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Resurgence and Non-perturbative Physics

1. Lecture 1: Basic Formalism of Trans-series and Resurgence
» asymptotic series in physics; Borel summation
» trans-series completions & resurgence
» examples: linear and nonlinear ODEs

2. Lecture 2: Applications to Quantum Mechanics and QFT
» instanton gas, saddle solutions and resurgence
» infrared renormalon problem in QFT
» Picard-Lefschetz thimbles

3. Lecture 3: Resurgence and Large N

» Mathieu equation and Nekrasov-Shatashvili limit of N' = 2
SUSY QFT

4. Lecture 4: Resurgence and Phase Transitions

» Gross-Witten-Wadia Matrix Model



Physical Motivation

e non-perturbative definition of non-trivial QFT, in the
continuum

e analytic continuation of path integrals
e "sign problem" in finite density QFT

e dynamical & non-equilibrium physics from path integrals
(strong coupling)

e uncover hidden ‘magic’ in perturbation theory
e new understanding of weak-strong coupling dualities
e infrared renormalon puzzle in asymptotically free QFT

e exponentially improved asymptotics & resummation



Physical Motivation

Temperature

10K | |

u
10'%g/cm®  Baryon
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e sign problem: "complex probability" at finite baryon
density?
DA ¢Sy mlAl+Indet(Prm+ipy®)

e phase transitions and Lee-Yang & Fisher zeroes



Physical Motivation

e equilibrium thermodynamics <+ Fuclidean path integral

e Kubo-Martin-Schwinger: antiperiodic b.c.’s for fermions

o Oit-af-equilibrium

Thermal

i

e non-equilibrium physics <> Minkowski path integral
e Schwinger-Keldysh time contours

e quantum transport in strongly-coupled systems



Physical Motivation

what does a Minkowski path integral mean, computationally?
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Physical Motivation

e what does a Minkowski path integral mean?

/DA exp <; S[A]) versus /DA exp <—:,L S[A])

e since we need complex analysis and contour deformation to
make sense of oscillatory ordinary integrals, it is natural to
expect to require similar tools also for path integrals

e an obvious idea, but how to make it work ... ?



Mathematical Motivation

Resurgence: ‘new’ idea in mathematics (&calle, 1980; Stokes, 1850)

resurgence = unification of perturbation theory and
non-perturbative physics

e perturbation theory generally = divergent series

e series expansion —» trans-series expansion

e trans-series ‘well-defined under analytic continuation’
e perturbative and non-perturbative physics entwined

e applications: ODEs, PDEs, difference equations, fluid
mechanics, QM, Matrix Models, QFT, String Theory, ...

e philosophical shift:
go beyond the Gaussian approximation and view semiclassical
expansions as potentially exact



Perturbation Theory and Asymptotics

e in physical applications, expansions in a small parameter are
often, but not always, divergent asymptotic series

e such an expansion is often the best we can do, and sometimes
it is the only thing we can do

e it is worth understanding how to extract as much physical
information as possible from an asymptotic expansion

e resurgence has the potential to lead to significant
improvements, both analytically and numerically

e resurgence relates perturbative expansions to non-perturbative
physics in surprisingly explicit ways



It’s a bit of black magic, to figure things out about differential
equations even though you can’t solve them

Michael Atiyah
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Trans-series

e an interesting observation by Hardy:

No function has yet presented itself in analysis, the laws of
whose increase, in so far as they can be stated at all, cannot be
stated, so to say, in logarithmico-exponential terms

G. H. Hardy, Divergent Series, 1949

e deep result: “this is all we need” (J. Ecalle, 1980)

e also as a closed logic system: Dahn and Goring (1980)



Resurgent Trans-Series

e Ecalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)
e basic trans-series expansion in QM & QFT applications:

=555 gt (w[]) (n[5])

p=0 k=0 [=1

perturbative fluctuations - -
k—instantons  quasi-zero-modes



Resurgent Trans-Series

e Ecalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)
e basic trans-series expansion in QM & QFT applications:

=555 gt (w[]) (n[5])

p=0 k=0 [=1

perturbative fluctuations
k—instantons  quasi-zero-modes

1
e trans-monomial elements: g2, e 92, In(g?), are familiar

e “multi-instanton calculus” in QFT



Resurgent Trans-Series

e Ecalle: resurgent functions closed under all operations:

