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‘Act 11

Axiomatic ﬂ-[ycfroafynamics



The hydrodynamic effective field theory

+ Relativistic fluid dynamics is best thought of as an effective field theory for
quantum systems in local, but not global, thermal equilibrium.

+ The description in terms of fluid dynamics is valid when departures from
equilibrium are on scales that are large compared to the characteristic
mean free path of the underlying quantum dynamics.

+ Local domains of equilibrated
fluid can be characterized by the
local temperature/energy density
and conserved charges.

+ Energy/charge flux exchanged

across the domains: velocity field.

Cfp < L, tmtp K T



Axioms of Hydrodynamics |: Fields

+ Hydrodynamics describes low-energy, near-equilibrium fluctuations of an
equilibrium Gibbsian density matrix on scales large compared to the
characteristic mean free path.

+ The macroscopic description involves currents which capture energy-
momentum and charge transport T", J" (and entropy current Jg ).

+ The currents are functionals of the hydrodynamic fields, which are the
intensive variables characterizing the density matrix and background
sources.

» . .
temperature and chemical potential T 1 ut, w o, = —1

and a flux vector (fluid velocity)

* background metric and

electromagnetic potential Juvs> Ly



Axioms of Hydrodynamics Il: Data

* Repackage the dynamical degrees of freedom in a vector an scalar

,UIO'
TAJ thermal twist

* The currents of hydrodynamics are expressed as functionals of the
hydrodynamical fields and the background sources.

e« currents TR TR TG

- fields ¥ = {guv, Ap; B", Ag}

TH = TR [B] = TH [gog, Au, B, Ag]
JH = JF[®] = J* [gag, Aa, B, Ag]
Jg = Jg [\Il] Jg [gaﬁaAOéalaavA,B] .

e constitutive

relations



Axioms of Hydrodynamics Ill: Dynamics

+ The dynamical content of hydrodynamics is the statement of conservation,
modulo work done by sources and anomalies:

V,TW = J, - F* + T D, J" =J§

S/

work term
+ These are effectively Ward identities for the one-point functions of the
conserved currents in the fluctuating Gibbs density matrix.

covariant anomalies

+ The task of a hydrodynamicist is to specify the currents as a functional of the
hydrodynamic fields, consistent with the dynamics, constructing a current
algebra of sorts, but...



Axioms of Hydrodynamics |V: Constraints

+ From a macroscopic, statistical viewpoint, one has to demand that a local
form of the second law of thermodynamics is upheld.

= Jg[\If]: V W, shell Vng[\I’] >0

+ This is required to be upheld on-shell, and complicates the analysis of
hydrodynamics, for without it the current algebra can be analyzed purely in
terms of representation theory.

+ Note that usually one only requires the existence of some entropy current.

+ From a microscopic viewpoint the entropy current is rather mysterious; it is
not associated with any underlying symmetry per se.

« Opportunity: Understand a Wilsonian hydrodynamic theory consistent with
second law.



Neutral fluids

+ A neutral fluid is characterized by its energy-momentum stress tensor

™ =€¢(T)ut v’ + p(T)PY —n(T)o" —(T)0 P*Y + ...

PY =gV +uFu” Viuy = O(uv) + Wiy + © Py — upay
shear _ pa pB __© J2
Opv — Ly Iy @5) d—1 af
vorticity Wy = pﬁé pVB s
expansion © = [ ul
acceleration a’ = u” 1 )
A<aﬂ> — (Poz,uPBV - d—1 PaﬁQuu) A




Neutral fluids

+ A neutral fluid is characterized by its energy-momentum stress tensor

™ =€¢(T)ut v’ + p(T)PY —n(T)o" —(T)0 P*Y + ...

PHV p— g“v ’U,p' U,v VH/U/\) — O-(H\)) _I_ W[u\)] —I_ @ PH-V — /U/H_ a\)
shear vorticity acceleration
expansion

+ The second law forces some of the transport data to satisfy some
inequalities, e.g., the viscosities are non-negative definite (friction)

Vuds =no*+¢0% + .. n,( >0




Senchmarking hydrodynamics

+ To set the stage for our Wilsonian framework, we need to understand
hydrodynamic constitutive relations compatible with second law.

+ Ideally, this should data should be given to us off-shell, since we are aiming
to construct effective action.

+ STRATEGY
* Take the entropy current constraint off-shell.
* Classify all off-shell physical constitutive relations.

* Derive the resulting constitutive relation from an effective action.



Off-shell entropy production

+ Take the statement of the second law off-shell Lagrange multipliers

V,.J" + B, (v,,TW P . T/;j)

VWE=A>0
§ . + (Mg + BrAy) - (D,,J” _ J}{) —A>0

+The Lagrange multipliers are fixed to be the hydrodynamic fields
exploiting field redefinition freedom.

+ This off-shell formalism motivates separation of transport into:
* dissipative (Class D) 3+ ut Ag

* adiabatic



Free energy current

+ Package the information in terms of a Gibbs free energy current, switching
from a microcanonical to grand-canonical language:

J§ = (J3)can + N° gt = —-T N°
=—18,T" +(Ag+B"A,) - J°] + N° free energy current

+ The off-shell second law statement can be phrased now as

o} ]‘ v
VoN? = N© = o T"0pgu, +J" - o5 A, + A

anomalous / A

free energy

diffeomorphism 949w = £89w = VpBy + Vo0, \
05 Ap = £ Ap + OuAg + [Ap, Agl flavour gauge transformation



Hydrodynamic taxonomy

+ The off-shell formalism is quite powerful. One can classify hydrodynamic
constitutive relations into eight distinct classes:

* Class D: dissipative class * Class B: Berry-like transport

* Class A: anomaly induced transport ~ * Class C: conserved entropy

GF =GB +T*, BB, =0.

longitudinal vector Y ? N

(conserved)
Free energy scalars Free energy vectors
* Class Hs: Hydrostatic scalars * Class Hy: Hydrostatic vectors

* Class Hs: Landau-Ginzburg scalars * Class Hy: Gibbsian vectors



—ightfold classification of hydrodynamic transport

Hydrostatic

flux vectors

flux vectors

F. Haehl, R. Loganayagam, MR
[1502.00636], [1412.1090]



Class H: Hydrostatics (Hs u Hv)

+ Hydrodynamic transport can be classitied into two categories
* Hydrostatic or thermodynamic response: fixed by equilibrium

* Genuine hydrodynamic transport

+ Hydrostatic data can be understood by time-independent configurations of
the fluid in the presence of non-trivial (spatially varying) background
sources.

