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Resurgence, Trans-series and Non-perturbative Physics

1. Lecture 1: Basic Formalism of Trans-series and Resurgence

I asymptotic series in physics; Borel summation

I trans-series completions & resurgence

I examples: linear and nonlinear ODEs

2. Lecture 2: Applications to Quantum Mechanics and QFT

I instanton gas, saddle solutions and resurgence

I infrared renormalon problem in QFT

I Picard-Lefschetz thimbles

3. Lecture 3: Resurgence and Large N

I Mathieu equation and Nekrasov-Shatashvili limit of N = 2
SUSY QFT

4. Lecture 4: Resurgence and Phase Transitions

I Gross-Witten-Wadia Matrix Model



Resurgence: canonical example = Airy function

"path integral"

Ai(x) =
1

2π

∫ ∞

−∞
dt e

i
(
x t+ t3

3

)
=

√
r

2πi

∫ +i∞

−i∞
dz e

r3/2
(
eiθ z− z

3

3

)

• we have written x ≡ r eiθ, t ≡ −i√rz

• basis of allowed contours

Ai(x) =

√
r

2πi

∫

γk

dz e
r3/2

(
eiθ z− z
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Resurgence: canonical example = Airy function

"path integral" Ai(x) =

√
r

2πi

∫

γk

dz e
r3/2

(
eiθ z− z

3

3

)

• saddles at z = ±eiθ/2; these move as θ varies

• saddle exponent (≡ "action") = ±2
3r

3/2e3iθ/2

• steepest descent contours: Im
[
eiθ z − z3

3

]
= ±2

3 sin
(

3θ
2

)
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Resurgence: canonical example = Airy function

"path integral"

Ai(x) =

√
r

2πi

∫

γk

dz e
r3/2

(
eiθ z− z

3

3

)

• saddles at z = ±eiθ/2

• saddle exponent (≡ "action") = ±2
3r

3/2e3iθ/2

x > 0⇒ θ = 0⇒ contour through only 1 saddle (z = −1)
⇒ action = −2

3r
3/2 = −2

3x
3/2

x < 0⇒ θ = ±π ⇒ contour through 2 saddles (z = ±i)
⇒ action = ±i2

3r
3/2 = ±i2

3(−x)3/2



Resurgence: canonical example = Airy function

Ai(x) =

√
r

2πi

∫

γk

dz e
r3/2

(
eiθ z− z

3

3

)

• saddles at z = ±eiθ/2 , action = ±2
3r

3/2e3iθ/2

• real action when θ = 0,±2π
3 : "Stokes lines"

• imaginary action when θ = π,±π
3 : "anti-Stokes lines"

Stokes lines in complex x-plane

x = r ei θ

moral: keep track of both
saddle contributions as we

analytically continue in complex
x plane
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Phase Transitions as Stokes Transitions

Stokes jumps: as a parameter in the “path integral” changes
(possibly in the complex plane) saddles can “appear” and
“disappear”.

idea: associate Stokes transitions with physical phase
transitions

phase transition = change of dominant saddle(s)



Resurgence: canonical example = Airy function

• expansions about the two saddles are explicitly related

an =
Γ
(
n+ 1

6

)
Γ
(
n+ 5

6

)

(2π)
(

4
3

)n
n!

=

{
1,

5

48
,

385

4608
,

85085

663552
, . . .

}

• large order behavior:

an ∼
(n− 1)!

(2π)
(

4
3

)n
(

1− 5

36

1

n
+

25

2592

1

n2
− . . .

)

• large order/low order relation: generic resurgence

an ∼
(n− 1)!

(2π)
(

4
3

)n
(

1−
(

4

3

)
5

48

1

(n− 1)
+

(
4

3

)2 385

4608

1

(n− 1)(n− 2)
− . . .

)

generic large order/low order
relation

n

m
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Resurgence in Differential Equations II

• trans-series from nth order linear ODE has n non-perturbative
exponential terms

• trans-series from nonlinear ODE has infinitely many
non-perturbative exponential terms

• e.g.: y1(x)× y2(x) satisfies 3rd order linear ODE
but y1(x)/y2(x) satisfies 2nd order non-linear ODE

• also generalizes to (some) PDE’s, linear and non-linear

• Painlevé = "special functions of nonlinear ODE’s"
many physical applications: fluids, statistical physics, gravity,
random matrices, matrix models, optics, QFT, strings, ...