(Borel transform) + (analytic continuation) + (Laplace transform)
e basic trans-series expansion in QM & QFT applications:

=23 e (oo[5]) (u[5])

p=0 k=0 [=1

perturbative fluctuations - -
k—instantons  quasi-zero-modes

1
e trans-monomial elements: g2, e 92, In(g?), are familiar
e “multi-instanton calculus” in QFT

e new: analytic continuation encoded in trans-series

e new: trans-series coefficients ¢y, highly correlated

e new: exponentially improved asymptotics



Resurgence

resurgent functions display at each of their singular
points a behaviour closely related to their behaviour at
the origin. Loosely speaking, these functions resurrect,
or surge up - in a slightly different guise, as it were - at
their singularities

J. Ecalle, 1980

resurgence = global complex analysis with divergent series



Perturbation theory is generically divergent

e hard problem = easy problem -+ “small” correction

e perturbation theory generally — divergent series
e.g. QM ground state energy: £ =Y > ¢, (coupling)”

» Zeeman: ¢, ~ (—1)" (2n)!

» Stark: ¢, ~ (2n)!

» cubic oscillator: ¢, ~ I'(n+ 3)

» quartic oscillator: ¢, ~ (=1)"T'(n + 3)

» periodic Sine-Gordon (Mathieu) potential: ¢, ~ n!
» symmetric double-well: ¢, ~ n!

note generic factorial growth of perturbative coefficients



Perturbation theory works

QED perturbation theory:
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Asymptotic Series vs Convergent Series

z fixed

N-1
fx) =) en(x—w0)" + Ru(x)
n=0
convergent series:
|[Ry(z)] =0 , N—=o0o ,
asymptotic series:
[Ry(z)] < |z —zo|Y . z =@

—  “optimal truncation”:

, N fixed

truncate just before least term (x dependent!)



Asymptotic Series vs Convergent Series
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optimal truncation order depends on x:  Nypy =



Asymptotic Series vs Convergent Series

Exercise 1:

(i) Show that the magnitude of the summand, n!z", is

minimized for n ~ %

(ii) Compute the optimal order of truncation for the series with
summand: (—1)"(2n)! 2™



Asymptotic Series vs Convergent Series
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non-alternating asymptotic series : Z Rz~ —ex Eq <—>
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Asymptotic Series vs Convergent Series

e contrast with behavior of a convergent series, for which
more terms always improves the answer, independent of x

: = (_1)71 n
convergent series : E 5— & = PolyLog(2, —x)
n
n=0
-075
-062 /\ /\
- . -0.80
0.64 V/\v /\\/\/\v*v*v
~0.66 -085 \/
-0.68
-0.70 -0.90
-0.72 —-0.95
-0.74
5 10 15 20N 5 10 15

(z = 0.75) (x=1)



Asymptotic Series vs Convergent Series

asymptotic series are sometimes ‘better’
AiX]
1.0

VARV,

gold: exact

red: 1 term divergent about z = —oo
green: 10 terms convergent about z =0
black: 50 terms convergent about x = 0

-0.5F




Asymptotic Series: exponential precision

o

1 1
Z(—l)” nlz™ ~ = et B <>
vt T T

optimal truncation: error term is exponentially small

—1/z
~ N ~ -N -N ¢

e e.g. alternating exponential integral:
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Borel summation: basic idea

alternating factorially divergent series:

o0

Z(—l)" nlaz" =7

n=0

write n! = fooo dtetn

Emile Borel

o0

S (=)l = /Oodte_t 1+1xt )

n=0 0

integral is convergent for all z > 0: “Borel sum” of the series



Borel Summation: basic idea

[o.9]

S = [Cuet o=t (1)
1.2
11
1.0
0.9
0.8

0.7

0.0




Borel summation: basic idea

write n! = fooo dte ttn

non-alternating factorially divergent series:

[e.e] 00 1
Zn!x” = / dte™ Toai (77)
=0 0 —xt

pole on the (real, positive) Borel axis!