+ Can equivalently be encoded in a generating function, the equilibrium
partition function which is a functional of stationary background sources.

jCE{KH,AK}, guyKuKVSO — 5J<gu1/:55<14u:0

Banerjee et. al. ‘12 Jensen et. al. ‘12



Class H: Hydrostatics

+ The hydrostatic partition function is the integral of the (consistent) free
energy current over the Wick rotated Euclidean manifold.

— d—1 e
Whydrostatic = { N*d S,LL:| spatial integral!
YE Hydrostatic

+ Since the free energy current is a vector field, it decomposes into

N“ZGIBH—|—Q]H, m“ﬁuzo

Iong|tud|na|‘ector transverse vector

(conserved)

partition fn scalars partition fn vectors



—ntropy constraint: Hydrostatic forbidden (Hr)

+ The scalars and vectors which do not vanish in equilibrium parameterize the
free energy current and in turn generate the currents after varying with
respect to the sources.

0 WHydrostatic —

1 1 (8 —
/E (5 c%ns 59HV + Jét)ns ' 5AH) B d° 1Sa ]
E

Hydrostatic

+ At any given derivative order however, there are fewer scalars than the
tensor structures in the currents.

+ Hydrostatics implies that certain constitutive relations are forbidden.

+ Intuitively think of hydrostatics as time-independent configurations; turning
on time dependence one should find no linear term, for it can produce

entropy of either sign.
Bhattacharyya ('13, ’14)



—xample: |deal fluids

+ For an ideal fluid, the hydrostatic partition function is generated by the a
single function which is the free energy or pressure p(T,u). It completely
fixes all pieces of transport:

TV = euu’ + p PPV | Jg = su¥
6+p—TS =0

de ds
i Td_T =0 Clausius relation

+ At first order, only dissipative terms in the stress tensor, so we cannot learn
anything new directly from the partition function.



—xample: Second order neutral fluids

+ At second order there are 15 tensor structures that can appear in the stress
tensor. Of these only 8 survive when we restrict to hydrostatics (check that
shear and expansion vanish in hydrostatics).

+ There are only 3 scalars at second order which can enter the partition

function
\V,
R, dMay, wpy

+ This immediately implies 5 relations must hold between the 15 transport
coefficients.

+ Transport data that cannot appear from the hydrostatic analysis are the
forbidden terms. Bhattacharyya (13, ’14)

+ Charged fluids: 51 pieces of transport data and 17 forbidden terms.



Lecture 2



Recap of Lecture 1

+ Classification of allowed transport from axiomatic formulation of
hydrodynamics captured by solution to adiabaticity equation (nb: off-shell)

o ]‘ | 4
VoN? — N+t = 5 T 0n g + J" - 0n Ay + A

+ Useful to start with equilibrium as dgg,dg A measure departures from
equilibrium.
Op v = £89w = VB + Vi By,
0y Ap = LA + Ouhp + [Ay, Ag]

+ Global equilbrium can be attained on a spatially curved geometry with a
timelike Killing vector field (and corresponding stationary flavour sources,
i.e., you can have magnetic fields but not electric fields)



Recap of Lecture 1

+ General geometric background for equilibrium (nb: global Killing field, no
ergosurfaces)

ds? = —e2*@(dt + a;(x) dz*)? 4 i (z) da’ da?

O H
,3”0((§> = o' =0,0=0

+ Exercise: Fix normalization and check the above and also convince yourself
that the partition function to second order in derivatives has to be:

/ BV )+ FalT) 00" + for(T) R + fu(T) w0



Class D: Dissipation

+ Focus on positivity of A order by order in the gradient expansion. Deviations
from equilibrium: dgg,dBA

. viscous dissipative terms  no*™ +(OPYW = A = ootV + (0% ~ (d59)°

« descendant operators 89 DOk—2
p sub-dissipative

« product composites (0,9)  (3,A4)

+ Sub-dissipative terms can be subsumed under viscous dissipative terms.

+ Theorem: Entropy constraints operate only at leading order in the gradient
expansion! Bhattacharyya (11, '13, *14)

+ Useful restatement of the argument using tensor valued difterential
operators acting on 0gg,dsA



Class

1st order

2nd order

. Dissipation at 1st & 2nd order

TH = —2pah” —COPM,  JE L —cat+c0uf
1
A = ?( N Ty oMV —I—C@Z—I—Clﬁl—l-Czﬁz)

A>0 = 1, >20,&c1=c2=0

+ product composite terms are always subleading
2770-,MV s C@z + 71 @3 + 72 00‘60‘5707& + 73 @O-,LLV o’ >0

= n,¢ > 0,and {v1, 72, v3} unconstrained.

+ descendants can be made subleading by completing squares

P_L 11 L
A= 2g (53 g)2 + aoa (5BA)2 + Rkg 53g DOk—Z + Ykg (53 g)k +oee
k=3
- v
ngl

2«
3 <%

{ — R
DOk—2 + kg (059)" +--

k=3

~ CKZg 53g +
k=



General solution to Class D

+ Class D data has at least one factor of 080, 0B A as it signifies deviation
from equilibrium.