• resurgent trans-series are the natural language for their
asymptotics



Resurgence in Nonlinear ODEs: e.g. Painlevé II
Painlevé II:

y′′ = x y(x) + 2 y3(x)

I “non-linear Airy function”

I Tracy-Widom law for statistics of max. eigenvalue for
Gaussian random matrices

I correlators in polynuclear growth; directed polymers (KPZ)

I double-scaling limit in unitary matrix models

I double-scaling limit in 2d Yang-Mills

I double-scaling limit in 2d supergravity

I non-intersecting Brownian motions

I longest increasing subsequence in random permutations

I ... universal !



Resurgence in Nonlinear ODEs: e.g. Painlevé II

y′′ = x y(x) + 2 y3(x)

• x→ +∞ asymptotics: y′′ ≈ x y(x) + . . .

y → 0 as x→ +∞ ⇒ y
(1)
+ (x) ∼ σ+ Ai(x) + . . .

• trans-series solution generated from ODE:

y+(x) ∼
∞∑

k=1

(
σ+

e−
2
3
x3/2

2
√
π x1/4

)2k−1

y
(k)
+ (x)

• infinite number of non-perturbative terms

• fluctuations factorially divergent & alternating

• σ+ = real trans-series parameter (for real solution)

• higher fluctuations determined by lower fluctuations
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Resurgence in Nonlinear ODEs: e.g. Painlevé II

y′′ = x y(x) + 2 y3(x)

• x→ −∞: smoothness ⇒ 0 ≈ x y(x) + 2 y3(x)

y
(0)
− (x) ∼

√
−x
2

(
1− 1

8(−x)3
− 73

128(−x)6
− 10567

1024(−x)9
− . . .

)

• no parameter! ⇒ something is missing (non-perturbative
corrections)

• non-alternating factorially divergent ⇒ something is missing
(non-perturbative corrections)

• non-pert. corrections “beyond all orders”: y = ypert + δy

δy′′ =
(
x+ 6y2

pert

)
δy ∼

(
−2x− 3

4x2
+ . . .

)
δy

δy ∼ σ−

(−x)1/4
e−
√

2 2
3

(−x)3/2

(
1−

17
72√

22
3(−x)3/2

+
1513
10368

(
√

22
3(−x)3/2)2

− . . .
)
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Resurgence in Nonlinear ODEs: e.g. Painlevé II

using resurgence and Exercise 2, we can now make a non-trivial
prediction for the large-order growth of the perturbative
expansion coefficients:

cn ∼ βn Γ(γ n+ δ)

Im f(−g) ∼ ±π
γ

(
1

βg

)δ/γ
exp

[
−
(

1

βg

)1/γ
]

δy ∼ σ−

(−x)1/4
e−
√

2 2
3

(−x)3/2

(i) we learn that: γ = 2, β = 9
8 , and δ = −5

2

(ii) subleading large-order growth terms also:

c(0)
n ∼ #

(
9

8

)n
Γ

(
2n− 5

2

)(
1 +

17
72(

2n− 7
2

) +
1513
10368(

2n− 7
2

) (
2n− 9

2

) − . . .
)



Resurgence in Nonlinear ODEs: e.g. Painlevé II

y′′ = x y(x) + 2 y3(x) , y(x) ∼ σ+ Ai(x) , x→ +∞

• trans-series structurally different as x→ ±∞
• note different exponents!

x→ +∞⇒ e−
2
3
x3/2

2
√
π x1/4

x→ −∞⇒ e−
2
√
2

3
(−x)3/2

2
√
π (−x)1/4

• Hastings-McLeod: σ+ = 1 unique real solution on R

• intricate "condensation of instantons" across transition
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Dyson’s argument (QED)

• Dyson (1952): physical argument for divergence of QED
perturbation theory

F (e2) = c0 + c2e
2 + c4e

4 + . . .

unstable
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Dyson’s argument (QED)

• Dyson (1952): physical argument for divergence of QED
perturbation theory

F (e2) = c0 + c2e
2 + c4e

4 + . . .

Thus [for e2 < 0] every physical state is unstable
against the spontaneous creation of large numbers of
particles. Further, a system once in a pathological state
will not remain steady; there will be a rapid creation of
more and more particles, an explosive disintegration of
the vacuum by spontaneous polarization.