Emile Borel



Borel summation: basic idea

write n! = fooo dte ttn

non-alternating factorially divergent series:

oo
0

o0
E nla" = /
n=0

pole on the (real, positive) Borel axis!

Emile Borel

o . i1
= non-perturbative imaginary part = +t—e =
x

but every term in the series is real !7!



Borel Summation: basic idea

Borel = Re [Z n! x”] = 77/ dte !
n=>0 0

2.0

15
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15
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Borel Summation: basic idea

Bore1:>Re[ n‘x ] 77/ dte*t — :Re [—iealc Ey (—i)}

2.0

15

1.04

0.5

05 10 15 20 25 30"

-05

e note: F (—5) also has an imaginary part = i

_feiéEl <€ilﬂ-) = ——¢ = I:EZTL < ) —Inz — v F Zﬂ-:|
T z x v

e Borel encodes this non-perturbative "connection formula"



Borel summation

Borel transform of series, where ¢, ~n! , n — o
[o¢] o0 c

flo)~ Y eng”  — BlfI) =) t"
n=0 n=0

new series typically has a finite radius of convergence



Borel summation

Borel transform of series, where ¢, ~n! , n — o
[o¢] o0 c
flo)~ Y eng”  — BlfI) =) t"
n=0 n=0

new series typically has a finite radius of convergence

Borel resummation of original asymptotic series:

_ 1 > e~ t/9
Sﬂm—gA BIf](t)et/9dt

note: B[f](t) may have singularities in (Borel) ¢ plane



Borel singularities
avoid singularities on R™: directional Borel sums:

sifto) = [ " BIAWe ot

go above/below the singularity: § = 0F
—  non-perturbative ambiguity: +Im[Syf(g)]

physics challenge: use physical input to resolve ambiguity



f@~> g . e~ B T(Yn+0)
n=0

e alternating series: real Borel sum

o [ (5) G) ()
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Borel summation in practice

f@)~> eng" . e~ B'T(yn+0)
n=0

e alternating series: real Borel sum

o3 ) @) ()

e nonalternating series: ambiguous imaginary part

Re f(—g) ~ ip/oooit <11t> (67;)5” o [_ (59)1/7]
wicn = 1 (8) " en [ 3]



Borel summation in practice
e.9]
F@)~> eng” . e~ B T(yn+9)
n=0
e alternating series: real Borel sum
1 [®dt [ 1 £\ £\
o~ () () ()
(9) vJo t \14+t)\Byg By
e nonalternating series: ambiguous imaginary part
1 [®dt [ 1 £\ £\
wien ~ 12 [ 4 () e -3
(=9) v oJo t \1—t) \Byg By

o - 2 (3) ()

e v determines power of coupling in the exponent
e § and ~ determine coefficient in the exponent

e 3, v and ¢ determine the prefactor



Borel summation in practice

Exercise 2:

Use the integral representation of I'(yn + ) to derive the
expressions on the previous slide.

Hence deduce the meaning of the large-order behavior
parameters 3, v and 9.

Compare with the second part of Exercise 1.



Resurgence and Analytic Continuation

another view of resurgence:

resurgence can be viewed as a method for making formal
asymptotic expansions consistent with global analytic
continuation properties

resurgence = global complex analysis for divergent series

(analytic continuation, transforms, monodromy, ...)
= “the trans-series really IS the function”

question: to what extent is this true/useful in physics?



Stirling expansion for ) (z) = 4

= = InT'(2) is divergent
1 1 1 1 174611
142)~Inz+ —— _ e
VA2~ Izt o e T a0t 2520 T T 6600220
e functional relation: (1 + 2) = ¢(2) + 1 v
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Resurgence: Preserving Analytic Continuation

Stirling expansion for 1(z) = % InT'(2) is divergent

1 1 1 1 174611
PY(1+4+z)~Inz+ —

e functional relation: (1 + z) = 1(z) + 1 v

e reflection formula: (1 + z) — (1 — z) = L — 7 cot(r 2)

