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Nonequilibrium processes
T

® Why NEQ processes?

active matter
biological cell (molecular motors, protein reactions, ---)

- electron, heat tfransfer, .. in hano systems

evolution of bio. species, ecology, socio/economic sys., ...
- moving toward equilibrium & NEQ steady states (NESS)
inferface coarsening, ageing, percolation, driven sys., ---
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Brief history of FT (I) )
[ — |

e Evans, Cohen, Morris (1993)
observation of F'T in molecular dynamics simulations on fluid systems
e Gallavotti and Cohen (1995)

analytic derivation of FT in “deterministic” systems (NEQ steady state)
kB =1

P(AS AS P(AS) 1
p((_AS)‘) — € (Detailed FT)

Gallavotti-Cohen symmetry J IL
(e=35) — T d(AS)PIAS)HSS — [ d(AS)P(~AS) = 1

® Jensen’s inequality ((e%) > e'®) leads to (AS) > 0.
- Thermodynamic 2nd law is a consequence of @IZ}) szm(rj)ei}ryyﬁFT).

* Special NEQ pocesses, NEQ steady state with y = x — (37>
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Brief history of FT (ll)

B
e Jarzynski (1997) (e BV = g=BAF
FT in Hamiltonian systems (work-free energy relation)
e Kurchan (1998)
FT in Langevin equation approach for stochastic systems
e Lebowitz and Spohn (1999) * Bochkov/Kuzovlev (1977)
FT in master equation approach for stochastic systems * Kawasaki (1967)
e Crooks (1999)
DFT for stochastic systems
e Hatano and Sasa (2001) two independent F'T
e Speck/Seifert /vdBroeck (2005) A5 = Ak + Adeq
e Speck/Seifert (2007) non-Markovian, non-Gaussian 77
o S agawa / (2008) Information entropy  Information thermodynamics
e OQur group/Spinney/Ford (2012) odd parity
e Experiments: Bustamante, Ciliberto (2002,2005), ...

o Kurchan/Tasaki (2000), Hanggi (2007)  Quantum FT




Thermodynamics

T — —
reservoir at 1’

external
agents

& (@ heat absorbed by the system
NS

s+ W work done on the system

o E' internal energy of the system

Themodyn. 15 law AFE =Q + W

% Quasi-static (reversible) process

= dalmost equilibrium at every moment

= path is well defined in the P-V diagram

- work : W = [ PdV (path-dependent)

- heat: @Q = AE — W (path-dependent)
& Irreversible process

= path can not be defined in the P-V diagram

= cannot calculate W with P and V (NEQ)



Thermodynamics

— e —
Thermodyn. 15 law reservoir at 1’

external
AE =0Q + W 0 agents

Thermodyn. 2 law S: entropy ASiot = ASs + AS;

(AStot) = 0 Phenomenological law  @jiSwské gg)[/cbsz A L4Q

Total entropy does not change during reversible processes.

Total entropy increases during irreversible (NEQ) processes.
Jarzynski equality (IFT)

» Work and Free energy (F =FE —T5)

W=AE_Q=AE+TAS, &g, o0zl () =eP0r

i
AP TAS L TAS AP A TAS Crooks relation (DFT)
= AF — s + total = AL+ total Pr(W) _ BW-BAF

Pr(=W) —




Jarzynski equality

Simplest derivation in Hamiltonian dynamics

| state z = (x, p)

2
H = % -+ %)\a%z
with A, = A(7)

' Hamiltonian (deterministic) H dynamics w/o heat reser.
| consider a dynamic path z, with 0 < 7 <t
| introduce a time-dependent parameter A\, : H = H)

A q average over EQ initial ensemble p(29,0) at T'=1/p

o Wiz = Hy,(2:) — Hx,(20) (no heat reservoir ) = 0
o (W) = [ Dz, Pr(z,)e PVl = [ dzop(20,0)e o

