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This talk is an informal discussion of joint work with
Jie Du (UNSW) and Leonard Scott (UVA), and it
continues a talk on the same joint work by L. Scott.
What follows below are the slides for the talk. The
reader is warned that there a probably lots of typos
and obscurities, etc.

1. MOTIVATION

Let G be a reductive group (G′ simply connected)
over a alg. closed field F of positive characteristic
p, and let σ be an endomorphism s.t. Gσ is finite.
Then Gσ is a finite group of Lie type. One often
writes G(q) for Gσ, q = pd. Now let k be alg. closed
field, char(k) = r > 0. The rep. theory of kGσ has
two cases

• p = r: defining characteristic case. Attacked
by relating to rational representations of G.

• p 6= r: cross characteristic case. Subject of
this talk (sort of). So from now on assume p 6= r.
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In case G = GLn, there are close relationships

RepkGLn(q)↔ Rep q-Schur alg.↔ Quantum gps for gln
etc. (Dipper-James theory and many others). A key
player is the Hecke algebra

H := EndG(q)(ind
G(q)
B(q) k)

which has a nice presentation, canonical basis, . . . which
all play a role.

2. Generic (Iwahori-Hecke) algebra H and
cell modules

We follow Lusztig’s CRM book. LetW,S be a Weyl
group with simple reflections S. Let ` : W → Z be
the length function and L : W → Z+ a L weight
function: `(xy) = `(x) + `(y) =⇒ L(xy) =
L(x) + L(y). (E.g., L = `.) Let Z = Z[t, t−1], and
set ts = tL(s). Then H is the free Z-algebra with
basis Tw, w ∈ W , and relations

TsTw =

{
Tsw if `(sw) = 1 + `(w);

Tsw + (ts − t−1
s )Tw, if `(sw) = −1 + `(w).

In particular, if w = s1s2 · · · sr is reduced, then

Tw = Ts1Ts2 · · ·Tsr.
The algebra H has a ring involution h 7→ h:{

Tw 7→ T−1
w−1

t 7→ t−1.
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Theorem 1: (Kazhdan-Lusztig) For w ∈ W ,
there is a unique cw ∈ H≤0 =

⊕
w Z≤0Tw such that

(a) cw = cw;

(b) cw ≡ Tw mod H≤0.
Then {cw}w∈W form a Z-basis of H (the “canonical

basis”). The Z-span of the cw forms an order in H.

Now definew′ ←−L w if cw′ “appears” with nonzero

coef. in cscw for some s ∈ S, when cscw is written as
a linear combination of the cw′.

This relation generates a pre-order (reflexive and
transitive) ≤L on W . (In the above example, w′ ≤L
w.) A corresponding equivalence classes ω are called
left cells of W . Let Ω be the set of left cells in W .
If y ∈ ω,

S(ω) :=
⊕

w;w≤Ly
Zcw/

⊕
w;w<Ly

Zcw

is a left H-module, called a left cell module, while
its dual

Sω := HomZ(S(ω),Z)

is a DUAL left cell module. So S(ω) ∈ H−mod
and Sω ∈ mod−H.

Similarly, there are right cell modules and two-sided
cell modules.

.
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3. EXACT CATEGORIES

We follow Quillen as arranged by B. Keller. Let A
be an additive category. A pair (i, d) of composable
morphisms i : X → Y and d : Y → Z in A is an
exact pair if i : X → Y is the kernel of d : Y → Z
and d is the cokernel of i. Thus, we have a “short
exact sequence”

0→ X
i−→ Y

d−→ Z → 0.

in A .
Let E be a class of exact pairs. If (i, d) ∈ E , then
i (resp., d) is called an inflation (resp., deflation).

The pair (A ,E ) is an EXACT CATEGORY
if the following axioms hold:

0. 10 ∈ Hom(0, 0) is a deflation, where 0 is the zero
object in A .

1. The composition of two deflations is a deflation.

2. A diagram

Z ′yf ′
Y −→

d
Z

in A in which d is a deflation, can be completed to
a pullback diagram
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Y ′
d′−→ Z ′

f ′
y f

y
Y

d−→ Z
in which d′ is a deflation.