+ Keep one explicit factor and bury all other derivatives into a tensor valued
differential operator nHVEB) = [ (@B) (W)

1 1
TIL)N _ _§n(uv)(0([3) OB Yap A — Z,7(11\))(0(8) 0B Iy OBYap

+ At leading order in gradients we reproduce known results using:

nHPT =T (PWPPT 42T Pripro,

+ At higher orders we can systematically add further gradient terms.



Class B: Berry-like transport

+ This class of constitutive relations solves adiabaticity trivially. Non-
equilibrium, non-dissipative data!

1
(TH)p = - ( N (H)(aB) _ N(aﬁ)(m)) 5, Gag + XMW 5 A

1
(J%)p = —52((“”)@53 g — S5 Ag

+ The entropy current is canonical (given just by projections of energy-
momentum and charge currents)

Hall Transport in 3 dimensions Neutral fluids in arbitrary dimensions

(T™)B
(J9)B

T tp (74 %+ 27 o)

oy upe™? | By — T Dy (%)}

(T = =)\, (@ oM — 52 P“”) — Ao (WM + W)



Class C: Conserved entropy

+ AE can be solved by considering an exactly conserved entropy current.

(Jge=M,  (TW)c=0, (MMc=0

+ Currents must be cohomologically non-trivial (non-Komar terms) for them to
be physically interesting.

+ Eg., Wen-Zee current in 3 spacetime dimensions (more generally Euler
currents in odd spacetime dimensions.

1 1
Je = —<C 80a6 6“”‘ Up (VQUVVBU)\ — §R,/)\ag)

Euler 2 Euler

+ These currents count the degeneracy of topological states in the thermal
density matrix and can be realized holographically (eg., Gauss-Bonnet
contribution to black hole entropy in ABJM like theories).



Class Hv: Gibbsian vectors

+ Just as hydrostatic vectors entered into parameterization of the free energy
current, there are non-trivial hydrodynamic vectors which lead to adiabatic
constitutive relations.

+ These are parameterized by tensor valued differential operators with an
explicit vector index

1
(TW)EV =5 Dp@p(uu)(aﬁ) 0B Yas

+ No explicit data on such transport, but they do appear in charged fluids at
second order in gradients.



Class L = Hs u Hs

+ Consider diffeomorphism and gauge invariant scalar Lagrangian densities
which are functionals of hydrodynamic fields ¥ = {guv, Ay, BH, A}

Shydro — /ddle Vg L [\Ij]

+ The basic variational principle of this theory defines currents:

BV
*1%—96 —g L — I—;Caeps)u
1
- 2 T 6guv + JH. 6Au + T Vs 650 + T - (6/\[3 +A06[30)

+ Entropy density is defined as in thermodynamics

1 0 v__ a
s= —qg L [P] ngsu”
-9 07’ {u°, U, gap, Aa}=fixed




Class L = Hs u Hs

+ Second order neutral fluid Lagrangian

[ e v=g pm)+ 79 (T)+

fo(T) a,a” + fr(T) R + fu (1) wypwh” o
+§,(T) 0 ™ +§o(T)O? & Non-hydrostatic

- Removable by field reefinition

+ §2u (T) (VT)? 4+ §2(T) O B - VT + §2.(T)Oa - VT + - - -

+ Variational principle gives all the necessary currents.

+ Exercise: Generalize to charged fluids (classification of necessary scalars
available).



Class L adiabaticity

Now diffeomorphism and flavour gauge symmetries of the Lagrangian imply
a set of Bianchi identities:

L

v, TW =J, - F% + 5 (V=g TV,) + g™ T¢-6,A,

=50 (V=9 V) +4% T (-0,
1

DJJU — \/—_7963 (\/ —( TC)

Together with the identity and an off-shell Euler relation
1 _ NM__C 5
(oIf — ColTsB°) = V5, =g T Ts+p-+u’Vg=0

we get the off-shell adiabaticity equation (with zero entropy production):

Cadd + B (LT — Jy - FY) + (Ag + B y) - DyJY = 0



Dynamics in Class L

+ The dynamics in Class L is supposed to reduce to the conservation of
energy-momentum and charge currents.

+ Naive variation with respect to {g¥,Ag} does not respect this requirement,
since it would lead to vanishing of the adiabatic heat/charge currents.

+ Constrained variational principle: vary the hydrodynamic fields along a
family related by Lie transport.

+ This variation leads to equations of motion which when combined with the
Bianchi identities leads to conservation

2
-

1 [ ] [ ] . .
—__953 \/jg TVH + TC . 5BAH ~ ( MC VVT“'V
1 L

e

¢
-

5, I%l/?chD:o D,J"



Reference fields for Class L

The constrained variational principle can be alternately phrased as fixing a
reference configuration and varying along the pull-back maps by diffeos and
gauge transformations.

BY = ebi(z) B[d(2)]

o =0, ko’ =0f -
? Sl g = c(z) Ngld(2)] ¢} (z) + B(2) doc(w) ¢ ()



Sigma model viewpoint

O_CL

gab

IBa

worldvolume/reterence spacetime ohysical fluid

gab = Guv0a X" Op X~ B = B0, X"

* Worldvolume with fixed reference thermal vector 32
* Target space diffeomorphisms become field variations on the worldvolume.

* Physical equations of motion then amount to conservation equation.



—ntropy as a Noether current

+ Following the variational principle one can give a simple expression for the
free energy current:

NH = BHL — (JgOpg)V

1

[NH = §T“" 0w +J" 0 Ay

+ This of course holds when we restrict to hydrostatic configurations and
signals a nice consistency check between fluid entropy and black hole
entropy in equilibrium in the holographic context.
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’J\/licroscoyic Joersyective on ﬁyofroc[ynamics



Response Theory

+ Hydrodynamics is a theory of response functions. System prepared in
equilibrium, disturbed by external sources, and then causal response
measured.