— W = AFE)
( Pr(zr) = p(20,0))

o p(20,0) = e FHro(20) /7, (Z), = [ dzge PHr0(*0): partition function)
e Liouville theorem (dp(z,,7)/dT = 0) guarantees Jacobian |0z;/0zp| = 1

o (e e~ B (20) o= B(Hx, (2)— Hx(N0))

— ZAt/ZAO — o BN, —Fxy) — o—BAF (e

—6W> — e BAF

-Intial distribution must be of Boltzmann (EQ) type. crucial
-Hamiltonian parameter changes in time. (special NE type).
-In case of thermal contact (stochastic) ? still valid

generalized




Crooks Fluctuation theorems
[ —

Crooks “detailed” fluctuation theorem

Zy 9 Forward path z, with 0 <7 < ¢
9 Backward (reverse) path 2z, with z; = z_ (5, = —pi—-)

9 Reverse protocol: A\, = \¢_, odd variable

9 EQ initial ensemble for both F(B)-paths.
_ p(ZOaO) o Z/\t e_/BHAO(ZO)

— — — — eﬁ (W—-AF)F time-reversal symmetry
p(Zo, 0) Zx, e~ BHx. (2t) for deterministic dynamics

e (Oz))r = [ Dz:Pr(2,)0]z] = fDZTPR(gT)eﬁ(W[Z]_AF)O[Z]
= (O[z]e PWEN i . e BAF with W[z = —W 2]
o For Olz] = §(W — W|z]), we have Pr(W) = (§(W + W|Z])) g - PV —PAF

Pr(W _
? p;((_w)v) — eﬁW pAF Crooks detailed FT for PDF of Work

o For Ofz] = e WL (e7PW) p = e P2 (Jarzinsky equality) “Integral” FT




Experiments & Applications

T
DNA hairpin mechanically unfolded by optical tweezers

— Nature, U431, 8 (2005)

) N @ —==- |Detailed fluctuation theorem
» Handles

Pr (W) _ BW—BAF
Pr(—W)

Collin/Ritort/Jarzynski/Smith/Tinoco/Bustamante,
H Hairpin

®—® STRETCH (slow)
G- —© RELEASE (slow)
B—M STRETCH (medium)
3 - £1RELEASE (medium)
&—& STRETCH (fast)

& -~ RELEASE (fast)

Y

/
’ _/
7
-
——"" A

o At Ppr(W) = Pr(—W),
W must be the same as AF',
Work (k, T units) independent of intermediate processes.

68 70 72 74 76 78 80 82 84 86 88

e (Considerable prob. for W < AF e FEfficient measurement of AF




[Wang etal '02] a/k =3 ms

[Garnier&Ciliberto "05]

o Electric current
Thermal conductivity R.Van Zon, et al

In nanotubes PRL 92, 130601 (2004).

N. Garnier, S. Ciliberto
PRE 71, 060101 (2005)

T — (Vb_Va)
I'= R

Injected power
C.W. Chang, et al. .

PRL 101, 075903 (2008) 02 | 10~ 19w




PNAS 106, 10116 (2009)

Universal oscillations in counting statistics

C. Flindtab1, C. Frickes, F. Hohlst, T. Novotny®, K. Netocnyd, T. Brandes®, and R. J. Haug*®

*Department of Physics, Harvard University, 17 Oxford Street, Cambridge, MA 02138; bFDepartment of Condensed Matter Phy:
and Phy‘siﬁd, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic; “Institut far Festkorperphysik, Leibniz Universitat
Germany; “Institute of Physics, Academy of SCiences of the Czech Republic, Na Slovance 2, 18221 Prague, Czech Republic and
Physik, Technische Universitat Berlin, D 10622 Berlin, Garmany
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Fig. 1. Real-time counting of electrons tunneling through a quantum dot.
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Fluidized Granular Medium as an Instance of the Fluctuation Theorem

Klebert Feitosa® and Narayanan Menon'

Department of Physics, University of Massachusetts, Amherst, Massachuserrs 010033720, USA
i Received 14 Auguost 2003; published 21 April 2004)

We study the statistics of the power flux into a collection of inelastic beads maintained in a fuidized
steady state by external mechanical driving. The power shows large fluctuations, including frequent
large negative fluctuations, about its average value. The relative probabilities of positive and negative
fluctuations in the power flux are in close accord with the fluctuation theorem of Gallavotti and Cohen,
even at time scales shorter than those required by the theorem. We also compare an effective
temperature that emerges from this analysis to the kinetic granular temperature.