2◦. The dual of axiom 2 holds

Let (A ,E ) be an exact category. For X,Z ∈ A , let
E (Z,X) be the set of sequences X → Y → Z in E .
Define the usual equivalence relation ∼ on E (Z,X)
by putting

(X → Y → Z) ∼ (X → Y ′ → Z)

provided there is a morphism Y → Y ′ giving a com-
mutative diagram

X −→ Y −→ Z∥∥∥ y ∥∥∥
X −→ Y ′ −→ Z

The morphism Y → Y ′ is necessarily an isomor-
phism. Let Ext1

E (Z,X) = E (Z,X)/ ∼. Some fa-
miliar properties of Ext are still valid: A short exact
sequence in E leads to 4-term “long” exact sequence
(covariant and contravariant), sequence, and some-
times even a 6-term exact sequence.
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General references for exact categories are:

[1] T. Bühler, Exact categories, Expo. Math. 28
(2010) 1–69.

[2] B. Keller, Chain complexes and stable categories,
Manuscripta Math. 67 (1990), 379–417.

[3] B. Keller, Appendix to Trans. Amer. Math.
351 (1999), 647-682. (Paper by Dräxler, Reiten,
Smalo, Solberg.)
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4. FILTRATIONS OF MODULES

We make considerable use of natural filtrations on
our modules. Here is some notation:

(1) K : Noetherian domain with fraction field K,
(2) H : finite, torsion-free K -algebra withHK semisim-

ple.
(3) A : additive category of K -finite, torsion-free

left (or maybe right) H-modules.
(4) Λ↔ Irr(mod-HK), λ −→ Eλ

(5) A fixed function h : Λ −→ Z>0. We call h a
height function.

Given N ∈ mod–HK, h defines a natural increasing
finite filtration

0 = N 0 ⊆ · · · ⊆ N i ⊆ N i+1 ⊆ · · · ⊆ N t = N,

in which N i is the sum of all submodules of N iso-
morphic to some Eλ with h(λ) ≤ i.
Main Point: Now any M ∈ A has an in-

duced filtration:

0 = M 0 ⊆ · · · ⊆M i ⊆M i+1 ⊆ · · · ⊆M

defined by putting

M i := M ∩ (MK)i,∀i ≥ 0.

Observations: (1) M i, M/M i, M i/M i−1 ∈ A .

(2) (M i/M i−1)K ∼=
⊕

h(λ)=iE
⊕mλ
λ , various integers

mλ ≥ 0
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(3) A morphism X
f−→ Y in A induces maps{

fi : X i → Y i

fi : X i/X i−1 → Y i/Y i−1.

In addition, if g : Y → Z is another morphism, then
(gf )i = gifi and gifi = gifi for each i.

(4) If

0→ X
f→ Y

g→ Z → 0

is an exact sequence in mod–H , the following state-
ments hold for any integer i:

(a) The sequence 0 → X i → Y i → Z i is exact in
mod–H .

(b) The sequence 0 → Xh → Y h → Zh → 0 is
a short exact sequence in mod–H , ∀h ≤ i, ⇐⇒
0 → Xj/Xj−1 → Y j/Y j−1 → Zj/Zj−1 → 0 is
exact for each j ≤ i.

Remark: Later when H = H, we always assume
that the height function h is constant on irreducible
modules in the same two-sided cell.
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5. EXAMPLES OF EXACT
CATEGORIES

We will exhibit some exact categories and then men-
tion some results which are relevant to representation
theory. We keep the previous notation, so that A is
an additive category consisting of K -finite and tor-
sion free right H-modules, HK is semisimple, height
function h, etc.

Example 1: Define E as follows. A short exact
sequence 0 → X → Y → Z → 0 in A belongs to
E (by definition) if and only if the various sequences
(or “layers”)

0→ X i/X i−1 → Y i/Y i−1 → Z i/Z i−1 → 0

(i ∈ N) are all exact in mod-H .

By observations above, each sequence 0 → X i →
Y i → Z i → 0 is also exact for any integer i.

Theorem 2: (DPS) The pair (A ,E ) is an exact
category.

Proof: This can be deduced from the following lemma:

Lemma: (DPS 2017) Let C be an abelian category.
Let (A ,E ) be an exact category and let F : A → C
be a left E -exact, additive functor. Define E to be
the class of those 0 → X → Y → Z → 0 in E s.t.
0 → F (X) → F (Y ) → F (Z) → 0 is exact in C .
Then (A ,E ) is an exact category.
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Proof: Check the axioms. �

Example 2: (DPS 2017) For each integer i, let
Si be a full, additive subcategory of A such that if
S ∈ Si, then SK is a direct sum of irreducible right
HK-modules having the same height i. Let S be the
set-theoretic union of the Si. Let A (S ) be the full
subcategory of A above having objects M satisfying
M j/M j−1 ∈ Sj for all j.