1 oo
=  Imy(1l+iy) ~ 2" gMTZe*Q’”“J
k=1

22 1222 12021 25246 T G600s0



Resurgence: Preserving Analytic Continuation

Stirling expansion for 1(z) = % InT'(2) is divergent

1 1 1 1 174611
PY(1+4+z)~Inz+ —

e functional relation: (1 + z) = 1(z) + 1 v
o reflection formula: (1 + 2) — (1 — 2) = L — 7 cot(n 2)

z

1 o~ onk
= ImTﬂ(l—i—iy)N—@—i—g—&-WZe*Mky
k=1

e formal series only has the two "perturbative" terms
“raw” asymptotics is inconsistent with analytic continuation
e resurgence: add infinite series of non-perturbative terms

"non-perturbative completion"

22 1222 12021 25246 T G600s0



Resurgence: Preserving Analytic Continuation
Im'lﬂ(l + Zy) ~ _i + E“Fﬂ_ieizﬂ—ky
2y 25

e function satisfies infinite order linear ODE
= infinitely many exponential terms in trans-series

Borel representation:

(1 1 _,
w(l—i—z)—lnz:/o (t_et—1>e Lat

e Borel transform: poles at t = +2nwi, n=1,2,3, ...

e meromorphic (poles, no cuts) = no "fluctuation factors"

e this simple example arises often in QFT: Euler-Heisenberg,
finite temperature QFT, de Sitter, exact S-matrices,
Chern-Simons partition functions, matrix models, ...



Euler-Heisenberg and Matrix Models, Large N, Strings, ...

e scalar QED EH in self-dual background (F = +F):

F?2 [ qt 1 1 1
g — g 704 -4z
1672 /0 t ¢ st "2 73

e Gaussian matrix model: A =g N

1 [>dt 1 1 1
f:—* - —2>\t/g < _+>
4 /0 t € sinh2(t) 2 3

e c=1 Stringt A\=gN

1 dt 111
F== W —2Xt/g - =
4/0 £ sn2(t) 2 3

e Chern-Simons matrix model:

1 ° dt , 1 1 1
F=_- &b —2(M2mim)t/g ( - — ¥ >
4 mzezz/o t € sinh?(t) t2 3




Borel summation in practice: Borel cuts

Comments:

e an isolated pole in the Borel transform corresponds to a single
"instanton" exponential term (e.g. previous exponential integral
function example)

e physically, we may expect fluctuations about instantons.
These correspond to branch point singularities, and their
associated branch cuts, in the Borel plane



Borel summation in practice: Borel cuts

Comments:

e an isolated pole in the Borel transform corresponds to a single
"instanton" exponential term (e.g. previous exponential integral
function example)

e physically, we may expect fluctuations about instantons.
These correspond to branch point singularities, and their
associated branch cuts, in the Borel plane

1 &0 1 [
r <s, > = / t7leTtdt = z7%e / eT A+t at
X 1 0

o0
r
W pls 1/ ZOP (5) n
n=»



Borel summation in practice: Borel cuts

Comments:

e an isolated pole in the Borel transform corresponds to a single
"instanton" exponential term (e.g. previous exponential integral
function example)

e physically, we may expect fluctuations about instantons.
These correspond to branch point singularities, and their
associated branch cuts, in the Borel plane

1 &0 1 [
r <s, > = / t7leTtdt = z7%e / eT A+t at
X 1 0

[e.9]

e ['(s)
~ 1-s —1/x n
x e T;)F(s ) x

e truncation when s = integer (“SUSY” & “localization”)

e resurgence is more interesting with several parameters



Resurgence in Differential Equations I

e trans-series from 2°4 order linear ODE has 2 non-perturbative
exponential terms (WKB)

e trans-series from n'" order linear ODE has n non-perturbative
exponential terms

e the fluctuations about these different (“instanton”)
exponentials are related by generic large order/low order
resurgence relations



All-Orders Steepest Descents: Darboux Theorem

e all-orders steepest descents for contour integrals:

hyperasymptotics (Berry/Howls 1991, Howls 1992)
1
1M (g%) = dze el 1 e o In ) (9°)
Cn 1/g*

o 7T(1) (¢%): beyond the usual Gaussian approximation

e asymptotic expansion of fluctuations about the saddle n:

7™M (g Z T g2



All-Orders Steepest Descents: Darboux Theorem

e Berry/Howls: exact resurgent relation between fluctuations
about n'® saddle and about neighboring saddles m