+ Linear response (small amplitude deformations): S§=3S5; +/ dz T, (x) Ou(x)
L1

(Oa(z)) =~ dy Gl y) Fo(y) Gal(z,y) = —i0(z" —y") ([Oa(@), Ob(y)])

+ Non-conserved quantities die off exponentially after transient behaviour (cf.,
quasinormal modes). Hydrodynamic response captured by retrarded
Green's functions of conserved currents:

Guos(z,y) = —iTr(p[Tw(2), Tus(y)]) = —i0(z" — ¢°) Ol (z), Tas(y)] G
P = — lim 1 I (Gsy ol O)) | Kubo f?rmu!a for
w—0 W ’ shear viscosity



Retarded Response and Schwinger-Keldysh

+ Causal response requires being agnostic of future evolution. Achieved
explicitly using the closed-time-path, in-in, or Schwinger-Keldysh complex
time functional integral contours.

UT(t, t;) . U(t, ;)

Pinitial

Z [ (W |

identify
(Trace)

+ Think of evolving the disturbed system with the time-dependent
Hamiltonian, and then reversing back the evolution to land on the initial
state (which you know). Equivalent picture by thinking about phases accrued
in evolution (normalization of functional integral).



Schwinger-Keldysh contour

Generating functional (time ordered)

Z,Ju i) = T (U] pr (VL))

turning point

w identity operator

density matrix

/ D] [DD, ] e’ SsKToIsK

Ssk = S[(I)R] — S[(I)L] 0SsK = /ddflj VvV —4g (jR Or —JL OL)

+ Convenient to work in doubled Hilbert space (space of bras and kets) with
two sets of operators. Physical observables of single-copy theory have
natural realization in this space.



SK Time-ordering rules

+ Time-ordering = contour ordering (R = time-ordered, L=anti-time-ordered)

(T {@u)@(z) . @<p>] T [@<p+1>@<p+z> . @<p+q>} >
= ( Tox OD0® . o pPtlgltd) | oPtd)

Keldysh (light-cone) basis: 04 =0r — 0Oy, 0. =

Response functions ( Toic Aav(X) Bav(y) ) = { {A(),By)} ).

computed directly from the ( Tsk Aav(X) Bdif(Y) ) = Ong ( [K(X),g(w} )

CQntour—ordered ObJe.cts ( Tar Adgit () Bay(y) ) = — O | [K(x),@(y)] .
simply in Keldysh basis
[(Tsk Adif (X) Bair(y) [3=0.



HYDRODYNAMICS: TRANSPORT, FLUCTUATIONS

+Hydrodynamics: low energy dynamics of conserved currents in near
equilibrium situations.

+ Transport is captured by response functions:
these are the first non-trivial correlators
involving 1-average and rest difference
operators.

+KMS relations relate response functions to fluctuations, e.g., and embody
the fluctuation-dissipation theorem: . —BH

Tr(ﬁ(tA)@(tB)ﬁT) = Tr(@(tB ~ iﬁ)%(tA)ﬁT)

— ({A,B}) = - coth (% 5w3) (A, B])

+Look to constructing an effective field theory that captures all
hydrodynamic transport & attendant fluctuations.
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Schwinger-Keldysh contour: recap

Generating functional (time ordered)

Z,Ju i) = T (U] pr (VL))

turning point

\ identity operator

density matrix

/ D] [DD, ] e’ SsKToIsK

Ssk = S[(I)R] — S[(I)L] 0SsK = /ddw VvV —4g (jR Or —JL OL)

+ Convenient to work in doubled Hilbert space (space of bras and kets) with
two sets of operators. Physical observables of single-copy theory have
natural realization in this space.



SK effective field theory

+ Initial state correlations inherent in the density matrix lead to non-trivial LR
correlation functions.

> Therefore, integrating out high energy modes starting from microscopic
Schwinger-Keldysh leads to coupling between L and R encoded in
influence functionals.

+ What influence functionals are consistent with microscopic unitarity?

Feynman, Vernon ‘63

+ Examine Schwinger-Keldysh Ward identities and encode them in terms of
symmetry principles.



SK topological limit

+ Lorentz signature inner product in R-L basis from forward/backward
evolution implies:

ZSK[‘JR = JL = J] — Tr{p)initial}

+ Equal sources on L-R collapses to a theory of initial conditions.

(Tsxe [T (02 - o)) = (T Iﬁodétzo
k
: 1
+ Keldysh (light-cone) basis 0,;=0r -0y, 0. = 5 (Ogr + Oy)

+ Rather remarkable statement, which is agnostic of microscopic dynamics.

+Itis a Ward identity arising from field redefinition symmetry inherent in
doubling; rephrase as a BRST symmetry.

+ Largest time equation: Difference operator cannot be futuremost.



The Schwinger-Keldysh quartet

+ Difference operator correlation functions would vanish if they were trivial
elements of a BRST cohomology.

+ There exists a pair of BRST charges which annihilate the BRST charges.
They are Grassmann odd implying that we have ghost SK-partners.

+ The SK theory is covariantly expressed in terms of a quartet of fields,
which usual doubled formalism being a gauge fixed version (ghosts =0).

[QSK’ OL]i — [QSK OR]i — OG [QSK OG]i — 01 I_QISK1 OEI_I: - (OR _ OL)
1 ] o 1 O | in
QSK’OL + — QSK’ OR + — 061 QSK 06 + — 01 QSK’OG + — (OR _ OL)
OR1 OL
/ \ , 5 L] L L]
QSK @SK QSK — QSK — QSK QSK + — O
O, 0_



Thermal density matrices and KMS condition

A~

+Thermal density matrices p, =e (= @) define stationary equilibrium
configurations.

+ Correlation functions have analyticity properties which allows for a
Euclidean (Matsubara) formulation, cf., Z:(B,H,) = Tr (p;)

Z,[J i) = T (U] pr (UL

+KMS condition asserts that the correlation functions are analytic in the
time strip 0 < (1) < B.

+ Equivalently within correlation functions, operators and their KMS
conjugates (or thermal translates) are equivalent.



