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Resurgence and Non-perturbative Physics

1. Lecture 1: Basic Formalism of Trans-series and Resurgence

I asymptotic series in physics; Borel summation

I trans-series completions & resurgence

I examples: linear and nonlinear ODEs

2. Lecture 2: Applications to Quantum Mechanics and QFT

I instanton gas, saddle solutions and resurgence

I infrared renormalon problem in QFT

I Picard-Lefschetz thimbles

3. Lecture 3: Resurgence and Large N

I Mathieu equation and Nekrasov-Shatashvili limit of N = 2
SUSY QFT

4. Lecture 4: Resurgence and Phase Transitions

I Gross-Witten-Wadia Matrix Model



Physical Motivation

• non-perturbative definition of non-trivial QFT, in the
continuum

• analytic continuation of path integrals

• "sign problem" in finite density QFT

• dynamical & non-equilibrium physics from path integrals
(strong coupling)

• uncover hidden ‘magic’ in perturbation theory

• new understanding of weak-strong coupling dualities

• infrared renormalon puzzle in asymptotically free QFT

• exponentially improved asymptotics & resummation



Physical Motivation

• sign problem: "complex probability" at finite baryon
density? ∫

DAe−SYM [A]+ln det(D/+m+i µγ0)

• phase transitions and Lee-Yang & Fisher zeroes



Physical Motivation

• equilibrium thermodynamics ↔ Euclidean path integral

• Kubo-Martin-Schwinger: antiperiodic b.c.’s for fermions

• non-equilibrium physics ↔ Minkowski path integral

• Schwinger-Keldysh time contours

• quantum transport in strongly-coupled systems



Physical Motivation

what does a Minkowski path integral mean, computationally?
∫
DA exp
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)
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• massive cancellations ⇒ Ai(+5) ≈ 10−4



Physical Motivation

• what does a Minkowski path integral mean?
∫
DA exp

(
i

~
S[A]

)
versus

∫
DA exp

(
−1

~
S[A]

)

• since we need complex analysis and contour deformation to
make sense of oscillatory ordinary integrals, it is natural to
expect to require similar tools also for path integrals

• an obvious idea, but how to make it work ... ?



Mathematical Motivation

Resurgence: ‘new’ idea in mathematics (Écalle, 1980; Stokes, 1850)

resurgence = unification of perturbation theory and
non-perturbative physics

• perturbation theory generally ⇒ divergent series

• series expansion −→ trans-series expansion

• trans-series ‘well-defined under analytic continuation’

• perturbative and non-perturbative physics entwined

• applications: ODEs, PDEs, difference equations, fluid
mechanics, QM, Matrix Models, QFT, String Theory, ...

• philosophical shift:
go beyond the Gaussian approximation and view semiclassical
expansions as potentially exact



Perturbation Theory and Asymptotics

• in physical applications, expansions in a small parameter are
often, but not always, divergent asymptotic series

• such an expansion is often the best we can do, and sometimes
it is the only thing we can do

• it is worth understanding how to extract as much physical
information as possible from an asymptotic expansion

• resurgence has the potential to lead to significant
improvements, both analytically and numerically

• resurgence relates perturbative expansions to non-perturbative
physics in surprisingly explicit ways



Physics and Mathematics

It’s a bit of black magic, to figure things out about differential
equations even though you can’t solve them

Michael Atiyah



Trans-series

• an interesting observation by Hardy:

No function has yet presented itself in analysis, the laws of
whose increase, in so far as they can be stated at all, cannot be
stated, so to say, in logarithmico-exponential terms

G. H. Hardy, Divergent Series, 1949

• deep result: “this is all we need” (J. Écalle, 1980)

• also as a closed logic system: Dahn and Göring (1980)



Resurgent Trans-Series

• Écalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)

• basic trans-series expansion in QM & QFT applications:

f(g2) =

∞∑

p=0

∞∑

k=0

k−1∑

l=1

ck,l,p g
2p

︸ ︷︷ ︸
perturbative fluctuations

(
exp

[
− c

g2

])k

︸ ︷︷ ︸
k−instantons

(
ln

[
± 1

g2

])l

︸ ︷︷ ︸
quasi-zero-modes

• trans-monomial elements: g2, e−
1
g2 , ln(g2), are familiar

• “multi-instanton calculus” in QFT

• new: analytic continuation encoded in trans-series

• new: trans-series coefficients ck,l,p highly correlated

• new: exponentially improved asymptotics
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Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Écalle, 1980

n

m

resurgence = global complex analysis with divergent series



Perturbation theory is generically divergent

• hard problem = easy problem + “small” correction

• perturbation theory generally → divergent series

e.g. QM ground state energy: E =
∑∞

n=0 cn (coupling)n

I Zeeman: cn ∼ (−1)n (2n)!