DOz 1001103/ PhysReviett 92, 164301

Take a fistful of marbles in your hand and shake them
vigorously. In order to maintain the motions of the mar-

Spheres d =1.6 mm

Window of
observation

FIG. 1. Sketch of the experimental cell. The dashed rectangle
is a window measuring 104 X 214, fixed in the laboratory
frame, in which we study the flux of kinetic energy.

Ard=
sphere fluui [3], they proved a v-::r;-,' general result regard-
ing the entropy flux into a system maintained in a
noneguilibrium steady state by a time-reversible thermo-
stal. If dynamics in the system are chaotic [4], then

Mier )/ TH{—e.) = explo, 7). (1)

PACS numbers: 45. T Mg, 05.40.-a
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FIG. 4 (a) In[TL{ p.)/T1{—p.)] versus p.P for 7 ranging from
05 to 16 ms (b) In[Il{p )/TH=p_|]/r versus p P (P=
356 m*s™7). The solid line shows the slope of the collapsed
curves. A dashed line of slope 1,-"]“5,“ is drawn for comparison.
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Experimental test of the quantum Jarzynski equality
with a trapped-ion system
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Abstract
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The Jarzynski equality relates the free-energy difference between two equilibrium states to the
work done on a system through far-from-equilibrium processes—a milestone that builds on the
pioneering work of Clausius and Kelvin. Although experimental tests of the equality have been
performed in the classical regime, the quantum Jarzynski equality has not yet been fully verified
owing to experimental challenges in measuring work and work distributions in a quantum system.
Here, we report an experimental test of the quantum Jarzynski equality with a single 171¥b* ion
trapped in a harmonic potential. We perform projective measurements to obitain phonon
distributions of the initial thermal state. We then apply a laser-induced force fo the projected energy
eigenstate and find transition probabilities to final energy eigenstates after the work is done. By
varying the speed with which we apply the force from the equilibrium to the far-from-equilibrium
regime, we verify the quantum Jarzynski equality in an isolated system.
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Non-Equilibrium Fluctuations of Black Hole Horizons

Satoshi Iso Susumu Oka.zawa and Sen Zha.n
KEK Theory Center, Institute of Particle and Nuclear Studies,
High Energy Accelerator Research Organization(KEK)
and
The Graduate University for Advanced Studies (SOKENDAI),
Oho 1-1, Tsukuba, Ibarak: 305-0801, Japan
(Dated: August 9, 2010)

We investigate non-equilibrium nature of fluctuations of black hole horizons by applying the
fluctuation theorems and the Jarzynski equality developed in the non-equilibrium statistical physics.
These theorems applied to space-times with black hole horizons lead to the generalized second law
of thermodynamics. It is also suggested that the second law should be violated microscopically so
as to satisfy the Jarzynski equality.
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ON NON-EQUILIBRIUM PHYSICS AND STRING THEORY

NICKOLAS GRAY?, DJORDJE MINIC? and MICHEL PLEIMLING®
Department of Physics, Virginia Polytechnic Institute and State University,

Blacksburg, VA 24061, U.S.A.
In this article we review the relation between string theory and non-equilibrium physics based on our previously
published work. First we explain why a theory of quantum gravity and non-equilibrium statistical physics should
be related in the first place. Then we present the necessary background from the recent research in non-equilibrium
physics. The review discusses the relationship of string theory and aging phenomena, as well as the connection between
AdS/CFT correspondence and the Jarzynski identity. We also discuss the emergent symmetries in fully developed
turbulence and the corresponding non-equilibrium stationary states. Finally we outline a larger picture regarding the
relationship between non-perturbative quantum gravity and non-equilibrium statistical physics. This relationship can
be understood as a natural generalization of the well-known Wilsonian relation between local quantum field theory
and equilibrium statistical physics of critical phenomena. According to this picture the AdS/CFT duality is just an
example of a more general connection between non-perturbative quantum gravity and non-equilibrium physics. In the
appendix of this review we discuss a new kind of complementarity between thermodynamics and statistical physics
which should be important in the context of black hole complementarity.