Define E (S ) to be the class of those conflations
X → Y → Z in E such that X, Y, Z ∈ A (S ) and
with the additional property that, for each integer i,

0→ X i/X i−1 → Y i/Y i−1 → Z i/Z i−1 → 0

is a SPLIT short exact sequence in mod–H .

Theorem 3: (DPS 2017) The pair (A (S ),E (S ))
is an exact category.

Proof: Check the axioms. �
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Example 3. Now let K = Z := Z[t, t−1], and let
H be the generic Hecke algebra. For any integer h,
let Lh be the full subcategory of A (left modules)
consisting of modules N which are a finite direct sum
of modules which are isomorphic to left cell modules
S(ω) of height h < 0 (by convention). Let L be
the set-theoretic union of the Lh, h ∈ Z. Next, let
A (L ) be the full additive subcategory of H-mod
with objects M (necessarily in Al) whose h-filtration

M = M0 ⊇M1 ⊇M2 ⊇ · · · ⊇Mn−1 ⊇Mn = 0

has the property that each Mh−1/Mh ∈ L−h. We
can form the LEFT module version (A (L ),E (L ))
of (A (S ),E (S )) in Example 2. E.g., E (L ) con-
sists of those sequences (A → B → C) in A (L )
such that each

0→ Ah−1/Ah → Bh−1/Bh → Ch−1/Ch → 0

is a split short exact sequence in L−h. Then (as in
Example 2 which worked with right modules)

(A (L ),E (L ))

is an exact category.
If M is a left H-module and J ⊆ S, define

MHJ := {v ∈M | csv = (ts + t−1
s )v,∀s ∈ J}.

(Recall that ts = tL(s) for all s ∈ S.) We call MHJ

the fixed point subspace HJ for its action on M .
(Of course, they are not really fixed!)
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Lemma: Let I ⊆ K be left ideals in H. Assume
that both I and K are spanned by Kazhdan-Lusztig
basis elements cx that is contains. Then, for any
J ⊆ S, the natural map

KHJ −→ (K/I)HJ

is surjective.

Remark: Typical (left) ideals spanned by canonical
basis elements are the so-called q-permutation mod-
ules HxJ for J ⊂ S, with xJ :=

∑
w∈WJ

tL(w)Tw.

Let E [(L ) denote the full subcategory of E (L )
with objects 0→M → N → P → 0 ∈ E (L ) such
that, for any integer h and any subset J of S, the
sequence

(∗) 0→ (Mh)
HJ → (Nh)

HJ → (Ph)
HJ → 0

of HJ-fixed points is exact. Note that, for any h,
each 0 → Mh/Mh−1 → Nh/Nh−1 → Ph/Ph−1 → 0
is split in H-mod, since (M → N → P ) ∈ E (L ),
but this does not mean that that the short exact
sequence 0 → Mh → Nh → Ph → 0 is split. In
particular, the exactness of above sequence (*) is a
non-trivial property.
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Let A [(L ) be the full subcategory of A (L ) with
objects M having the property that, for any integer
h and any J ⊆ S, the map

(Mh−1)HJ −→ (Mh−1/Mh)
HJ

is surjective.

Theorem 4: (A [(L ),E [(L )) is an exact cate-
gory.

The following illustrates some of the techniques in
proving certain results:

Proposition: Let M,P ∈ A [(L ), and assume
given (M → N → P ) ∈ E (L ). Then N ∈ A [(L )
if and only if (M → N → P ) ∈ E [(L ). In particu-
lar, the full subcategory A [(L ) of A (L ) is closed
under extensions in (A (L ),E (L )).

Sketch of proof: Consider the case

0→M → N → P → 0 ∈ E [(L )

and we want to prove that N ∈ A [(L ).
For an integer h and a subset J ⊆ S, form the

commutative diagram
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(Mh−1/Mh)
HJ −→ (Nh−1/Nh)

HJ −→ (Ph−1/Ph)
HJx x x

(Mh−1)HJ −→ (Nh−1)HJ −→ (Ph−1)HJx x x
(Mh)

HJ −→ (Nh)
HJ −→ (Ph)

HJ

Since M,P ∈ A [(L ), columns 1 and 3 are short
exact sequences. Since (M → N → P ) ∈ E [(L ),
the three rows are all short exact sequences as well.
(For row 1, it is already, before taking fixed points,
a split short exact sequence, because (M → N →
P ) ∈ E (L )). Thus, it remains exact upon taking
HJ-fixed points.) Thus, column 2 is exact as well,
using the 3 × 3 lemma, so that N ∈ A [(L ), as
required.

Another important fact involves the q-permutation
modules:

Theorem 5: For any J ⊆ S, HxJ ∈ A [(L ).