I Stark: cn ∼ (2n)!

I cubic oscillator: cn ∼ Γ(n+ 1
2)

I quartic oscillator: cn ∼ (−1)nΓ(n+ 1
2)

I periodic Sine-Gordon (Mathieu) potential: cn ∼ n!

I symmetric double-well: cn ∼ n!

note generic factorial growth of perturbative coefficients



Perturbation theory works

QED perturbation theory:

g − 2

2
=

1

2

(
α

π

)
− (0.32848...)

(
α

π

)2
+ (1.18124...)

(
α

π

)3
− 1.9097(20)

(
α

π

)4
+ 9.16(58)

(
α

π

)5
+ . . .

[
1
2 (g − 2)

]
exper

= 0.001 159 652 180 73(28)

[
1
2 (g − 2)

]
theory

= 0.001 159 652 181 78(77)

QCD: asymptotic freedom

12 

 
The left-hand panel shows a collection of different measurements by S. Bethke from High-

Energy International Conference in Quantum Chromodynamics, Montpellier 2002 (hep-

ex/0211012). The right-hand panel shows a collection by P. Zerwas, Eur. Phys. J. 

C34(2004)41. JADE was one of the experiments at PETRA at DESY. NNLO means Next-to-

Next-to-Leading Order computation in QCD. 

 

Although there are limits to the kind of calculations that can be performed to compare QCD 

with experiments, there is still overwhelming evidence that it is the correct theory. Very 

ingenious ways have been devised to test it and the data obtained, above all at the CERN LEP 

accelerator, are bounteous. Wherever it can be checked, the agreement is better than 1%, often 

much better, and the discrepancy is wholly due to the incomplete way in which the 

calculations can be made. 

 

The Standard Model for Particle Physics 

 

QCD complemented the electro-weak theory in a natural way. This theory already contained 

the quarks and it was natural to put all three interactions together into one model, a non-

abelian gauge field theory with the gauge group SU(3) x SU(2) x U(1). This model has been 

called ‘The Standard Model for Particle Physics’. The theory explained the SLAC 

experiments and also contained a possible explanation why quarks could not be seen as free 

particles (quark confinement). The force between quarks grows with distance because of 

‘infrared slavery’, and it is easy to believe that they are permanently bound together. There 

are many indications in the theory that this is indeed the case, but no definite mathematical 

proof has so far been advanced. 

 

The Standard Model is also the natural starting point for more general theories that unify the 

three different interactions into a model with one gauge group. Through spontaneous 

symmetry breaking of some of the symmetries, the Standard Model can then emerge. Such 
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Asymptotic Series vs Convergent Series

f(x) =

N−1∑

n=0

cn (x− x0)n +RN (x)

convergent series:

|RN (x)| → 0 , N →∞ , x fixed

asymptotic series:

|RN (x)| � |x− x0|N , x→ x0 , N fixed

−→ “optimal truncation”:

truncate just before least term (x dependent!)



Asymptotic Series vs Convergent Series

alternating asymptotic series :

∞∑
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x
e

1
x E1

(
1

x

)

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ æ æ

æ

0 5 10 15 20
N

0.912

0.914

0.916

0.918

0.920

æ

æ

æ

æ

æ

æ

æ

æ

æ

æ

2 4 6 8 10
N

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

(x = 0.1) (x = 0.2)

optimal truncation order depends on x: Nopt ≈ 1
x



Asymptotic Series vs Convergent Series

Exercise 1:

(i) Show that the magnitude of the summand, n!xn, is
minimized for n ≈ 1

x

(ii) Compute the optimal order of truncation for the series with
summand: (−1)n(2n)!xn



Asymptotic Series vs Convergent Series

non-alternating asymptotic series :
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Asymptotic Series vs Convergent Series

• contrast with behavior of a convergent series, for which
more terms always improves the answer, independent of x

convergent series :

∞∑
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Asymptotic Series vs Convergent Series

asymptotic series are sometimes ‘better’

-10 -8 -6 -4 -2
x

-1.0

-0.5

0.5

1.0
Ai[x]

gold: exact
red: 1 term divergent about x = −∞
green: 10 terms convergent about x = 0
black: 50 terms convergent about x = 0



