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These lectures are about symmetries and anomalies
in quantum field theory (QFT).

Recent developments are stimulated by
topological considerations in condensed matter physics:
Classification of topological phases of matter. 

However, I will just focus on relativistic QFT relevant 
for high energy physics (particles physics & strings).
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This lecture: 
Brief overview (but biased by my own preference)

Later lectures: 
More specific topics 
(Some topological properties of gauge theories)
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Usual symmetries and perturbative anomalies are
well-treated in standard textbooks in QFT and string
theory.

famous triangle diagram in 4-dim.
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Anomalies: examples
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Anomaly of Global symmetry:  [’t Hooft, 1979]
Very convenient for the study of dynamics

Anomaly of Dynamical Gauge symmetry: 
Need to be cancelled for a consistent theory

• Selection of possible gauge non-abelian groups
                 ,              in 10d supergravity

• Chiral symmetry in QCD:

E8 ⇥ E8 SO(32)

• Anomaly cancellation in SU(3)⇥ SU(2)⇥ U(1)

SU(Nf )L ⇥ SU(Nf )R

Remark: 
These two types of anomalies will not be distinguished.
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Symmetry and anomaly
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What is symmetry?

A textbook answer

�(x) : fields S[�] : action

Symmetry means that the action is invariant under
tranformation

�(x) ! g · �(x)

S[g · �] = S[�]
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Symmetry and anomaly
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What is anomaly?

A textbook answer

S[�]The classical action          is invariant under 
transformation of fields 

But quantum mechanically it is violated 
(e.g. by path integral measure).

�(x) ! g · �(x)
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The concepts of symmetry and anomaly are organized 
and generalized more and more in recent years.

I will review some of those developments.
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What is symmetry in modern understanding?

Actually I don’t know how to treat them most generally.

The terminology “symmetry” is not appropriate in 
some of generalizations.

I feel more abstract language is necessary for a
unified treatment of several generalizations.
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• Usual symmetry (continuous, discrete, spacetime)

• Higher form symmetry  [Kapustin-Seiberg 2014, 
Gaiotto-Kapustin-Seiberg-Willett 2014]

• 2-group [Kapustin-Thorngren 2013, Tachikawa 2017,   
Cordova-Dumitrescu-Intriligator-2018, Benini-Cordova-Hsin2018]

• Duality group [Seiberg-Tachikawa-KY 2018]

• Topological defect operator                                         
[Bhardwaj-Tachikawa 2017, Chan-Lin-Shao-Wang-Yin 2018]

• …
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Let me describe some properties of some of them.
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Let us recall the case of usual continuous symmetry.

Jµ

rµJ
µ = 0

: conserved current
: conservation equation

In the language of diffential forms, it is more beautiful.
J := Jµdx

µ

⇤J =
1

(d� 1)!
Jµ✏µµ1···µd�1dx

µ1 ^ · · · dxµd�1

d(⇤J) = 0 :  conservation equation
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: charge operator

          is invariant under continuous deformation of     by

⌃ : codimension-1 (dimension          ) surface

d(⇤J) = 0

⌃

Q(⌃) =

Z

⌃
⇤J

Q(⌃)

• Stokes theorem
•      is closed: ⇤J

In this sense,           is topological.Q(⌃)

d� 1

This is total charge on the surface ⌃
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⌃

⌃0

Q(⌃) = Q(⌃0)d(⇤J) = 0
Stokes &

topological
(charge conservation)

Q(⌃) =

Z

⌃
⇤J
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• It is topological in the sense that it is invariant under 
continuous deformation of the surface ⌃

• The operator                exists for each group element

Symmetry operator:

ei↵ = g 2 G

↵

U(⌃,↵)

U(⌃,↵) = exp(i↵Q(⌃)) = exp(i↵

Z

⌃
⇤J)

g : element of group
: element of Lie algebra
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So the usual symmetry is implemented by operators

U(⌃, g) : topological operator

⌃ : surface

g : “label” of the operator
  (group element)
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Some properties: Topology
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U(⌃, g) : topological operator
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Q: Does it need to be an exponential of     ? 
A: No. Discrete symmetry has     without      .

Q
U Q

U(⌃, g) : topological operator
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Q: Does it need to be an exponential of     ? 
A: No. Discrete symmetry has     without      .