KMS conjugates & thermal sum rules

+ To extract the physical content of the KMS condition, let us define the KMS
conjugate operator:

~

OL(t) = O.(t —iB)

+ One corollary of the KMS condition and the structure of the SK correlation
functions discussed earlier is the sum rule

(Tsk ﬁ (Ogek) - C)Ek))> =0

k=1

+ |t is useful to rephrase these sum rules by passing from the L-R basis to the
advanced-retarded basis e7%#0(t) = O(t — i)

1 LI

. |
Oadv — OR _OL7 Oret — s OR — 6_uSBOL
1 —e%98

+ Thermal smallest time equation: retarded operator cannot be pastmost.



The KMS charges

+ The KMS conditions can be implemented by requiring the presence of a

second pair of BRST charges which refer to the thermally translated KMS
conjugate operators

iAg =] —e_iéﬁ

O,
O. B ()6 [_gKMS,OG]i =0, [_%(Ms,oadv]i = iA,0, |
Oums 2kms Qums i Oret], =0 Qums: 05, =0,
Ormsr O], = 14,0, Qs Oado] . = 14,0, .
O — O,

+While deceptively simple, the expressions above hide the fact that the

KMS BRST charges are non-local (they relate operators across a thermal
period).



The SK-KMS superalgelbra

+The SK and KMS BRST charges generate an interesting superalgebra:

—2 —2
Q- =0, =0 =0 =0,
mit I I -
[QSK’QKMS]i — QSK’QKMS — QSK’QSK 4 QKMS’QKMS 4 =0,
R 1 T
QSK’ QKMS 4+ QSK’ QKMS 4 IA,B :

+This algebra is well known in some circles, and forms part of the Ny =2
extended equivariant conomology algebra. Vafa. Witten '94
Dijkgraaf, Moore ‘96

+The N7 =1 algebra is realized as the standard Weil algebra satisfied by
the de Rham complex involving exterior derivatives, Lie derivative and
Interior contraction.



THE SCHWINGER-KELDYSH SUPER-QUARTET

+ We encode the content of the sum rules into a BRST superalgebra, with
the idea that the topological structure is robust against the coarse-
graining RG transformation.

+ This allows us to identity influence functionals in the low energy theory,
which arise from integrating out the high energy modes, and crucially

couple the two segments of the Schwinger-Keldysh contour. Feynman Vernon 63

+ Put differently, the macroscopic theory will have a knowledge of the two
sets of degrees of freedom

+ the average or classical fields (which dissipate)
+the difference or quantum/stochastic fluctuation fields

+ Consistent couplings are dictated by the ghost fields that are now part of
the BRST multiplet. All of this structure can be nicely captured in a
superspace that is locally RI¢=1D12 coordinatized by 2! = {¢¢,6,60}.



THE WEIL MODEL

+ Gauge structure can be captured by a Grassmann odd gauge potential G
(fermions = differential forms) and its field strength ¢

1 . . .
dG' + 5 fix G G" = ¢

Cartan equations for gauge structure
de' + f1, GV ¢* =0

05 +I;G' =0, Z;¢'=0 interior contractions pick out gauge directions
L; ={d,Z;} Lie derivations follow from above
{Zi,Z;} =0 {d, 1;} = L;
£i. L] = — fij L [d,Lj]=0

Weil superalgebra
PErs L= 550 {d.d}=0

+ invariant horizontal forms are polynomial functions of field strengths.



EXTENDED EQUIVARIANCE |

+One can extend the algebraic constructions to situations with more than
one differential. We will focus on the case with 2 generators of the
cohomology and swiftly pass to superspace: dy =9(...)[,  dy =3d(...)|.

+ The Weil model closes on 6 generators: 2 derivations, 3 interior

contraction, and one Lie derivation

[dW’Tj]i = [aw’ Ij] =Lj, [dw’ Ij] — [aW’Tj]j: =0
Ao 171 =00 (e 1] =5

[dw. Ljl, = [dw, Lj], =0
i), =51
[Li’Tj]:I: — _fllj Tk’ [Li’ Iji - _f||j Ik1 [I—l; IO] fk Ik

Blau, Thompson ‘91
Cordes, Moore, Ramgoolam ‘94

Vafa, Witten *94
Dijkgraaf, Moore ‘96



SUPERSPACE

+We have two cohomology generators which we assign equal and
opposite ghost charge £1

+Introduce two new Grassmann coordinates §,0 with assignments

gh(0) =1, gh(8) = —1

+All fields are promoted to supertfields which have a finite expansion in the
Grassmann coordinates. The bottom component will turn out to be the
average fields and the top components the difference fields.

+Much of the discussion can be carried out by switching off the ghost
tields, except for a few source terms which we will do when we return to
hydrodynamics.

+ CPT symmetry nicely implementing as a swap of the two Grassmann
coordinates (difference operators are CPT odd).



THE GAUGE SECTOR

+While the SK functional integral gives us the BRST symmetry which can be
captured by working in superspace we also have the gauge sector.

+We can parameterize the gauge sector quite universally, and then return
to the actual gauge symmetry transformations.

+ Package the universal data into a set of gauge superfield 1-form which we
assume lives on a worldvolume with coordinates a°.

A=A dz' = A do?+ Agdo+ A, db .

+ Covariant derivatives fields strengths are defined as usual, except that we
now have superspace directions as well:

L

ISI :al +[E‘I1 ']1 E” E(l—%éu) al IZ\J _(_)IJOJE\I +['E\I’Z\J]



GAUGE SECTOR 1l

+ Analyzing the field strength, Bianchi identities etc., the eight components
of the gauge supertield 1-form with legs in superspace be captured into 3
gauge non-invariant potentials, 3 field strengths, and 2 derivatives of field

strengths
ghost || Faddeev-Popov | Vafa-Witten ghost Vector
charge ghost triplet of ghost quintet quartet

D2 =

S Bi=Ch,.  [BiBi] =G

Fog ’ Foo

N



SK-KMS THERMAL EQUIVARIANCE

+SK charges are akin to Weil differentials, while the KMS charges fill out the
Interior contractions.

