)+\frac{\Delta}{\left(1-\Delta^{2}\right)}\left[\left(\Delta^{\prime}\right)^{2}-\frac{N^{2}}{x^{2}}\right]=0 \\
& \Rightarrow \Delta(x, N)]_{\text {strong }} \approx \sigma J_{N}(x)
\end{aligned}
$$

- strong-coupling expansion $\left(x \equiv \frac{2}{g^{2}}\right)$ is clearly convergent, but only agrees with expansion of $J_{N}(x)$ to order $x^{3 N}$. Why?


## Resurgence in Gross-Witten-Wadia Model

- weak-coupling expansion is a divergent series:
$\rightarrow$ trans-series non-perturbative completion
- strong-coupling expansion is a convergent series:
but it still has a non-perturbative completion!
- $\Delta$ small $\Rightarrow$ linearize $\rightarrow$ Bessel equation

$$
\begin{aligned}
& \Delta^{\prime \prime}+\frac{1}{x} \Delta^{\prime}+\Delta\left(1-\Delta^{2}\right)+\frac{\Delta}{\left(1-\Delta^{2}\right)}\left[\left(\Delta^{\prime}\right)^{2}-\frac{N^{2}}{x^{2}}\right]=0 \\
& \Rightarrow \Delta(x, N)]_{\text {strong }} \approx \sigma J_{N}(x)
\end{aligned}
$$

- strong-coupling expansion $\left(x \equiv \frac{2}{g^{2}}\right)$ is clearly convergent, but only agrees with expansion of $J_{N}(x)$ to order $x^{3 N}$. Why?
- full solution is a non-perturbative trans-series:

$$
\Delta(x, N)=\sum_{k=1,3,5, \ldots}^{\infty}\left(\sigma_{\text {strong }}\right)^{k} \Delta_{(k)}(x, N)
$$

## Resurgence in Gross-Witten-Wadia Model

- strong-coupling trans-series (convergent !!!):

$$
\Delta(x, N)=\sum_{k=1,3,5, \ldots}^{\infty}\left(\sigma_{\text {strong }}\right)^{k} \Delta_{(k)}(x, N)
$$


blue: exact , red: $\Delta_{(1)}=J_{5}(x)$,
black: includes $\Delta_{(3)}$

## Resurgence in GWW: 't Hooft limit and phase transition

- rescaled PIII equation: $t \equiv N g^{2} / 2 \equiv \frac{N}{x}$

$$
t^{2} \Delta^{\prime \prime}+t \Delta^{\prime}+\frac{N^{2} \Delta}{t^{2}}\left(1-\Delta^{2}\right)=\frac{\Delta}{1-\Delta^{2}}\left(N^{2}-t^{2}\left(\Delta^{\prime}\right)^{2}\right)
$$

- GWW $N=\infty$ phase transition:

$$
\Delta(t, N) \xrightarrow{N \rightarrow \infty}\left\{\begin{array}{lll}
0 & , \quad t \geq 1 & \text { (strong coupling) } \\
\sqrt{1-t} & , \quad t \leq 1 & \text { (weak coupling) }
\end{array}\right.
$$

- large $N$ :

$$
\begin{aligned}
& \frac{\Delta}{t^{2}}\left(1-\Delta^{2}\right)=\frac{\Delta}{1-\Delta^{2}} \\
\Rightarrow \quad & \Delta=0 \quad \text { or } \quad \Delta=\sqrt{1-t}
\end{aligned}
$$

## Resurgence in GWW: 't Hooft limit and phase transition

- Gross-Witten-Wadia $N=\infty$ phase transition:

$$
\Delta(t, N) \xrightarrow{N \rightarrow \infty}\left\{\begin{array}{lll}
0 & , \quad t \geq 1 & \text { (strong coupling) } \\
\sqrt{1-t} & , \quad t \leq 1 & \text { (weak coupling) }
\end{array}\right.
$$



$$
t \equiv \frac{N}{x} \equiv \frac{N g^{2}}{2}
$$

black lines: increasing $N$
red dashed line:
$\Delta=\sqrt{1-t}$

## Resurgence in GWW: 't Hooft limit and phase transition

- full large $N$ trans-series at weak-coupling:
$\Delta(t, N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_{n}^{(0)}(t)}{N^{2 n}}-\frac{i}{2 \sqrt{2 \pi N}} \sigma_{\text {weak }} \frac{t e^{-N S_{\text {weak }}(t)}}{(1-t)^{1 / 4}} \sum_{n=0}^{\infty} \frac{d_{n}^{(1)}(t)}{N^{n}}+\ldots$
- large $N$ weak-coupling action

$$
S_{\mathrm{weak}}(t)=\frac{2 \sqrt{1-t}}{t}-2 \operatorname{arctanh}(\sqrt{1-t})
$$