Q: Does the surface     need to be codimension-1?
A: No. Higher form symmetry uses higher codimension     .

Q
U Q

⌃
⌃

U(⌃, g) : topological operator
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Q: Does it need to be an exponential of     ? 
A: No. Discrete symmetry has     without      .

Q: Does the surface     need to be codimension-1?
A: No. Higher form symmetry uses higher codimension     .

Q: Do we need group elements            ?
A: No. Topological defect operator is just topological
     without any group.

Q
U Q

⌃
⌃

U(⌃, g) : topological operator

g 2 G
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Remarks:

• Sometimes these operators cannot be written 
explicitly in “elementary ways” by using fields.

• These operators are sometimes described by 
abstract mathematical concepts such as                   
fiber bundles, algebraic topology, and so on.
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Quite generally, operators can be coupled to
background fields.

The most basic case of an operator          coupled
to a background field 

O(x)
A(x)

Z[A] = hexp(i
Z

A(x)O(x))i

: called generating functional or partition function.
I will use the terminology partition function.
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For the current operator            , we have a background
gauge field            . The coupling between them isAµ(x)

Jµ(x)

Z
ddxAµJ

µ =

Z
A ^ ⇤J

In a similar (but more abstract) way, the symmetry
corresponding to              can be coupled to 
background fields.

U(⌃,↵)
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Z[A]

I will write

A : abstract background fields for 
  the symmetry U

: partition function in the 
 presence of the background fields A
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Examples of background field     : 

• For discrete symmetry      ,
A

G

: principal      bundle  G

• For higher form symmetry such as p-form symmetry 
with abelian group G = ZN

(cohomology group)

• Parity, Time-reversal symmetry
A : non-orientable manifold (e.g. Klein-bottle) 

H
p+1(M,ZN )A 2

A
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Remarks:

• As the previous examples show, abstract description 
of the background fields requires mathematical 
concepts from topology and geometry.

• But if you don’t like mathematics, some simple cases 
can be treated in elementary ways.

    
• For example, p-form field = BF theory.
    E.g. [Banks-Seiberg, 2010]
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What is anomaly in modern understanding?

There is now a way which is believed to describe
almost all anomaly.
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Z[A]

A : abstract background fields for 
  the symmetry

: partition function in the 
 presence of the background field 

:     -dimensional spacetime manifold
   (part of background fields for spacetime symmetry)

M d
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• First of all, anomaly means that the                    
partition function          is ambiguous.

• However, if we take a (d+1)-dimensional manifold 
whose boundary is the spacetime       and on which 
the background fields       are extended, then         
the partition function is fixed without any ambiguity.

N
M

A

MN @N = M

Z[A]
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The dependence on     : anomaly

Anomaly
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MN

@N = M

Z[N,A]
A

: no ambiguity, if we are given      and
  extension of      into  N

N

N
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This description of anomaly may look quite abstract,
but there is a very natural motivation from 
condensed matter physics / domain wall fermion.
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Some material:
Topological phase

(Manifold      )N

Anomalous theory on 
the surface/domain wall
(Manifold       )M

• Cond-mat/Lattice systems are not anomalous as a whole.

• It is anomalous if we only look at surface/domain-wall.

• The bulk topological phase is gapped.                                
No degrees of freedom. Almost trivial theory.
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The simplest example is given by quantum Hall system.

d = 2, d+ 1 = 3

symmetry: U(1)  (QED)

Anomalous theory: chiral fermion in d = 2
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Example: quantum Hall system
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Quantum Hall state
(2+1-dimensions)

Anomalous chiral fermion
(2-dimensions)

On the surface of matter exhibiting quantum Hall effect,
there appears chiral fermions which have anomaly 
under U(1) symmetry.

: U(1) background gauge fieldA = Aµdx
µ
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S = i
k

4⇡

Z

bulk
AdA

The action of the quantum Hall system in 3-dimensions

�↵S = i
k

4⇡

Z

bulk
d↵dA = i

k

4⇡

Z

boundary
↵dA

Gauge transformation

Cancels against 
boundary fermion
anomaly 

�A = d↵

(    : background. No dynamical degrees of freedom.)A
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det(PL�
µDµ) · exp(

ik

4⇡

Z

bulk
AdA)

boundary fermion
partition function

bulk topological phase 
partition function

Product of bulk and boundary partition functions: 
gauge invariant

Z[N,A] =
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More generally, anomalies are completely characterized 
by (d+1)-dimensional topological phases.
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MN