+ The Lie derivation takes operators around the thermal circle.

N, =2 algebra | SK-KMS symmetries
{dy,dy} ¢ {Qsk.Qskl}
{l. Ik} < {Qums Qumsl}:
{Li 13 & {Lius: Qupelt-

+ The algebraic structure for arbitrary temperature is complicated by non-
locality of thermal translations.

+Some form of deformation of the group of circle diffeomorphisms...



SK-KMS THERMAL EQUIVARIANCE

Ll ]
1000004

g —

T o
e ....'
N

+ Literally implement thermal translations as diffeomorphisms along the
thermal circle and demand equivariance with this symmetry. L0 = A0

A B A+ AN — A, (A, A)g = A£gh' — N £gA .

+The algebra is non-abelian since it involves diffeomorphisms along the
thermal vector.



THERMAL CARTAN AND WEIL MODELS

+ The gauge covariant Cartan charges (supercovariant derivations) can be
mapped to the basic building blocks as follows:

Q= Qu + ¢; Qums + 8 Quens + 71 QL
Q=0Qu + &, Qups -

+ The superalgebra structure can then be captured by the anti-commutation
relation among the Cartan charges as

Q (9:99|9 0— 0) KMS > @2 — (§:09|§:9:0)LKMS7 [Q7§] (?99|9 0— 0) KMS

» Assume: dynamically consistent in dissipative systems to set all but the
zero ghost number element of the Vafa-Witten quintet to zero: (Fggl) = —

—2 L1 L1

Q% =0, Q =0, Q,Q ,=—il,,,—ifp



CONSTRAINTS ON LOW ENERGY DYNAMICS

+ Topological (BRST super) symmetries are efficient ways to encode SK +
KMS constraints. HIR ’15

Unitarity ﬁ SK BRST supercharges

KMS/FDT ﬁ thermal diffeomorphism gauge symmetry

Crossley, Glorioso, Liu’15

QZNoa QZNoa {Q7Q}Nzﬁatzl£ﬁ

+ Precedent: Langevin dynamics of a Brownian particle
Martin, Siggia, Rose (1973) Parisi Sourlas (1982)

+Direct implementation of MSR type logic in hydrodynamics

Kovtun, Moore, Romatschke (2014)



LOW ENERGY CONSTRAINTS Il

+ Effective dynamics constrained by

QQ:_‘%G_G_“’g,B) Q2:_ﬁ99|£,37 {Q7 é}:_‘%ee_l‘fﬁ

HLR [1510.02494]

Crossley, Glorioso, Liu [1511.03646]

*Basic BRST charges Qsk , Osk
are nilpotent and arise from SK

unitarity & are CPT conjugates.
HLR + Geracie, Narayan, Ramirez [1712.04459]

* KMS conditions are
implemented by gauge these
BRST charges (equivariance).

QZZO, QZZO, {Q7Q}:Z‘£,@

52

*Single nilpotent BRST
supercharge d from SK unitarity.

* KMS condition is an involution
(after combining with CPT) and
gives another supercharge o .

=62 =0, {5,5_}:2tanh(%ﬁat>2iﬁat

+ This algebra is well known in the statistical mechanics literature in the

context of stochastic Langevin dynamics.

Mallick, Moshe, Orland [1009.4800]
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CONSTRAINTS ON LOW ENERGY DYNAMICS

+ Topological (BRST super) symmetries are efficient ways to encode SK +
KMS constraints. HIR ’15

Unitarity ﬁ SK BRST supercharges

KMS/FDT ﬁ thermal diffeomorphism gauge symmetry

Crossley, Glorioso, Liu’15

QZNoa QZNoa {Q7Q}Nzﬁatzl£ﬁ

+ Precedent: Langevin dynamics of a Brownian particle
Martin, Siggia, Rose (1973) Parisi Sourlas (1982)

+Direct implementation of MSR type logic in hydrodynamics

Kovtun, Moore, Romatschke (2014)



TOY MODEL: LANGEVIN DYNAMICS

+ Point particle in external potential subject to external forcing and noise

- d?x N oU
dt?2 = Ox

—I—I/Aﬁa::N

+ One can write down a SK effective action for this dissipative dynamics

[ — [ —

~

ZE:—iAgl xR—eMﬁxL : T =2Tr — T
Martin, Siggia, Rose 1973

GU _0%U ] [ d°x ?7; dzw

Lo = |2 d°z - dY
5K [x o a:ﬁw TR

] — v [5{: Aﬁx—?ﬁ Aﬁw] +ivi?.

+The dissipative part of the action is controlled by ghosts and is related to
the fluctuation terms difference fields - fluctuation/dissipation relation.

+ Convergence of the path integral fixes the sign of dissipative terms.

+Simplest realization of the extended equivariant cohomology algebra.



BROWNIAN BRANES

+Brownian particle immersed in a fluid undergoes dissipative motion.

+Langevin effective action: worldvolume BO-brane theory.

+ Data for the worldvolume theory: thermal equivariant multiplets for target
space coordinate map and thermal gauge field data.

)O(:X+9X$+§X¢+§0X ﬁzﬁtdt+ﬁ9d9‘|‘j{§d9—

+ MSR action follows as the basic thermal U(1)r gauge invariant effective
action of the worldline theory

_ o o\ 2 o o o o o
Seo — / dtd@d@{% (DtX) —U(X) —iuDgXDHX}

X DI =0, +[A, -



Hydrodynamic sigma models recap

O_CL

IBa

worldvolume/reterence spacetime ohysical fluid

gab = Guv0a X" Op X~ B = B0, X"

* Worldvolume with fixed reference thermal vector 32

* Physical degrees of freedom are the target space maps, leading to
conservation equation as dynamics

* Upgrade to include SK+KMS constraints



Topological sigma models: Fields

2! = {0?,9,0}

worldvolume superspace gauge fixed target
supergeometry

XA(z) = {XM(2), B(2), O(2)} d=0. 0=9,

Joe = —Uee = 1I.

| I

W H — wH Mo awH 4 an WH_ rH P
XH=XH+0XE+oX}+80 X —Th; XEXG




Topological sigma models: Gauge Symmetry

A (2) dz!