• suggests perturbative expansion cannot be convergent



Borel Summation and Dispersion Relations: QM examples

cubic oscillator: V = x2 + λx3
A. Vainshtein, 1964

z= h
2

. z o

C

R

E(z0) =
1

2πi

∮

C
dz

E(z)

z − z0

=
1

π

∫ R

0
dz

ImE(z)

z − z0

=

∞∑

n=0

zn0

(
1

π

∫ R

0
dz

ImE(z)

zn+1

)

WKB ⇒ ImE(z) ∼ a√
z
e−b/z , z → 0 ↔ n→∞

⇒ cn ∼
a

π

∫ ∞

0
dz

e−b/z

zn+3/2
=
a

π

Γ(n+ 1
2)

bn+1/2
X
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Instability and Divergence of Perturbation Theory

quartic AHO: V (x) = x2

4 + λx
4

4 Bender/Wu, 1969



Euler-Heisenberg Effective Action (1935) review: hep-th/0406216

. . .

• 1-loop QED effective action in uniform emag field

• the birth of effective field theory

L =
~E2 − ~B2

2
+

α

90π

1

E2
c

[(
~E2 − ~B2

)2
+ 7

(
~E · ~B

)2
]

+ . . .

• encodes nonlinear properties of QED/QCD vacuum

http://inspirehep.net/record/653094?ln=en


QFT Application: Euler-Heisenberg

• Borel transform of a (doubly) asymptotic series

• resurgent trans-series: analytic continuation B ←→ E



Euler-Heisenberg Effective Action: Borel summation

• e.g., constant B field:

S = − B
2

8π2

∫ ∞

0

ds

s2

(
coth s− 1

s
− s

3

)
exp

[
−m

2s

B

]

• perturbative (weak field) expansion:

S ∼ − B
2

2π2

∞∑

n=0

B2n+4

(2n+ 4)(2n+ 3)(2n+ 2)

(
2B

m2

)2n+2

• characteristic factorial divergence

cn =
(−1)n+1

8

∞∑

k=1

Γ(2n+ 2)

(k π)2n+4

• instructive exercise: reconstruct Borel transform
∞∑

k=1

s

k2π2(s2 + k2π2)
= − 1

2s2

(
coth s− 1

s
− s

3

)
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Euler-Heisenberg Effective Action: Borel summation

• e.g., constant B field: characteristic factorial divergence

cn =
(−1)n+1

8

∞∑

k=1

1

(k π)2n+4
Γ(2n+ 2)

• recall Borel summation:

f(g) ∼
∞∑

n=0

cn g
n , cn ∼ βn Γ(γ n+ δ)

→ f(g) ∼ 1

γ

∫ ∞

0

ds

s

(
1

1 + s

)(
s

βg

)δ/γ
exp

[
−
(
s

βg

)1/γ
]

• for each k, reconstruct Borel transform:
∞∑

k=1

s

k2π2(s2 + k2π2)
= − 1

2s2

(
coth s− 1

s
− s

3

)



Euler-Heisenberg Effective Action: Borel summation

Exercise 6:

(i) fill in these steps for the Borel summation of the
Euler-Heisenberg effective action

(ii) deduce the imaginary part of the effective action when the
background field changes from magnetic to electric

(iii) repeat for the case of scalar QED in a background magnetic
field, where the Euler-Heisenberg effective action is
instead

S =
B2

16π2

∫ ∞

0

ds

s2

(
1

sinh s
− 1

s
+
s

6

)
exp

[
−m

2s

B

]



Euler-Heisenberg Effective Action and Schwinger Effect

B field: QFT analogue of Zeeman effect

E field: QFT analogue of Stark effect

B2 → −E2: series becomes non-alternating

Borel summation ⇒ ImS = e2E2

8π3

∑∞
k=1

1
k2

exp
[
−km2π

eE

]
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Fig. 1. Pair production as the separation of a virtual vacuum
dipole pair under the influence of an external electric field.

asymptotic e+ e− pairs if they gain the binding energy of
2mc2 from the external field, as depicted in Figure 1. This
is a non-perturbative process, and the leading exponential
part of the probability, assuming a constant electric field,
was computed by Heisenberg and Euler [2,3]:

PHE ∼ exp

[
−π m2 c3

e E !