## Resurgence in GWW: 't Hooft limit and phase transition

- full large $N$ trans-series at weak-coupling:
$\Delta(t, N) \sim \sqrt{1-t} \sum_{n=0}^{\infty} \frac{d_{n}^{(0)}(t)}{N^{2 n}}-\frac{i}{2 \sqrt{2 \pi N}} \sigma_{\text {weak }} \frac{t e^{-N S_{\text {weak }}(t)}}{(1-t)^{1 / 4}} \sum_{n=0}^{\infty} \frac{d_{n}^{(1)}(t)}{N^{n}}+\ldots$
- large $N$ weak-coupling action

$$
S_{\text {weak }}(t)=\frac{2 \sqrt{1-t}}{t}-2 \operatorname{arctanh}(\sqrt{1-t})
$$

- large-order growth of perturbative coefficients $(\forall t<1)$ :

$$
d_{n}^{(0)}(t) \sim \frac{-1}{\sqrt{2}(1-t)^{3 / 4} \pi^{3 / 2}} \frac{\Gamma\left(2 n-\frac{5}{2}\right)}{\left(S_{\text {weak }}(t)\right)^{2 n-\frac{5}{2}}}\left[1+\frac{\left(3 t^{2}-12 t-8\right)}{96(1-t)^{3 / 2}} \frac{S_{\text {weak }}(t)}{\left(2 n-\frac{7}{2}\right)}+.\right.
$$

- confirm (parametric!) resurgence relations, for all $t$ :

$$
\sum_{n=0}^{\infty} \frac{d_{n}^{(1)}(t)}{N^{n}}=1+\frac{\left(3 t^{2}-12 t-8\right)}{96(1-t)^{3 / 2}} \frac{1}{N}+\ldots
$$

## Resurgence in GWW: 't Hooft limit and phase transition

- large $N$ transseries at strong-coupling: $\Delta(t, N) \approx \sigma J_{N}\left(\frac{N}{t}\right)$

$$
\Delta(t, N)=\sum_{k=1,3,5, \ldots}^{\infty}\left(\sigma_{\text {strong }}\right)^{k} \Delta_{(k)}(t, N)
$$

- "Debye expansion" for Bessel function: $J_{N}(N / t)$

$$
\begin{aligned}
\Delta(t, N) \sim & \frac{\sqrt{t} e^{-N S_{\mathrm{strong}(t)}}}{\sqrt{2 \pi N}\left(t^{2}-1\right)^{1 / 4}} \sum_{n=0}^{\infty} \frac{U_{n}(t)}{N^{n}} \\
& +\frac{1}{4\left(t^{2}-1\right)}\left(\frac{\sqrt{t} e^{-N S_{\mathrm{strong}}(t)}}{\sqrt{2 \pi N}\left(t^{2}-1\right)^{1 / 4}}\right)^{3} \sum_{n=0}^{\infty} \frac{U_{n}^{(1)}(t)}{N^{n}}+\ldots
\end{aligned}
$$

- large $N$ strong-coupling action: $S_{\mathrm{st}}(t)=\operatorname{arccosh}(\mathrm{t})-\sqrt{1-\frac{1}{t^{2}}}$


## Resurgence in GWW: 't Hooft limit and phase transition

- large $N$ transseries at strong-coupling: $\Delta(t, N) \approx \sigma J_{N}\left(\frac{N}{t}\right)$

$$
\Delta(t, N)=\sum_{k=1,3,5, \ldots}^{\infty}\left(\sigma_{\text {strong }}\right)^{k} \Delta_{(k)}(t, N)
$$

- "Debye expansion" for Bessel function: $J_{N}(N / t)$

$$
\begin{aligned}
\Delta(t, N) \sim & \frac{\sqrt{t} e^{-N S_{\text {strong }}(t)}}{\sqrt{2 \pi N}\left(t^{2}-1\right)^{1 / 4}} \sum_{n=0}^{\infty} \frac{U_{n}(t)}{N^{n}} \\
& +\frac{1}{4\left(t^{2}-1\right)}\left(\frac{\sqrt{t} e^{-N S_{\text {strong }}(t)}}{\sqrt{2 \pi N}\left(t^{2}-1\right)^{1 / 4}}\right)^{3} \sum_{n=0}^{\infty} \frac{U_{n}^{(1)}(t)}{N^{n}}+\ldots
\end{aligned}
$$

- large $N$ strong-coupling action: $S_{\text {st }}(t)=\operatorname{arccosh}(\mathrm{t})-\sqrt{1-\frac{1}{t^{2}}}$
- large-order/low-order (parametric) resurgence relations:
$U_{n}(t) \sim \frac{(-1)^{n}(n-1)!}{2 \pi\left(2 S_{\text {strong }}(t)\right)^{n}}\left(1+U_{1}(t) \frac{\left(2 S_{\text {strong }}(t)\right)}{(n-1)}+U_{2}(t) \frac{\left(2 S_{\text {strong }}(t)\right)^{2}}{(n-1)(n-2)}+\right.$