27 Jan 2013




Summary of Part |
[ —

PF(’ EAig) — QS (Detailed FT) Gallavotti-Cohen symmetry

(e=B5) =1 (Integral FT)

Pr(W) _ ,BW-BAF  (Detailed FT) [Crooks relation
Pr(=W)

<6_B W) = 6_6 = (Integral FT) Jarzynski equality
9 EQ initial ensemble

<t
<1
,\f\) p(20,0)  Zj, e~ PHxo (20)
z_ :time-reverse o p(gojo) o Zx, e—BHx, (2t)

Z
0 path

_ BW—-AF)g




Stochastic thermodynamics
[Sekimoto(1998),Seifert(2005)]

\icroscopic deterministic dynamics

e Hamilton equation
e TR symmetry

Stochastic dynamics

: : L ] ti
lstochastlc thermodynamics ° & o0 CAHAMOH

l coarse-graining, truncation

trajectory level o Master equation

energetics? entropy production?” e TR symmetry broken

Macroscopic thermodynamics

e NOT really dynamics

equilibrium SM

e TR symmetry broken



Stochastic thermodynamics - @ o

e state ensemble: {z}

trajectory X
state %aace

e state probability: p(z) x.‘\f\J

L0

e microcanonical: p(z) =1/

e canonical: p(x) =exp|(F — E(x))/T]

e observable: A(a:)

e average:

® cnergy:

e entropy: S

(Shannon) (S) = —

*x micro: () =
* canon: (S)

E(
(

z)

Zp

In Q2 (Boltzmann)

—(F —

(E))/T

reservoir at T’

Nonequilibrium Process

Zr
e trajetory ensemble: {x}

e trajectory probability: P(x)

e P(x) = p(xo)II(x)
(conditional path prob.)
e observable: A(x)

o average: (A) =) P(x)A(x)
e work and heat: XW(X), Q(x)
o AF = W(x) + Q(x)

® AShes = Q)

o AS.y. = ZH(NEQ enbraity)
o <A8tot> — <ASsys> + <ASres> > 0



Langevin systems In contact with a heat reservoir

9 Hamiltonian dynamics H = % +Vi(x) -
K=V -2 W
S V. H— _V.V bk “.‘ w w M’W SE R
P T | ”{W'W\MM \W MM' ST

¢ Langevin dynamics ‘ ‘ gt

X — V mv — —vxv _/YV —l_ S -:-:-;-":.?‘.:..'.:.;.'.'-;-‘..ﬂ ‘-:.‘;;“:.-:‘.

(E(t))y =0 (£()ET(t)) =2DI5(t —t') v = D/T (Einstein-Smoluchowski)
* fres = —7yv + & : thermal force exerted by heat reservoir

* mechanical forces
e conservative force: —VV Equilibrium (steady state)
e time-dependent protocol A(t) : V =V (x,\)
e non-conservative force: f,.(x), f,.(x,v), fuc(x, A), ...



_angevin (stochastic) dynamics

9 Brownian particle in a potential V' with time-dependent protocol A(%)

v=—0,V(x;\) —yw+& (v=a & m=1) thermal reservoir
with (£(t)&(t')) = 2D46(t — t') and v = D (Einstein relation)

state space

e Kinetic energy K and Total energy E: (Stratonovich) T,

K =4 [0 = vio 9= =00,V + v o (—yv +£) 'jt,\J
E=K+ V(QL‘, A) = K+ £(0.V) + )\(8)\1/) trajectory

Lo

. (_ﬂ)ﬂv + g) + )\(8)\1/) — Q + W reservoir at 3
[Sekimoto(1998)] @ szirtr;al
e Heat Q and Work W (at the trajectory level) Q I |28