]
, (3)

building on earlier work of Sauter [18]. This result sets a
basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e !
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2. (4)

As a useful guiding analogy, recall Oppenheimer’s compu-
tation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp

[
−4

3

√
2m E

3/2
b

eE!

]
. (5)

Taking as a representative atomic energy scale the binding

energy of hydrogen, Eb = me4

2!2 ≈ 13.6 eV, we find

P hydrogen ∼ exp

[
−2

3

m2 e5

E !4

]
. (6)

This result sets a basic scale of field strength and inten-
sity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

!4
= α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2. (7)

These, indeed, are the familiar scales of atomic ioniza-
tion experiments. Note that E ionization

c differs from Ec

by a factor of α3 ∼ 4 × 10−7. These simple estimates
explain why vacuum pair production has not yet been
observed – it is an astonishingly weak effect with con-
ventional lasers [20,21]. This is because it is primarily a
non-perturbative effect, that depends exponentially on the
(inverse) electric field strength, and there is a factor of ∼
107 difference between the critical field scales in the atomic
regime and in the vacuum pair production regime. Thus,
with standard lasers that can routinely probe ionization,
there is no hope to see vacuum pair production. However,

recent technological advances in laser science, and also in
theoretical refinements of the Heisenberg-Euler computa-
tion, suggest that lasers such as those planned for ELI
may be able to reach this elusive nonperturbative regime.
This has the potential to open up an entirely new domain
of experiments, with the prospect of fundamental discov-
eries and practical applications, as are described in many
talks in this conference.

2 The QED effective action

In quantum field theory, the key object that encodes vac-
uum polarization corrections to classical Maxwell electro-
dynamics is the “effective action” Γ [A], which is a func-
tional of the applied classical gauge field Aµ(x) [22–24].
The effective action is the relativistic quantum field the-
ory analogue of the grand potential of statistical physics,
in the sense that it contains a wealth of information about
the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor

Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and

the magnetic permeability µij of the quantum vacuum,
and is obtained by varying the effective action Γ [A] with
respect to the external probe Aµ(x). The general formal-
ism for the QED effective action was developed in a se-
ries of papers by Schwinger in the 1950’s [22,23]. Γ [A] is
defined [23] in terms of the vacuum-vacuum persistence
amplitude

〈0out | 0in〉 = exp

[
i

!
{Re(Γ ) + i Im(Γ )}

]
. (8)

Note that Γ [A] has a real part that describes dispersive ef-
fects such as vacuum birefringence, and an imaginary part
that describes absorptive effects, such as vacuum pair pro-
duction. Dispersive effects are discussed in detail in Gies’s
contribution to this volume [25]. The imaginary part en-
codes the probability of vacuum pair production as

Pproduction = 1 − |〈0out | 0in〉|2

= 1 − exp

[
−2

!
Im Γ

]

≈ 2

!
Im Γ (9)

here, in the last (approximate) step we use the fact that
Im(Γ )/! is typically very small. The expression (9) can be
viewed as the relativistic quantum field theoretic analogue
of the well-known quantum mechanical fact that the ion-
ization probability is determined by the imaginary part
of the energy of an atomic electron in an applied electric
field.

From a computational perspective, the effective action
is defined as [22–24]

Γ [A] = ! ln det [iD/ − m]

= ! tr ln [iD/ − m] . (10)

WKB tunneling from Dirac sea
ImS → physical pair production rate

2eE
~
mc
∼ 2mc2

⇒

Ec ∼
m2c3

e~
≈ 1016V/cm

• Euler-Heisenberg series must be divergent
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asymptotic e+ e− pairs if they gain the binding energy of
2mc2 from the external field, as depicted in Figure 1. This
is a non-perturbative process, and the leading exponential
part of the probability, assuming a constant electric field,
was computed by Heisenberg and Euler [2,3]:

PHE ∼ exp

[
−π m2 c3

e E !