## Resurgence in GWW: 't Hooft limit and phase transition

- Debye expansion has unphysical divergence at $t=1$
- uniform asymptotic expansion:

$$
J_{N}\left(\frac{N}{t}\right) \sim\left(\frac{4\left(\frac{3}{2} S_{\text {strong }}(t)\right)^{2 / 3}}{1-1 / t^{2}}\right)^{\frac{1}{4}} \frac{\mathrm{Ai}\left(N^{\frac{2}{3}}\left(\frac{3}{2} S_{\text {strong }}(t)\right)^{2 / 3}\right)}{N^{\frac{1}{3}}}
$$



- nonlinear analogue of uniform WKB (coalescing saddles)


## Resurgence in GWW: 't Hooft limit and phase transition

- Wilson loop: $\mathcal{W} \equiv \frac{1}{N} \frac{\partial \ln Z}{\partial x}$

$$
\mathcal{W}(t, N)=\frac{1}{2 t}\left(1-\Delta^{2}(t, N)\right)(1+\Delta(t, N-1) \Delta(t, N+1))
$$

- uniform large $N$ approximation at strong-coupling:

$$
\left.\mathcal{W}(t, N)\right|^{\text {strong }} \approx \frac{1}{2 t}\left(1-J_{N}^{2}(N / t)\right)\left(1+J_{N-1}(N / t) J_{N+1}(N / t)\right)
$$


blue: exact
red: uniform large $N$ dashed: usual large $N$
uniform resummation of instantons \& fluctuations

## Resurgence in GWW: 't Hooft limit and phase transition

- uniform asymptotic expansion:

$$
\Delta_{\text {strong }}(N, t) \sim\left(\frac{4\left(\frac{3}{2} S_{\text {strong }}(t)\right)^{2 / 3}}{1-1 / t^{2}}\right)^{\frac{1}{4}} \frac{\mathrm{Ai}\left(N^{\frac{2}{3}}\left(\frac{3}{2} S_{\text {strong }}(t)\right)^{2 / 3}\right)}{N^{\frac{1}{3}}}
$$

- physical meaning of "uniform large-N instantons" ?
- nonlinear analogue of "uniform WKB"
- technically: coalescence of two saddles $\longrightarrow$ "bion"
- expect similar phenomena in QFT


## Resurgence in GWW: double-scaling limit = Painlevé II

- reduction cascade of Painlevé equations
- "zoom in" on vicinity of phase transition:

$$
\kappa \equiv N^{2 / 3}(t-1) \quad ; \quad \Delta(t, N)=\frac{t^{1 / 3}}{N^{1 / 3}} y(\kappa)
$$

- $N \rightarrow \infty$ with $\kappa$ fixed:
$\Delta$ PIII equation $\longrightarrow \frac{d^{2} y}{d \kappa^{2}}=2 y^{3}(\kappa)+2 \kappa y(\kappa)$
- e.g. on strong-coupling side:

$$
\lim _{N \rightarrow \infty} J_{N}\left(N-N^{1 / 3} \kappa\right)=\left(\frac{2}{N}\right)^{1 / 3} \operatorname{Ai}\left(2^{1 / 3} \kappa\right)
$$

- integral equation form of PII:

$$
y(\chi)=\sigma \operatorname{Ai}(\chi)+2 \pi \int_{\chi}^{\infty}\left[\operatorname{Ai}(\chi) \operatorname{Bi}\left(\chi^{\prime}\right)-\operatorname{Ai}\left(\chi^{\prime}\right) \operatorname{Bi}(\chi)\right] y^{3}\left(\chi^{\prime}\right) d \chi^{\prime}
$$

## Resurgence in GWW: double-scaling limit = Painlevé II

- "zoom in" on vicinity of phase transition:
- integral equation form of PII:

$$
y(\chi)=\sigma \operatorname{Ai}(\chi)+2 \pi \int_{\chi}^{\infty}\left[\operatorname{Ai}(\chi) \operatorname{Bi}\left(\chi^{\prime}\right)-\operatorname{Ai}\left(\chi^{\prime}\right) \operatorname{Bi}(\chi)\right] y^{3}\left(\chi^{\prime}\right) d \chi^{\prime}
$$


iterate $\longrightarrow$ resummed trans-series instanton expansion blue: exact red: leading uniform large $N$ dashed: sub-leading uniform large $N$ green dashed: usual large $N$

## Conclusions

- Resurgence systematically unifies perturbative and non-perturbative analysis, via trans-series
- trans-series 'encode' analytic continuation information
- expansions about different saddles are intimately related
- there is extra un-tapped 'magic' in perturbation theory
- QM, matrix models, large $N$, strings, SUSY QFT
- IR renormalon puzzle in asymptotically free QFT
- $\mathcal{N}=2$ and $\mathcal{N}=2^{*}$ SUSY gauge theory
- applications to sign problem and non-equil. path integrals
- promising progress \& many fascinating open problems