Q=vo(—yv+&)=v0 fres and W = \0\V) (Jarzynski work)
+ with NEQ force freq(,v), W = /'\(8)\1/) + ¥ faeq [Jarzynski(1997)]

e Entropy production ASio; 1 ASior = ASres + ASsys (trajectory)

ASies = —fQ and ASsys = —In(ps. /pa,) (Shannon entropy)
[Seifert (2005)]



Stochastic process, lIrreversibility & Total entropy production

state space
¥ Dynamic trajectory in state space 0<t<T) z :
with a set of state variables: x = (s1, 82, ") J\J
traje'bfory X

1

1

1
______________ m————————

Tr

e under time-reversal operation: s; — €;s; (¢€; : parity)

e odd-parity variable: ¢; = —1 (momentum, ...) Ewrev X
even-parity variable : ¢; = 1 (position, ...)
e “time-reversed” (mirror) state : ex = (€151,€S92,- ) o
9 Irreversibility for a trajectory x (total entropy production)
~ Plx] P[x]:probability of traj. x Time-reversed
AShg[x] = 111% X: time-reversed traj. [Selsion B e R 2005)

x(t) = ex(7 — 1)]
e integral fluctuation theorem (FT) : automatic
(e ASeot) =3 Plx]e ASketlx] =3 P[x] = 1 (Jacobian |0%/0x| = 1).
(valid for any finite-time “transient” process) (ASiot) >0
e detailed fluctuation theorem (FT) : involution, i.c.-sensitive

» e AStot
P(ASsot)/P(—ASsot) = € [Seifert(2005), Esposito/vdBroeck(2010)]



Total entropy production and 1ts components

et 20 g PEOT 9" e p(a)
A= PR = @ J‘\}Jc .
Lo demon

[A] ASiot|x] = ASsys|x]| + ASeny %]

o ASyys = —In[p(x,)/p(xo)] reservoir [at 1’
¢ AS@HV — IH[H(X)/H(}E)] — _/BQ — ASres Q SYSfem

external
agents

(Schnakenberg, 1976)
o ASyys, ASyes : not FT variables

t steady state (ASsys) =0, —(Q) >0 or —(W) < 0 (cannot do work outside)
* Maxwell’s demon (1867) measurement & feedback control

do work outside with a single reservoir

Joint system (system-+demon) e Demons are exorcised !!

o ASicint= ASsys + ASdem —AI (I > 0: mutual information)

T steady state —(Q) > TAI or —(W) < —TAI (AI usually negative)
e Information thermodynamics e Information engines @




Total entropy production and its components

B] ASiot|x] = AShk[x] + ASex|X]
e AS,: EP to maintain the NESS [Hatano/Sasa(2001), Speck/Seifert(2005)]

e AS..: EP regarding transitions between steady states (A(t))
e AScy, AShi : FT variables (e 2%x) =1, (e=25mk) =1 o ond laws

o ASyk : adiabatic, AS. : non-adiabatic (ASex vanishes in A — 0 limit)
(mostly even-parity variable only: overdamped case) [Esposito/vdBroeck(2010)

** odd-parity problems  ASqn, = In[II(x) /II(X)] = ASies + ASune @
ASyk: not FT in general -

** quantum FT

Hamiltonian systems (work-free energy relation)

(6_ [3W> _ o—BAF Not much about systems in contact with heat reservoirs



Probability theory viewpoint

on Fluctuation theorems

Seifert, PRL 95, 040602 (2005)
Esposito/VVdBroeck, PRL 104, 090601 (2010)




reservoir at T’

external
agents

Fluctuation theorems

<e_ﬁ Way =1 (Wg =W — AF: dissipated work)

—1 (S = S+ S,: total entropy)
(e7BPex) =1  (ASer = AS — fQex)

<€_Ashk> — 1 (AShr = —BQnk)