Asymptotic Series: exponential precision
∞∑

n=0

(−1)n n!xn ∼ 1

x
e
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optimal truncation: error term is exponentially small

|RN (x)|N≈1/x ≈ N !xN
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• e.g. alternating exponential integral:
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Borel summation: basic idea

alternating factorially divergent series:

∞∑

n=0

(−1)n n!xn =?

write n! =
∫∞

0 dt e−t tn

∞∑

n=0

(−1)n n!xn =

∫ ∞

0
dt e−t

1

1 + x t
(?)

integral is convergent for all x > 0: “Borel sum” of the series



Borel Summation: basic idea

∞∑

n=0

(−1)n n!xn =
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dt e−t
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Borel summation: basic idea

write n! =
∫∞

0 dt e−t tn

non-alternating factorially divergent series:

∞∑

n=0

n!xn =

∫ ∞

0
dt e−t

1

1− x t (??)

pole on the (real, positive) Borel axis!

⇒ non-perturbative imaginary part = ± i π
x
e−

1
x

but every term in the series is real !?!



Borel summation: basic idea
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Borel Summation: basic idea

Borel⇒ Re
[ ∞∑

n=0

n!xn

]
= P

∫ ∞

0
dt e−t

1

1− x t = Re
[
−1

x
e−

1
x E1

(
−1

x

)]
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• note: E1

(
− 1
x

)
also has an imaginary part = ±iπ

−1

x
e−

1
xE1

(
e±i π

1

x

)
= −1

x
e−

1
x

[
Ein

(
−1

x

)
− lnx− γ ∓ i π

]

• Borel encodes this non-perturbative "connection formula"



Borel Summation: basic idea
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Borel summation

Borel transform of series, where cn ∼ n! , n→∞

f(g) ∼
∞∑

n=0

cn g
n −→ B[f ](t) =

∞∑

n=0

cn
n!
tn

new series typically has a finite radius of convergence

Borel resummation of original asymptotic series:

Sf(g) =
1

g

∫ ∞

0
B[f ](t)e−t/gdt

note: B[f ](t) may have singularities in (Borel) t plane



Borel summation

Borel transform of series, where cn ∼ n! , n→∞
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Borel singularities

avoid singularities on R+: directional Borel sums:

Sθf(g) =
1

g

∫ eiθ∞

0
B[f ](t)e−t/gdt

C+

C-

go above/below the singularity: θ = 0±

−→ non-perturbative ambiguity: ±Im[S0f(g)]

physics challenge: use physical input to resolve ambiguity



Borel summation in practice

f(g) ∼
∞∑

n=0

cn g
n , cn ∼ βn Γ(γ n+ δ)

• alternating series: real Borel sum

f(g) ∼ 1

γ

∫ ∞

0

dt

t

(
1

1 + t

)(
t

βg

)δ/γ
exp

[
−
(
t

βg

)1/γ
]

• nonalternating series: ambiguous imaginary part

Re f(−g) ∼ 1

γ
P
∫ ∞

0

dt

t

(
1

1− t

)(
t

βg

)δ/γ
exp

[
−
(
t

βg

)1/γ
]

Im f(−g) ∼ ±π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]

• γ determines power of coupling in the exponent

• β and γ determine coefficient in the exponent

• β, γ and δ determine the prefactor
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Borel summation in practice
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Borel summation in practice

Exercise 2:

Use the integral representation of Γ(γ n+ δ) to derive the
expressions on the previous slide.

Hence deduce the meaning of the large-order behavior
parameters β, γ and δ.

Compare with the second part of Exercise 1.



Resurgence and Analytic Continuation

another view of resurgence:

resurgence can be viewed as a method for making formal
asymptotic expansions consistent with global analytic
continuation properties

resurgence = global complex analysis for divergent series

(analytic continuation, transforms, monodromy, ...)

⇒ “the trans-series really IS the function”

question: to what extent is this true/useful in physics?



Resurgence: Preserving Analytic Continuation

Stirling expansion for ψ(z) = d
dz ln Γ(z) is divergent

ψ(1 + z) ∼ ln z +
1

2z
− 1

12z2
+

1

120z4
− 1

252z6
+ · · ·+ 174611

6600z20
− . . .