@N = M

MN 0

@N 0 = M

A manifold: Another manifold:

Gluing the two manifold:

N

Closed manifold

X = N [N 0N 0
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Z[N ]

Z[N 0]
= Z[X] (                       )X = N [N 0

Anomaly is characterized by (d+1)-dimensional
partition function           on the closed manifoldZ[X]

• If                 , there is no anomaly because              
means that the partition function is independent of      

Z[X] = 1 Z[N ] = Z[N 0]

•           is really the partition function of (d+1)-dim. theory.   
This (d+1)-dim theory is called symmetry protected 
topological phases (SPT phases) or invertible field theory

Z[X]Z[X]

N

X
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Example : Perturbative anomaly 
Usual perturbative anomaly is described by the so-called
descent equation for the gauge field

: anomaly polynomial in
  (d+2)-dimensions

Id+2 = dId+1 Id+1 : Chern-Simons

Id+2 ⇠ tr F ( d+2
2 )

Z[X] = exp(i

Z

X
Id+1)

F = dA+A ^A

: Chern-Simons

Quantum Hall system: 
I2+1 ⇠ AdA

I2+2 ⇠ F 2 = dAdA
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More general fermion anomalies

Id+1         can be used only for perturbative anomalies of
continuous symmetries. 

More generally: global anomaly

Examples of global anomaly:

• SU(2) with a doublet Weyl fermion in 4-dimensions
• All anomalies of discrete symmetries (      , time-reversal,..)ZN
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General fermion anomaly formula [Witten, 2015]

Z[X] = exp(�2⇡i⌘)

: Atiyah-Patodi-Singer    invariant ⌘ ⌘

[Atiyah-Patodi-Singer 1975]

Perturbatively                 , but the    invariant contains
more information. (Details omitted)

⌘ ⇠ Id+1 ⌘
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All global anomalies (not restricted to fermions)

Classified by the cobordism groups.

Conjectured in
[Kapustin 2014, Kapustin-Thorngren-Turzillo-Wang 2014]

Essentially proved in
[Freed-Hopkins 2016, Yonekura 2018]

By looking at the cobordism groups, we can see 
what anomaly is possible in a given dimension with 
a given symmetry group.

Details omitted.
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There are many applications.
I sketch only a few of them (related to my own works).

In the rest of this lecture, I will give a sketch of applications 
of the refined concepts of symmetries and anomalies.
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It is well-known how perturbative anomalies are cancelled
in string theory.

This does not mean that we have the complete picture 
of anomaly cancellation in string theory.

More subtle global anomalies and more subtle
topological structures in string theory, as I now discuss.
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Their fluxes,                , are often said to have integral
periods due to Dirac quantization condition:

Flux quantization
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String theory contains several higher form gauge fields,
such as RR p-form field      :C

C = Cµ1···µpdx
µ1 ^ · · · ^ dxµp

F = dC

Z

(p+1)-cycle
F 2 Z
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Another well-known fact:

O  -plane RR charges are given by          (sign neglected)p

p < 5

2p�5

This means that the integral of               around 
the O-plane is given by

F = dC

Z

around Op
F = 2p�5

This is not integer for
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Let us recall the argument of Dirac quantization.

It seems that Dirac quantization condition is violated.

Is string theory inconsistent?
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O-plane

D-brane 
worldvolume

exp(i

Z

M
C)

M

Coupling to RR field

C : RR-field
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O-plane

exp(i

Z

M
C)

M

Coupling to RR field

N

@N = M

= exp(i

Z

N
F )

C : RR-field F = dC
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O-plane

exp(i

Z

M
C)

M

Coupling to RR field

N 0

@N 0 = M

= exp(i

Z

N 0
F )

C : RR-field F = dC
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O-plane

M
N 0

@N 0 = M

N

@N = M

exp(i
R
N F )

exp(i
R
N 0 F )

= exp(i

Z

X
F ) 6= 1 If the charge is

not integer.

X = N [N 0
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Didn’t we see similar figures before?