1 < dv e v F,
T(TL) 2 - -1 Ynm / - T(m) —nm
(97) 2mi 4= (=1) o v 1—g*v/(Fm) v

e proof is based on contour deformation



All-Orders Steepest Descents: Darboux Theorem

e Berry/Howls: exact resurgent relation between fluctuations
about n'® saddle and about neighboring saddles m

N 1 R "0 dv e v ) [ Fom
T )(gz) - (—1) /"'7”/ fg—T( i
T o v 1—=g%v/(Fnm) v

e proof is based on contour deformation

e universal factorial divergence of fluctuations

2
(m) Fom (m) (F'nm) (m)
T, T _
s D R s s

e alternative proof from Darboux’s theorem in the Borel plane

ny_ (r= DI (D)™
T = 27 i Z (Fum)"

fluctuations about different saddles are explicitly related !

+ ...



All-Orders Steepest Descents: Darboux Theorem

e example

d = 0 partition function for periodic potential V(z) = sin?(z)
0

e this is a Bessel function

e two saddle points: zg =0 and 21 = 7.

saddle

in.

vacuum —

11



All-Orders Steepest Descents: Darboux Theorem

e large order behavior about saddle zg:

2

T /rl(r41)

(r—1)! 9 75

1
~ _ 4 32 _ 128
N <1 -1 )2 (r-(r-2)r-3)



All-Orders Steepest Descents: Darboux Theorem

e large order behavior about saddle zg:

7(0) — F(T+%)2
" Val(r+1)
(r—1)!

1
VT (1 -1 )2 D23

e low order coefficients about saddle z1:

9 75

. 1 9 75
T(l)(QQ)NZ\/;T<1—492+3294—12896+...>

e fluctuations about the two saddles are explicitly related

e simple example of a generic resurgent large-order /low-order
perturbative /non-perturbative relation




All-Orders Steepest Descents: Darboux Theorem

Exercise 3: the modified Bessel function has the large x
asymptotic expansion:

( l)nw ’L]ﬂ' Z 7

:L-n

CE

2V 277;1;

where the coeflicients are

_cos(mj) ((1\"T(n+3—4)T (n+3+))
aj(n) = — (_2> 2F(n+1) )

Ij(z) ~

arg(x ——‘<7r

(i) show that the large-order growth (n — o0) is

o) (=1 (o) 21 2 () )

() ~ 2 > (-1 - Dn-2)

(ii) what is the significance of the cos(jm) prefactor?



All-Orders Steepest Descents: Darboux Theorem

e Darboux’s theorem

z

re~ o) (1-2) i), oz

20

e large-order growth of Taylor coefficients

)

n
20

(9 =D 20¢'(20) | (9—1)(g—2)25¢"(20)
9(z0) = (n+g—1) +2!(n+g—1)(n3—g—2)_“

by, ~



All-Orders Steepest Descents: Darboux Theorem

e Darboux’s theorem

z

ro~o) (1-2) T o

20

e large-order growth of Taylor coefficients

)

n
20

by, ~

) — (9-D2¢(0)  (9-1(g-2) % 9" (20)

(20 (n4+g—1) 2n+g—-1)(n+g-2)

e log branch cut =

LA ) B
b~ o n[¢(0) 0o, AL

e apply this in the Borel plane = large-order/low-order
resurgence relations



All-Orders Steepest Descents: Darboux Theorem

Exercise 4:

(i) investigate Darboux’s theorem numerically for the
hypergeometric function, which has a branch point at
z=1

2F1(a,b,¢2) = Lo ZF(nFJ(Fnafc()nnT e

n=0

(ii) what happens if @ + b — ¢ = integer?



Resurgence: canonical example = Airy function

e formal large = solution to ODE: "perturbation theory"

3/2 e

v 2 Ai(x) €5 2wL(n+g)T(n+3)
yoom {Bi(x) }N 273/2 gp1/4 £ (+1) n! (%x3/2)n



Resurgence: canonical example = Airy function

e formal large = solution to ODE: "perturbation theory"

" _ 28i(2)| P KTt )T (0t 3)
Yy =y = {Bl(w) }N 27r3/2x1/4 z:o(:Fl) ! (%563/2)”

e non-perturbative connection formula:

27i

) s} 1 s
Ai (e:FT x) = :I:%e¢?Bi (x) —|—§e¢7Ai (x)

e how do we recover this from the series?