3= 7= 0= 0, = o)
(A, XH)g = AB'a XH
* KMS or fluctuation/dissipation data encoded by the thermal diffeomorphism
gauge Invariance.

* Gauged topological sigma model with a topological (BF-type) gauge kinetic
term captures consistently all constraints on the low energy influence
functionals.




Gauge+matter degrees of freedom

Faddeev-Popov
ghost triplet

Vafa-Witten ghost
of ghost quintet

Vector
guartet

Position
multiplet

G

T

O
M

B

T

¢0

G

T

it
2




Source deformed topological sigma models

* Physical fluids are of course not captured by the topological data alone. We
need to deform the sigma model to get physical dynamics.

* Topological sector is the theory of all difference correlators in a convenient
form (no dynamics in this sector).

* Source deformation by a difference source, will insert an average operator
into the functional integral as necessary to compute
hydrodynamic response functions.

* Easily implemented in the sigma model by

213@) - 213(@)+66h;;3(0).




Time reversal symmetry breaking

* Our discussion thus far is time-reversal symmetric (has to be since we are
keeping all constraints from microscopics).

* Time-reversal is broken dynamically by a choice of vacuum.

* \We assume that there exists dynamics for thermal diffeomorphisms consistent
with a gauge invariant ghost number zero field strength getting a vev.

(Fgg) = —1
* Note this is consistent with CPT action exchanging 0 < 6

* |f we implement this a-priori we end up with the stochastic BRST algebra as

discussed. o o o -
B.[F0, [BzE0, BelEFE06(—i)

MMO limit Q?=0Q°=0, {QQr=iLg




The hydrodynamic effective action

S’LU’U — /ddo- L’LU’U! I—’w'v — / d@ dé T—g EIE'J! Ba1 Bl 1cg>§l;|]-,)1cg>fl;|]-j)]’

* Superspace action manifestly respects topological and thermal
diffeomorphism symmetry.

* Physical target space superdiffeomorphisms should be respected, so we
cannot have potentials in the target coordinates.

* Allowed worldvolume diffeomorphisms are of the form: :z' B z! +f!(c®)

* Anti-linear CPT involution (broken perhaps by choice of vacuum).

*Ghost number conservation.




The hydrodynamic effective action

* Target space superdiffeomorphisms are manifestly respected by working
with the covariant pullback data.

Sw’U — /ddO_ L’UJ’U! I—wv — / d@ dé T_g EEIJ’ Ba1 Bl 16?5')169"]))]1

* Covariant pullback of target implies measure is modified on worldvolume

z=1+B'A Dy X" =Dy X" =9, X" + (A, XH)g = (=)’ & +A B’ a;X¥

* Some parts of the worldvolume metric's covariant derivative are dynamical

'Q’fﬁ']’) = Be3)5 . aﬁ;) = D;g13 . dynamical data

* The worldvolume geometry+thermal gauge covariant derivative is ©




Superadiabaticity Bianchi identity

* Consider the Bianchi identity for the thermal diffeomorpshism gauge
symmetry

Super energy-momentum

Free energy current

0% Swy /dd
= [ 0




Superadiabacity & Entropy Inflow

* \We can examine component form of the superadiabaticity equation. Note first
the terms that will push-forward to familiar terms in target space:

Baf\?aH: VuNH + ghost bilinears + fluctuations
T £38 = TH £p0,y + ghost bilinears + fluctuations

* Separating out the components along the Grassmann directions:
o o 1o o o o o o , o o o o o 4 o
(DaNa -5 T% £p gab) ' =— (D9N9 + DN’ + T L5809 + T LBy + TV £p geg)

J/

TV TV
classical + fluctuations entropy inflow

Entropy production

+ Switching off the fluctuation fields leads to physical entropy flowing from
superspace:

A= — (DeNe + DgNe) + ghost bilinears .




Inflow analogy

+While the inflow mechanism for entropy arises from the superspace, it is

morally similar to the manner in which the inflow mechanism operates in

the context of Hall insulators & chiral edge states ('t Hooft anomalies).

J

€

M : Hall insulator

il

i

OM : physical theory

Callan, Harvey (1985)

anomaly inflow: coupling to a topological sector

with physical entropy being sourced in superspace




No Energy-Momentum Inflow

+ Target space diffeomorphisms ensure that the dynamical content of the
effective action is simply super-energy momentum conservation.

<>D| (%IJ BJ)?”) =0

+ This by itself would be problematic, since we would learn that the equations
are contaminated by the presence of super-components which turn out to
include physical degrees of freedom (not ghosts or fluctuations).

+However, superspace components of energy-momentum tensor conspire
to mutually cancel out and do not modity dynamical equations.

= V,TH + ghost bilinears + fluctuations




Dissipative terms & second law

+ The set of dissipative terms in the effective action can be captured by the
superspace upgrade of our 4-tensor structure:

vV —8 1\ olakLe@) o)
= —2) " 915 9L -

I—WV, diss — /d@ dg

,ﬁ(IJ)(KL) = (—) ﬁ(JI)(KL) = (—)KL ,ﬁ(IJ)(LK)

>(1J)(KL) — (_\(+I)(K+L) 2(KL)(13)

+ Computing the variations etc., we can check what the entropy production is
and obtain the by now familiar constraint from Bhattacharyya's theorem:

1 . -
A= 7 N £agap £pgeq + fluctuations + ghost-bilinears

+ A clean way to understand this is to demand that the imaginary part of the

effective action is positive definite (this implies the second law).
Glorioso, Liu [1612.07705]




Fluctuation-dissipation & Jarzynski

+ The spontaneous CPT symmetry breaking in dissipative dynamical
systems leads to a susy Ward identity that implies the Jarzynski relation.