]
, (3)

building on earlier work of Sauter [18]. This result sets a
basic scale of a critical field strength and intensity near
which we expect to observe such nonperturbative effects:

Ec =
m2c3

e !
≈ 1016 V/cm

Ic =
c

8π
E2

c ≈ 4 × 1029 W/cm2. (4)

As a useful guiding analogy, recall Oppenheimer’s compu-
tation [19] of the probability of ionization of an atom of
binding energy Eb in such a uniform electric field:

Pionization ∼ exp
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. (5)

Taking as a representative atomic energy scale the binding

energy of hydrogen, Eb = me4

2!2 ≈ 13.6 eV, we find

P hydrogen ∼ exp
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3

m2 e5
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. (6)

This result sets a basic scale of field strength and inten-
sity near which we expect to observe such nonperturbative
ionization effects in atomic systems:

E ionization
c =

m2e5

!4
= α3Ec ≈ 4 × 109 V/cm

I ionization
c = α6Ic ≈ 6 × 1016 W/cm2. (7)

These, indeed, are the familiar scales of atomic ioniza-
tion experiments. Note that E ionization

c differs from Ec

by a factor of α3 ∼ 4 × 10−7. These simple estimates
explain why vacuum pair production has not yet been
observed – it is an astonishingly weak effect with con-
ventional lasers [20,21]. This is because it is primarily a
non-perturbative effect, that depends exponentially on the
(inverse) electric field strength, and there is a factor of ∼
107 difference between the critical field scales in the atomic
regime and in the vacuum pair production regime. Thus,
with standard lasers that can routinely probe ionization,
there is no hope to see vacuum pair production. However,

recent technological advances in laser science, and also in
theoretical refinements of the Heisenberg-Euler computa-
tion, suggest that lasers such as those planned for ELI
may be able to reach this elusive nonperturbative regime.
This has the potential to open up an entirely new domain
of experiments, with the prospect of fundamental discov-
eries and practical applications, as are described in many
talks in this conference.

2 The QED effective action

In quantum field theory, the key object that encodes vac-
uum polarization corrections to classical Maxwell electro-
dynamics is the “effective action” Γ [A], which is a func-
tional of the applied classical gauge field Aµ(x) [22–24].
The effective action is the relativistic quantum field the-
ory analogue of the grand potential of statistical physics,
in the sense that it contains a wealth of information about
the quantum system: here, the nonlinear properties of the
quantum vacuum. For example, the polarization tensor

Πµν = δ2Γ
δAµδAν

contains the electric permittivity εij and

the magnetic permeability µij of the quantum vacuum,
and is obtained by varying the effective action Γ [A] with
respect to the external probe Aµ(x). The general formal-
ism for the QED effective action was developed in a se-
ries of papers by Schwinger in the 1950’s [22,23]. Γ [A] is
defined [23] in terms of the vacuum-vacuum persistence
amplitude

〈0out | 0in〉 = exp

[
i

!
{Re(Γ ) + i Im(Γ )}

]
. (8)

Note that Γ [A] has a real part that describes dispersive ef-
fects such as vacuum birefringence, and an imaginary part
that describes absorptive effects, such as vacuum pair pro-
duction. Dispersive effects are discussed in detail in Gies’s
contribution to this volume [25]. The imaginary part en-
codes the probability of vacuum pair production as

Pproduction = 1 − |〈0out | 0in〉|2

= 1 − exp

[
−2

!
Im Γ

]

≈ 2

!
Im Γ (9)

here, in the last (approximate) step we use the fact that
Im(Γ )/! is typically very small. The expression (9) can be
viewed as the relativistic quantum field theoretic analogue
of the well-known quantum mechanical fact that the ion-
ization probability is determined by the imaginary part
of the energy of an atomic electron in an applied electric
field.

From a computational perspective, the effective action
is defined as [22–24]

Γ [A] = ! ln det [iD/ − m]

= ! tr ln [iD/ − m] . (10)

WKB tunneling from Dirac sea
ImS → physical pair production rate

2eE
~
mc
∼ 2mc2

⇒
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e~
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• Euler-Heisenberg series must be divergent



de Sitter/ anti de Sitter effective actions (Das & GD, hep-th/0607168)

• explicit expressions (multiple gamma functions)

LAdSd(K) ∼
(
m2

4π

)d/2∑

n

a(AdSd)
n

(
K

m2

)n

LdSd(K) ∼
(
m2

4π

)d/2∑

n

a(dSd)
n

(
K

m2

)n

• changing sign of curvature: a(AdSd)
n = (−1)na

(dSd)
n

• odd dimensions: convergent

• even dimensions: divergent

a(AdSd)
n ∼ B2n+d

n(2n+ d)
∼ 2(−1)n

Γ(2n+ d− 1)

(2π)2n+d

• pair production in dSd with d even

http://inspirehep.net/record/722246?ln=en
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