Ai (e¢% w) = :I:%'e:F%Bi (x) —I—%e:F%ZAi (x)
Plot[{Re[AiryAi[Exp[2nI/3] x]], 1/2Re[-IExp[In/3] AiryBi[x]]},
{x, 0, 5}, PlotStyle -» {{Blue, Thickness[0.02], Opacity[.3]1}, {Red, Thick}},
AxesStyle - Medium]

DA

]
v
[0



Ai (e¢%

— +icF5 B LeF5 A
a:) =+5eT 3 Bi(x) +5eT 3 Ai(x)
{x, ©, 5}, PlotStyle -» Thick, AxesStyle - Medium]

Plot[{Re[AiryAi[Exp[27xI/3] x]]-1/2Re[-IExp[In/3]AiryBi[x]]},
0.08
0.06

0.04

0.02

DA



Resurgence: canonical example = Airy function
. 2mi P mi mo
Ai (ejF 3 x) =+1eT3Bi(z) +5eT 3 Ai(2)
Plot[{Re[AiryAi[Exp[2nI/3] x]] -1/2Re[-IExp[In/3] AiryBi[x]],

1/2Re[ Exp[In/3]AiryAi[x]]}, {x, 0, 5}, AxesStyle -» Medium,
PlotStyle - {{Blue, Thickness[0.02], Opacity[.3]}, {Red, Thick}}]

0.08

0.06

0.02




Resurgence: canonical example = Airy function

e formal large = solution to ODE: "perturbation theory"

" _ 28i(2)| P KTt )T (0t 3)
Yy =y = {Bl(w) }N 27r3/2x1/4 z:o(:Fl) ! (%563/2)”

e non-perturbative connection formula:

27

) s} 1 s
Ai (e:FT x) = :I:%e¢?Bi (x) —|—§e¢7Ai (x)

e how do we recover this from the series?



Resurgence: canonical example = Airy function

e Borel sum of the Ai(x) series factor:

o 1 n 4+ 2)
Z(_l)nr(n+6)r( +6)L: 2F1<1,51'—t>

n! n! 6°6 "’
n=0

e inverse recovers the Ai(x) formal series:

15
Z(z) = 3/2/ dte 37"t L Fy <6 6,1,—t>



Resurgence: canonical example = Airy function

e Borel sum of the Ai(x) series factor:

o 1 n 4+ 2)
Z(_l)nr(n+6)r( +6)L: 2F1<1,51'—t>

n! n! 6°6 "’
n=0

e inverse recovers the Ai(x) formal series:
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Resurgence: canonical example = Airy function

e Borel sum of the Ai(x) series factor:

o 1 n 4+ 2)
Z(_l)nr(n+6)r( +6)L: 2F1<1,51'—t>

n! n! 6°6 "’
n=0

e inverse recovers the Ai(x) formal series:

15
Z(z) = 3/2/ dte 37"t L Fy (6 6,1,—t>

e cut for ¢t € (—oo, —1]: rotate t contour as z rotates

15 15 15
F 1;t —oF jt—ie )] =1 oF 1;1—t¢
21(66 +26> 21(66 ze) i 2 1(66” )

e discontinuity across cut = non-pert. connection formula

Z (e% x) -7 (e_% m) =iem377 ()



Resurgence: canonical example = Airy function

e formal large x solution to ODE: "perturbation theory"

3/2

Z$1 F'(n+3)T(n+2)

2Ai(:v)} eFie

"o
y =y = { Bi(z) 973/2 p1/4 nl (423/2)"

e non-perturbative connection formula:

s} ) s} 1 s
Ai (e:FQT x) = :I:%e¢?Bi (x) —|—§e¢?Ai (x)

e Borel summation encodes this non-perturbative effect



Resurgence: canonical example = Airy function

Exercise 5:

Use the property of the hypergeometric function for the jump
across the cut

15 15 15
F 1:¢ — oI t—1 =1 oF 1;1—¢
21(667,4-26) 21(66” 2€> 19 1(66 ; )

to derive the non-perturbative connection formula for the Airy
function on the previous page.