• functional relation: ψ(1 + z) = ψ(z) + 1
z X

• reflection formula: ψ(1 + z)− ψ(1− z) = 1
z − π cot(π z)

⇒ Imψ(1 + iy) ∼ − 1

2y
+
π

2
+π

∞∑

k=1

e−2π k y

• formal series only has the two "perturbative" terms

“raw” asymptotics is inconsistent with analytic continuation

• resurgence: add infinite series of non-perturbative terms

"non-perturbative completion"
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Resurgence: Preserving Analytic Continuation

Imψ(1 + iy) ∼ − 1

2y
+
π

2
+π

∞∑

k=1

e−2π k y

• function satisfies infinite order linear ODE
⇒ infinitely many exponential terms in trans-series

Borel representation:

ψ(1 + z)− ln z =

∫ ∞

0

(
1

t
− 1

et − 1

)
e−zt dt

• Borel transform: poles at t = ±2nπi, n = 1, 2, 3, ...

• meromorphic (poles, no cuts)⇒ no "fluctuation factors"

• this simple example arises often in QFT: Euler-Heisenberg,
finite temperature QFT, de Sitter, exact S-matrices,
Chern-Simons partition functions, matrix models, ...



Euler-Heisenberg and Matrix Models, Large N, Strings, ...

• scalar QED EH in self-dual background (F = ±F̃ ):

S =
F 2

16π2

∫ ∞

0

dt

t
e−t/F

(
1

sinh2(t)
− 1

t2
+

1

3

)

• Gaussian matrix model: λ = g N

F = −1

4

∫ ∞

0

dt

t
e−2λ t/g

(
1

sinh2(t)
− 1

t2
+

1

3

)

• c = 1 String: λ = g N

F =
1

4

∫ ∞

0

dt

t
e−2λ t/g

(
1

sin2(t)
− 1

t2
− 1

3

)

• Chern-Simons matrix model:

F = −1

4

∑

m∈Z

∫ ∞

0

dt

t
e−2(λ+2π im) t/g

(
1

sinh2(t)
− 1

t2
+

1

3

)



Borel summation in practice: Borel cuts

Comments:

• an isolated pole in the Borel transform corresponds to a single
"instanton" exponential term (e.g. previous exponential integral
function example)

• physically, we may expect fluctuations about instantons.
These correspond to branch point singularities, and their
associated branch cuts, in the Borel plane

Γ

(
s,

1

x

)
=

∫ ∞
1
x

ts−1e−t dt = x−s e−
1
x

∫ ∞

0
e−t/x (1 + t)s−1 dt

∼ x1−s e−1/x
∞∑

n=0

Γ(s)

Γ(s− n)
xn

• truncation when s = integer (“SUSY” & “localization”)

• resurgence is more interesting with several parameters
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Resurgence in Differential Equations I

• trans-series from 2nd order linear ODE has 2 non-perturbative
exponential terms (WKB)

• trans-series from nth order linear ODE has n non-perturbative
exponential terms

• the fluctuations about these different (“instanton”)
exponentials are related by generic large order/low order
resurgence relations

n

m



All-Orders Steepest Descents: Darboux Theorem

• all-orders steepest descents for contour integrals:

hyperasymptotics (Berry/Howls 1991, Howls 1992)

I(n)(g2) =

∫

Cn

dz e
− 1
g2
f(z)

=
1√
1/g2

e
− 1
g2
fn T (n)(g2)

• T (n)(g2): beyond the usual Gaussian approximation

• asymptotic expansion of fluctuations about the saddle n:

T (n)(g2) ∼
∞∑

r=0

T (n)
r g2r



All-Orders Steepest Descents: Darboux Theorem

• Berry/Howls: exact resurgent relation between fluctuations
about nth saddle and about neighboring saddles m

T (n)(g2) =
1

2π i

∑

m

(−1)γnm
∫ ∞

0

dv

v

e−v

1− g2v/(Fnm)
T (m)

(
Fnm
v

)

• proof is based on contour deformation

• universal factorial divergence of fluctuations

T (n)
r =

(r − 1)!

2π i

∑

m

(−1)γnm

(Fnm)r

[
T

(m)
0 +

Fnm
(r − 1)

T
(m)
1 +

(Fnm)2

(r − 1)(r − 2)
T

(m)
2 + . . .

]

• alternative proof from Darboux’s theorem in the Borel plane

fluctuations about different saddles are explicitly related !
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All-Orders Steepest Descents: Darboux Theorem

• example

d = 0 partition function for periodic potential V (z) = sin2(z)

I(g2) =

∫ π

0
dz e

− 1
g2

sin2(z)

• this is a Bessel function

• two saddle points: z0 = 0 and z1 = π
2 .

IĪ
vacuum vacuum

min. min.saddle



All-Orders Steepest Descents: Darboux Theorem

• large order behavior about saddle z0:

T (0)
r =

Γ
(
r + 1

2

)2
√
π Γ(r + 1)

∼ (r − 1)!√
π

(
1−

1
4

(r − 1)
+

9
32

(r − 1)(r − 2)
−

75
128

(r − 1)(r − 2)(r − 3)
+ . . .