Mallick, Moshe, Orland ’10; Gaspard ‘12

+Jarzynski is a non-equilibrium fluctuation dissipation relation that relates
work done on the system out of equilibrium to the free energy difference.

¥ —1(Gy=Gi)

(e

) =€
Jarzynski '97; Crooks ‘98

+Using Jensen's inequality, or convexity of exponential one arrives at

(W) > Gf — Gj



Fluctuation-Dissipation and Time reversal breaking

+ Stochasticity and dissipation arises because of spontaneous CPT
symmetry breaking.

+ The Ward identities following from CPT convolved with a thermal gauge
transformation results in the Jarzynski work relation for the Brownian
particle

Sgo — Spo — i (Fegl) B (AG +W) == (e7FV)=g7F2C
Mallick, Moshe, Orland (2010)
+ The CPT symmetry in our construction is implemented as R-parity in

superspace and its breaking encoded in the vev for the ghost number
zero field strength: (Fgpl) = —i

+ Expect similar statements to hold in hydrodynamic eftective field theories.




—xemplifying effective actions

+|deal fluid is obviously captured by the pressure super-potential functional

o (ideal) \ _é o, 0
L =—1)

Z

+ Dissipative terms are captured by a an appropriate 4-tensor inspired
coupling that involves the superderivatives of the metric:

== ! i : o' e
I—WV, diss — /deH cz,g _Z nlJKL gﬁ;) g%)_

,ﬁlJKL — Z’(-l?)-f-’ |§,’|J IS’KL 4+ 2;7(-7-’)-"—’ (_)K(I+J) |5’|<<| |5’J>L

+ Positivity of entropy production follows on demanding the imaginary part is
positive definite (which reduces us back to the remit of Bhattacharyya's theorem).

1
A = 2 nakcd £ 38ab £38cd + fluctuations + ghost-bilinears



—ightfold Classification revisited
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The fluid/gravity correspondence

+ The fluid/gravity correspondence establishes a correspondence between
Einstein’s equations with a negative cc and those of relativistic conformal fluids.

d(d— 1)
2

1
Einstein’s egn with negative Eyn = Run — 9 GunR — Gun =0

cosmological constant (cc) A

v
Relativistic ideal fluid equations (e+p)O+ut L e+ -

and beyond... Pl CpH (64 p)da + -

+ Given any solution to the hydrodynamic equations, one can construct, in a
gradient expansion, an approximate inhomogeneous, dynamical black hole
solution in an asymptotically AdS spacetime.

Bhattacharyya, Hubeny, Minwalla, MR ‘07




Long-wavelength in gravity

+ How do we ‘derive’ fluid dynamics from gravity?

4+ Intuition: perturbations of planar AdS black holes reveal long-wavelength
quasinormal modes having hydrodynamic character: w(k) — 0 as k — 0

O-'I - ~; b T e i~ - L} ' v o L) - ~; A l- | 0-'

Im(w) Im(w)

L L L L 1 L L L
0 2 4 3 0 2 4

scalar/sound channel Re(w) vector/shear channel
Horowitz, Hubeny ’98; Policastro, Son, Starinets ‘02

Re(w)




Nonlinear fluids from gravity

* Treat the light quasinormal
modes as moduli of the
gravitational problem.

* Hydrodynamics is the collective
field theory of these modes and
can be constructed

systematically in a perturbation
expansion.

* Intuition: patch together
different bulk black hole
spacetimes, along tubes of
locally equilibrated fluid.

4
/7
/7
/7
/
/

n g ularit /
) radial null

geoc[esic

tube of

um’form 61’6”16




Black holes as lumps of fluid

+ Black holes really behave as lumps
of fluid in the low energy limit.

+ In the fluid/gravity correspondence,
the fluid lives at the end of the
universe, on the asymptotic
boundary of the spacetime where
the black hole resides.

+ Here the fluid is a hologram,
honestly capturing all the low
energy physics of the entire
geometry.




Classification of Weyl invariant fluids

+ Weyl invariant neutral (and to some extent charged) fluids have been well
studied from both

* kinetic theory (weak coupling) York, Moore ‘08
* holography via fluid/gravity (strong coupling)

Baier et. al.; Bhattacharyya et. al., ‘07

+ All of the known data can be neatly compiled into the eightfold classification
scheme.



Classification of Weyl invariant fluids

+ The stress tensor for a conformal fluid can be expressed in the eightfold
basis as:

T =(p (du'u” + g") — (g o* @
—()\1—/% e V>)—I— >\2—|—2’T—2/€) S
HT ( DYt — 20 H W ”> —I—ng o, ) .

87

——Qﬁ} (C“O‘”/j U UG + o SHY¥gh> £ 20 Py ”>))




Holographic fluids: 2nd order transport

+ For holographic fluids with Einstein gravity dual, shear viscosity is related to
entropy density and the second order transport data is explicitly known:

T=—02W—-2)kr +2k,) T2,

S k=—-2(d—2)kp T97?,
CZS“T A= —2(d—2) kg T4 2,
o =4k, T97?,

A3 =—2((d—2)kr —2k,) T4 2.

kR:_ )
d—2\d
kw=d_2

Kk
2 R1
d—2
kU_Zd(d> Harmon|c<d 1),




Holographic fluids effective action?

+Known second order transport of holographic fluids follows from the
action (note we have dropped some superspace terms for simplicity)

P

o\ d
_ /=4 Ar T id ooy o o
Loy = do do i S 1 — — Pe@pbd pog.. Ds
wv = Ceft ey g S 69ab ’gUcd

o\ d—2 o
A7 T WR 1 : 2 .o 1.5
— (T) [m + q Harmonic (a — 1) o- + §w ] }

+How does the bulk gravity theory realize this effective action?




Thank You