## A Few Selected References: books

- J.C. Le Guillou and J. Zinn-Justin (Eds.), Large-Order Behaviour of Perturbation Theory
- C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers
- R. B. Dingle, Asymptotic expansions: their derivation and interpretation
- O. Costin, Asymptotics and Borel Summability
- R. B. Paris and D. Kaminski, Asymptotics and Mellin-Barnes Integrals
- E. Delabaere, "Introduction to the Ecalle theory", In Computer Algebra and Differential Equations 193, 59 (1994), London Math. Soc. Lecture Note Series
- M. Mariño, Instantons and Large N:An Introduction to Non-Perturbative Methods in Quantum Field Theory, (Cambridge University Press, 2015).


## A Few Selected References: papers

- C.M. Bender and T.T. Wu, "Anharmonic oscillator", Phys. Rev. 184, 1231 (1969); "Large-order behavior of perturbation theory", Phys. Rev. Lett. 27, 461 (1971).
- E. B. Bogomolnyi, "Calculation of instanton-anti-instanton contributions in quantum mechanics", Phys. Lett. B 91, 431 (1980).
- M. V. Berry and C. J. Howls, "Hyperasymptotics for integrals with saddles", Proc. R. Soc. A 434, 657 (1991)
- J. Zinn-Justin \& U. D. Jentschura, "Multi-instantons and exact results I: Conjectures, WKB expansions, and instanton interactions," Annals Phys. 313, 197 (2004), quant-ph/0501136, "Multi-instantons and exact results II" Annals Phys. 313, 269 (2004), quant-ph/0501137
- E. Delabaere and F. Pham, "Resurgent methods in semi-classical asymptotics", Ann. Inst. H. Poincaré 71, 1 (1999)
- E. Witten, "Analytic Continuation Of Chern-Simons Theory," arXiv:1001.2933
- E. Witten, "A New Look At The Path Integral Of Quantum Mechanics," arXiv:1009.6032


## A Few Selected References: papers

- M. Mariño, R. Schiappa and M. Weiss, "Nonperturbative Effects and the Large-Order Behavior of Matrix Models and Topological Strings," Commun. Num. Theor. Phys. 2, 349 (2008), arXiv:0711.1954
- M. Mariño, "Nonperturbative effects and nonperturbative definitions in matrix models and topological strings," JHEP 0812, 114 (2008), arXiv:0805.3033.
- I. Aniceto, R. Schiappa and M. Vonk, "The Resurgence of Instantons in String Theory," Commun. Num. Theor. Phys. 6, 339 (2012), arXiv:1106.5922
- I. Aniceto and R. Schiappa, "Nonperturbative Ambiguities and the Reality of Resurgent Transseries", Commun. Math. Phys. 335, 183 (2015), arXiv:1308.1115
- I. Aniceto, J. G. Russo and R. Schiappa, "Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories", arXiv:1410.5834
- D. Dorigoni, "An Introduction to Resurgence, Trans-Series and Alien Calculus," arXiv:1411.3585.
- I. Aniceto, G. Basar and R. Schiappa, "A Primer on Resurgent Transseries and Their Asymptotics," arXiv:1802.10441.


## A Few Selected References: papers

- G. V. Dunne \& M. Unsal, "New Methods in QFT and QCD: From Large-N Orbifold Equivalence to Bions and Resurgence," Annual Rev. Nucl. Part. Science 2016, arXiv:1601.03414
- A. Behtash, G. V. Dunne, T. Schaefer, T. Sulejmanpasic \& M. Unsal, "Toward Picard-Lefschetz Theory of Path Integrals, Complex Saddles and Resurgence," Annals of Mathematical Sciences and Applications 2016, arXiv:1510.03435
- G. V. Dunne \& M. Ünsal, "Resurgence and Trans-series in Quantum Field Theory: The CP(N-1) Model," JHEP 1211, 170 (2012), and arXiv:1210.2423
- G. Basar \& G. V. Dunne, "Resurgence and the Nekrasov-Shatashvili Limit: Connecting Weak and Strong Coupling in the Mathieu and Lamé Systems", JHEP 1502, 160 (2015), arXiv:1501.05671.
- G. Basar, G. V. Dunne and M. Unsal, "Quantum Geometry of Resurgent Perturbative/Nonperturbative Relations," JHEP 1705, 087 (2017), arXiv:1701.06572.
- A. Ahmed and G. V. Dunne, "Transmutation of a Trans-series: The Gross-Witten-Wadia Phase Transition," JHEP 1711, 054 (2017), arXiv:1710.01812.