)

• low order coefficients about saddle z1:

T (1)(g2) ∼ i√π
(

1− 1

4
g2 +

9

32
g4 − 75

128
g6 + . . .

)

• fluctuations about the two saddles are explicitly related

• simple example of a generic resurgent large-order/low-order
perturbative/non-perturbative relation
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All-Orders Steepest Descents: Darboux Theorem

Exercise 3: the modified Bessel function has the large x
asymptotic expansion:

Ij(x) ∼ ex√
2πx

∞∑

n=0

(−1)n
αn(j)

xn
±ieijπ e−x√

2πx

∞∑

n=0

αn(j)

xn
,
∣∣∣arg(x)− π

2

∣∣∣ < π

where the coefficients are

αj(n) =
cos(πj)

π

(
−1

2

)n Γ
(
n+ 1

2 − j
)

Γ
(
n+ 1

2 + j
)

Γ(n+ 1)

(i) show that the large-order growth (n→∞) is

αn(j) ∼ cos(jπ)

π

(−1)n(n− 1)!

2n

(
α0(j)− 2α1(j)

(n− 1)
+

22 α2(j)

(n− 1)(n− 2)
− . . .

)

(ii) what is the significance of the cos(jπ) prefactor?



All-Orders Steepest Descents: Darboux Theorem

• Darboux’s theorem

f(z) ∼ φ(z)

(
1− z

z0

)−g
+ ψ(z) , z → z0

• large-order growth of Taylor coefficients

bn ∼

(
n+ g − 1

n

)

zn0

[
φ(z0)− (g − 1) z0 φ

′(z0)

(n+ g − 1)
+

(g − 1)(g − 2) z2
0 φ
′′(z0)

2!(n+ g − 1)(n+ g − 2)
− . . .

]

• log branch cut ⇒

bn ∼
1

zn0
· 1

n

[
φ(z0)− z0 φ

′(z0)

(n− 1)
+

z2
0 φ
′′(z0)

(n− 1)(n− 2)
− . . .

]

• apply this in the Borel plane ⇒ large-order/low-order
resurgence relations
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All-Orders Steepest Descents: Darboux Theorem

Exercise 4:

(i) investigate Darboux’s theorem numerically for the
hypergeometric function, which has a branch point at
z = 1

2F1 (a, b, c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑

n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)n!
zn

(ii) what happens if a+ b− c = integer?



Resurgence: canonical example = Airy function

• formal large x solution to ODE: "perturbation theory"

y′′ = x y ⇒
{

2 Ai(x)
Bi(x)

}
∼ e∓

2
3
x3/2

2π3/2 x1/4

∞∑

n=0

(∓1)n
Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)

n!
(

4
3 x

3/2
)n

• non-perturbative connection formula:

Ai
(
e∓

2πi
3 x
)

= ± i
2
e∓

πi
3 Bi (x) +

1

2
e∓

πi
3 Ai (x)

• how do we recover this from the series?
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Resurgence: canonical example = Airy function

• Borel sum of the Ai(x) series factor:

∞∑

n=0

(−1)n
Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)

n!

tn

n!
= 2F1

(
1

6
,
5

6
, 1;−t

)

• inverse recovers the Ai(x) formal series:

Z(x) =
4

3
x3/2

∫ ∞

0
dt e−

4
3
x3/2t

2F1

(
1

6
,
5

6
, 1;−t

)

• cut for t ∈ (−∞,−1]: rotate t contour as x rotates

2F1

(
1

6
,
5

6
, 1; t+ i ε

)
− 2F1

(
1

6
,
5

6
, 1; t− i ε

)
= i 2F1

(
1

6
,
5

6
, 1; 1− t

)
, x ≥ 1

• discontinuity across cut ⇒ non-pert. connection formula

Z
(
e

2πi
3 x
)
− Z

(
e−

2πi
3 x
)

= i e−
4
3
x3/2Z (x)
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Resurgence: canonical example = Airy function

Exercise 5:

Use the property of the hypergeometric function for the jump
across the cut

2F1

(
1

6
,
5

6
, 1; t+ i ε

)
− 2F1

(
1

6
,
5

6
, 1; t− i ε

)
= i 2F1

(
1

6
,
5

6
, 1; 1− t

)
, x ≥ 1

to derive the non-perturbative connection formula for the Airy
function on the previous page.