Maybe you have forgotten, so let me repeat it.
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MN

@N = M

MN 0

@N 0 = M

A manifold: Another manifold:

N
X = N [N 0N 0

Gluing the two manifold:
Closed manifold
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Z[N ]

Z[N 0]
= Z[X] (                       )X = N [N 0

Anomaly is characterized by (d+1)-dimensional
partition function Z[X]

Anomaly means Z[X] 6= 1
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The total partition function of D-brane worldvolume is 

Z[N ] exp(i

Z

N
F )

The partition function
of worldvolume fields
(fermions, gauge fields)

Coupling to RR-field

Z[N ] exp(i
R
N F )

Z[N 0] exp(i
R
N 0 F )

= Z[X] exp(i

Z

X
F )
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The (in)consistency of the worldvolume of D-branes is
controlled not by            or         , but by the combinationZ[X]

Z
F

Z[X] exp(i

Z

X
F )

Anomaly free condition:

Z[X] exp(i

Z

X
F ) = 1

[Moore-Witten,1999]
[Freed-Hopkins,2000]

[Witten,2016]
[Tachikawa-Yonekura,2018 & work in progress]



/ 77

Shifted flux quantization

 62

Conclusion:
Fluxes are not quantized to be integers, but 

Z
F 2 q + Z

q : quantity controlled by the anomaly of
  worldvolume theory of D-brane.

A complete story is not yet understood.
More work is necessary.
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Some UV theory with 
   global symmetry F

UV:

IR:

Anomaly of F in UV  =  Anomaly of F in IR

’t Hooft anomaly matching

Anomalies are very useful because of ’t Hooft matching:

???
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In other words: 
Anomalies are conserved under RG flows.

Why? 

Let’s recall that anomalous theories are realized on
a boundary of topological phase.

Topological phase
(Manifold      )N

Anomalous theory on 
the boundary
(Manifold       )M
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Some UV theory UV:

IR: ???

RG flow

Topological phase in 
one-higher dimensions

Large mass gap:
invariant under RG flow

boundary Bulk

UV and IR anomalies are controlled by the same bulk
topological phase. Therefore, anomalies are conserved.
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’t Hooft anomaly matching is very useful in studying
strong coupling dynamics such as QCD.
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In QCD, there exist perturbative triangle anomalies of
chiral symmetry                                     .

’t Hooft anomaly matching in QCD

qL

qR

: left-handed quarks, rotated by SU(Nf )L
SU(Nf )R: right-handed quarks, rotated by 

SU(Nf )L,R

SU(Nf )L,R

SU(Nf )L,R

qL,R

qL,R

qL,R

SU(Nf )L ⇥ SU(Nf )R
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UV:

If there is no chiral fermion to match the anomaly,
the chiral symmetry must be spontaneously broken.

Implications of ’t Hooft anomaly matching in QCD

confinement

The quarks have the ’t Hooft anomaly

IR:
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Simple case: Nc = even

All gauge invariant composites are bosons, 
so there is no fermion to match the anomaly.

Therefore, chiral symmetry must be broken
if the theory is in confinement phase.

Other values of        requires more complicated
discussions. 

Nc
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Confinement Chiral symmetry
breaking

’t Hooft anomaly matching gives an important relation
between the two most important concepts in QCD:



/ 77

Other theories

 72

How about other theories?

• Pure Yang-Mills theories
• Pure              Super-Yang-Mills theories
• …(any gauge theory)

N = 1

They don’t have continuous symmetries.
Pure Yang-Mills don’t even have fermions.

Is there no useful anomaly at all?
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It turns out:

• They have 1-form symmetry (called center symmetry)

• The theories have a mixed anomaly between the    
1-form symmetry and a discrete symmetry

• Time-reversal for pure Yang-Mills
• Axial symmetry for Super-Yang-Mills

Discrete symmetry:
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The discrete symmetries (time-reversal or discrete 
axial symmetry) must be broken after confinement. 
(More exotic possibilities neglected.)

[Gaiotto-Kapstin-Komargodski-Seiberg,2017]
[Komargodski-Sulejmanpašić-Unsal, 2017]

[Shimizu-Yonekura, 2017]

The existence of the subtle symmetry and the anomaly
implies that: 

More surprisingly, the subtle anomaly can even constrain
finite temperature phase transition.
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I will review more details of this topic in later lectures.
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The concepts of symmetry and anomaly are 
organized and generalized in recent years.

They are very useful for the studies of strong 
dynamics. There are many more applications.

String theory has extremely subtle and sophisticated 
topological structures related to anomaly which need 
to be investigated further.