Integral fluctuation theorems



Fluctuation theorems

Integral fluctuation theorems

(e By =1 (R=AS,, BW4,AS — BQew, —BQurs -+

Jensen’s inequality ((e®) > e{*?) leads to (R) > 0.
Thermodynamic 2" laws

Detailed fluctuation theorems

P(R) _ R "R _
B_R) e /dRP(R)e =1




Probability theory

~ state space

» Consider two normalized PDF’s : P(z;), P(Z,)

ZzT P(z:) =1, ZET 75('2}) =1 with z; = n(z;) " trajectory

* Define “relative entropy” | J(W)] 1
R(z;) =1In P(er) mmp (e7)p = ZB_R(ZT)P(zT)
' P(zr) =
AStot[X] — In % — ;P(ZT) =1

(R)yp >0

. —R
€ =1
Integral fluctuation theorem ( )P (Kullback-Leibler divergence)

(exact for any finite-time trajectory)



Probability theory

A~

« Consider the mapping :  P(2;) = f o P(2;) 5
<0
* Require | f* = I (involution) reverse path
(= P(Z, P(Z, _ P(zr

then, R(ZT) = In foé(zi) = In PEzT; = —R(z,;) R(27)=In foé(zz)

ch (R — R(2.))P(z)

Z 5(R 2 ))e BEP(3) = P(—R)e?
Detailed fluctuatlon theorem pp((_R]%) — eft (exact for any finite t)

(O(z:))p = (O(z-)e E)) 5 lwith O(z,) = O(3,)

HW#1(a)

(Generalized Crooks’ relation)




L

Summary of Part Il z,
9 Irreversibility for a trajectory x (total entropy production)fJi X

rajectory
~ P[x] Px]:probability of traj. x S T R
ASiot|x] =1n PR X: time-reversed traj. ' timerrev X
X(t) = ex(r — ) EM
e integral fluctuation theorem (FT) automatic €T+
(e ASwt) =3 Plx]e ASwtlx] =3 P[x] =1 (Jacobian |0%/0x| = 1).
(valid for any finite-time “trans1ent” process) (ASior) >0

o detailed fluctuation theorem (FT) : involution, i.c.-sensitive
P(ASiot)/P(=AStor) = 2% P(x) = foP(x) f2=1

e R[x|=In PH (relative entropy)

9 Brownian particle in a potential V' with time-dependent protocol A(t)
U =—0;V(z;\) + frneq(z,v) —y0+¢& (v=2 & m=1)
with (€(¢)§(t')) = 2D6(t —t') and v = BD (Einstein relation)
e Heat Q and Work W : Q =vo (—yv + &)= 00 fress W = AO\V) + ¥ fneq

e Entropy production : AS; = —In(p,. /ps,) — BQ[X]
with Schnakenberg formula —AQ[x] = In[II(x)/II(X)]



Dynamic processes & Path probability ratio

9 Hamiltonian (deterministic) dynamics without any heat reservoir
with a time-dependent parameter A\, : H = Hy [ — 2= 4 1) ;2
ith Ar = A()
9 Langevin (stochastic) dynamics with white noise 3‘{113 yAUERAY
and nonconservative force g : 2= —0,V(z; \;) 4+ g(z) + £(7)

§ Markovian discrete (stochastic) dynamics with transition rate
W, o for 28 =z py =) (Wa o (Ar)par (T) — war 2(Ar)p2(T))

€ Thermostatted systems
<t

* Path probability ratio: j\J
~_ . time-reverse

— In (Z’r) _ npO(ZQ)H(ZT) =0 ! path
A =5y =M PGEmE,)

(IT(z;) : conditional probability for path z.)

e

e,



Markovian jump dynamics | (gyxg %

T()—O TNJF] —t)

e Markovian discrete dynamics: Lo Wtz !

Dy = Zz/ (wz,z’()\T)pz’(T) — wz’,Z(AT)pZ(T)) %

/7S |-t Sl
=2 o W (A )par (T) D =W o O )pa(7) [V 1 = L] 11 Z;
Wz,z’ = Wz,z! — 6z,z’ Zz” Wzt 2 Zz Wz,z’ =0 (St()
e Conditional probability for trajectory z > -
with ﬁxed 2(0) = zp and A, ToTn Ti-17i TNTN+1
d'r . zgﬁwg (A dT W . A,dfy 2 (
H(Z‘T) ~ ﬁ/ = "% Wzl alzo (AW f ( I 223\;1?9\72

e For reverse trajectory z, with fixed Z(0) = z; and A=\

M K d ,Wz'— 12§ — ()\'r) ’ d ,Wz iz )\T
H(gT) ~ vazl eij_l ' S , Wzg'—th()\'rj) °€f‘TN 4 N N( ')

N

. I1(27) . szazj—l()\’fj) - _
f Log ratio: In = 1 = ;m A —{AS,(27) | = —BQ(2-)

(Schnakenberg, 1976) (reservoir EP)

Micro-reversibility



Rese I’VOi r entro py Change Schnakenberg/Hinrichsen/Park

wz,z/ r;;Jwy,y/ Qz

wz’,z Qz’ wy/,y

. Assumption (reservoir) :
instantaneous relaxation into a sector

Micro-reversibility : (isolated system)

| Wy 0 = Wy steady state :

. Y,y Y,y

| equally likely
__,'._f__%:_. Wy o p;’;, — ’wyf,ypz (detailed balance)

Qz wz,zl

l. @] @ e @ ° AST — ln — 1]_’]_
&w L Wzl 2
o ' o NS, (ZT) = In (zr)

total isolated system y = (z,u) I1(2,)

More transparent in Langevin dynamics description




Langevin dynamics .
9 Brownian particle with (cons.+noncons.) force f(x) J\J

v=f(x)—yw+E€ (v=ax&m=1) h
with (£(t)€(t")) = 2D6(t —t') and v = 8D (Einstein relation)

e II |z,] : conditional probability for path z;

Z’T ~e IE &ﬁ%&uﬂv ﬁo)%lﬁ(:%z% W"‘Wﬂ f)(?nsager Machlup)

Stratonovich)



Discretization scheme for a path integral (= + do)
i = f(x) + &  (infinitesimal path) 267 |
da::x’—az:fttl ds [f(z(s))+ &(s)] Lot
~ f(zo)dt + [ ds £(5) lta=2+ads=aa’'+ (1 - a)a]
(dz) = f(wa)dt = f(z)dt +a(.f)dwdt
((dx)?) ft ft dsds’ (f( )E(s")) = 2Ddt (E(B)E()) = 2Do(t —t')

{del= (8(a' —x — [ ds [£(x(s)) + £(s)))) [ da'THldel =

(6(x" —x — f(xy)dt — ft ds &(s >
— 1 adtd, f|,
=~ 1 e 4D (:U (:Ca))2_adtamf|ma j & f| ey

/\_ VA Ddt ~ e—adtamﬂxa

'~

a =0 (Ito), 1/2 (Stratonovich), 1 (anti-Ito)

WH#I(D) AWA ¥)) = 2D()o(t — ¥
"I_I # ( )" "I_I # (Cm (Propagator’ & Fokker-Planck GQ)




Langevin dynamics .
9 Brownian particle with (cons.+noncons.) force f(x) '\f\J

v=f(x)—yw+E€ (v=ax&m=1) h
with (£(t)€(t")) = 2D6(t —t') and v = 8D (Einstein relation)

z,. - lime-reverse

o | [zT] . conditional probability for path z, path

_ ﬂ,ﬂ%‘; DAyo— )2 + f)( nsager-Machlup)
Z’T ~ € “ﬂ: D_(( ﬂ "@) %(?f Wﬂ ?Stratonowch
UV — —U
II[z;] ~e fo dr| 15 (6—7v=1)*~3] T = {—T
(Schnakenberg formula !)
11z ! .

o lnnigiz—% 0 dr v(v — f) :—6/ dr v(—yv +€&) = —BQ(z;)

= ASpen(2r)

EWH@)] = /(z,0) — yo+¢
||HW#2(bH\ f(xz,v) = —~'v : Calculate (Q) and (ASe,,) in the SS




Fluctuation theorems 2

N

P 0
Plzr) _p =)y P(zr) = H(z,r)pgo o

In —
P(2:) (= )Pgo 20

* R(z27)

reverse path

Irreversibility (total entropy production)

e Choose p) = p.,(t) with arbitrary p) .

(27 )pgo o
Iz )pz, (t)

(e=A5%t) = 1 but (e7257) £ 1 and (e=2°) £ 1

e NOT involutive (f2? # I) due to i.c.

e Only if starting with the stationary distribution p; with constant A,
then f? = I and DFT holds.

P(—-AS,)

% Choose pg(z0) = po(Zp) = ¢ (uniform: T = o0)
mm) () satisfies IFT & DFT exactly at any ¢ like (e#%Q) = 1.

II(z- pgo _ __
M) +In 20 = AS, + AS = ASi

In

o R(z;)=1In




Fluctuation theorems 2

N

P 0
Zr) — In H(ﬁT)sz P(Zq-) _ H(ZT)ng 2

. 73
* R(z;) = 05z T(z)52, 0

; .. reverse path
Work free-energy relation (dissipated work)
e Choose pz = e AE(z0:20)+BF (o) and p2 = e~ AEGA)+HBF(A)
0
[1n1t1ally, start with equilibrium Boltzmann distribution.]

o R(z)=lnpele — AS,(z,) - BAF + BAE(z,)
— —BQ(zr) + BAE(z,) — BAF = B(W (z,) — AF) = BWa(zr)

o f2=T 4 (e PWa) =1 or (e PW) = ¢ BAF apd LW — BW-AF)

P(=W)
e Other arbitrary initial conditions? (ASio) >0
ASiot = AS — BQ = W — AE + AS ~ W, (large t)
» F'T approx. valid only for large t.

m) (AW,) does not increase monotonically in time.
* not for rare events with exponentially small probability (unbounded E)

(Initial memory does not go away forever !) Same happens to Q.




HW32(c) Fluctuation theorems 2z

z L ~
* R(z,) = In 262) = In T200 P(z) = (2, )p% Zr

20

reverse path

House-keeping & EXcess entropy production

o ASior(2r) = ASpi(2:) + ASep(z,) D3y = Pz (1)

N | NEQ steady state (NESS) p5(\
o II(zr) = [ [i=y T(2r;5 27,2, ) for fixed), 0=>3", W...(A;)p3

N (27, 32+,_,)P% H(ZT)pz
¢ AShk(ZT) - ZJ:]- ln H(ZT~J ';T')pgjj 1 - l H+(Zq-)p:()0 Wlth pZ) B pz()

N pz ( Tj ) z(Q H(ZT) zZ0 ~
e AS..(z:) = Zj:ll ()\ ) + In Pi(t) = In e T)p,,+0 with p +0 = D, (1)
ZO

W) =2 "f‘&pi“‘) SWE =0 (e7A%) = 1 and (e 3%) =1

P(AS P(ASey
DB 5 W, = We o5 A = 055 (-as = €5 & 55y # ¢




Summary and Outlook

+» Remarkable equality in non-equilibrium (NEQ) dynamic processes,
including Entropy production, NEQ work and EQ free energy.

% Turns out quite robust, ranging over non-conservative deterministic
system, stochastic Langevin system, Brownian motion, discrete Markov
processes, and so on.

% Still source of NEQ are so diverse such as global driving force, nhon-
adiabatic volume change, multiple heat reservoirs, multiplicative noises,
nonlinear drag force (odd variables), information reservoir, and so on.

+» Validity and applicability of these equalities and their possible
modification (generalized FT) for general NEQ processes.

¥ More fluctuation theorems for classical and also quanfum systems

% Nonequilibrium fluctuation-dissipation relation (FDR) : Alternative
measure (instead of EP) for NEQ processes?

% Usefulness of FT? Efficiency of information (heat) engine, effective
measurements of free energy diff., driving force (torque), ..

%+ Strong couplings, entropy & 2" law for quantum systems, quantum
thermalization, quantum engines, black-hole physics, ---