Example 4: Apply the duality functor (−)∗ =
HomZ(−,Z) to the exact category in Theorem 4 above
to get an exact category

(A[(L
∗),E[(L

∗)).

Using the fact that xJH ∼= (HxJ)∗, we get
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Corollary: For any left cell ω ∈ Ω, there is a van-
ishing

Ext1
E[(L

∗)(Sω, xJH) = 0.

An Abstraction

Maintain the above notation. Writing S for L ∗,
the exact category (A[(S ),E[(S )) of Example 4 is
an exact category (A[,E[). It satisfies the following
5 properties:

(1) A[ is object-closed under isomorphisms in A (S ).
(2) All objects of S are contained in A[.
(3) Let M ∈ A[ and let h be an integer. Then

Mh, Mh−1 and Mh/Mh−1 belong to A[, and
(Mh−1 →Mh →Mh/Mh−1) belongs to E[.

(4) For M,N,P ∈ A[, if (M → N → P ) ∈ E[,
then (Mh → Nh → P h) ∈ E[ for all integers h.

There are a number of results about Ext1 in such
an exact category that one wants to prove. The fol-
lowing is a difficult example.
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Lemma: Let h be an integer. Let S ∈ Sh and
M ∈ A[, and suppose the map

HomA[
(S,Mh/Mh−1)→ Ext1

E[
(S,Mh−1)

defined by pull-back is surjective. Then Ext1
E[

(S,M) =
0.

In particular, the lemma holds for our exact cate-
gory (A[(S ),E[(S )). Also, we have:

Theorem 5 (DPS 2018) Suppose (A[,E[) is a full
exact subcategory of (A (S ),E (S ) satisfying con-
ditions (1)–(4). Assume each Sd is “finitely gener-
ated” by dual left cell modules Sω := S(ω)∗. Then,
given M ∈ A[, there exists an object X = XM in

A[ and an inflation M
i→ X in (A[,E[) such that

Ext1
E[

(S,X) = 0 for all S ∈ S . Also, if h is cho-

sen minimal with Mh−1 6= 0, can assumed that the
inflation induces an isomorphism Mh−1 ∼= Xh−1.

Now consider the exact category

(A[(S ),E[(S ) = (A[(L
∗),E[(L

∗)) = (A [(L ),S [(L ))∗

constructed above. If M = Sω ∈ L ∗ for a left
cell ω ∈ Ω, then write Tω for XM defined in the
statement of Theorem 5 above.

Let Ω′ be the set of all left cells that do not contain
the longest element wJ,0 of a parabolic subgroup WJ
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of W . Put

T :=
⊕
J⊆S

xJH ∈ A[(L
∗) and X :=

⊕
ω∈Ω′

Tω ∈ A[(L
∗).

(0.0.1)
If ω 6∈ Ω′, then ω contains the longest word w0,J of
a parabolic subgroup WJ of W . Thus, if ω ∈ Ω\Ω′
we set T+

ω := xJH for some J ⊆ S. Put

T+ :=
⊕
ω∈Ω

T+
ω = T ⊕X. (0.0.2)

The multiplicities of the summands Tω can be in-
creased (giving Morita equiv. algebras).

It turns out that A+ := EndH(T+) solves the con-
jecture that Leonard talked about. But we can also
simplify matters by using stratifying systems in the
exact category setting:
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6. STRATIFYING SYSTEMS IN
EXACT CATEGORY SETTING

Let A be an algebra which,. is finite (= finitely
generated) and projective as a K -module. Assume
≤ is a pre-order on Λ (reflexive and transitive). The
equivalence classes of Λ defines a poset Λ, and a pre-
order map

Λ −→ Λ, x 7→ x.

For λ ∈ Λ, assume that there is given an A-module
∆(λ) which is finite and projective over K . Also,
there is given a finite and projective A-module P (λ),
together with an epimorphism P (λ) � ∆(λ). The
following conditions are assumed to hold:

(SS1) For λ, µ ∈ Λ,

HomA(P (λ),∆(µ)) 6= 0 =⇒ λ ≤ µ.

(SS2) Every irreducible A-module is a homomorphic
image of some ∆(λ).

(SS3) For λ ∈ Λ, the A-module P (λ) has a finite fil-
tration by A-submodules with top section ∆(λ)
and other sections of the form ∆(µ) with µ̄ > λ̄.

When these conditions hold, the data

{∆(λ), P (λ)}λ∈Λ (0.0.3)

form (by definition) a stratifying system for A–mod.
(Clearly, this setup works well w.r.t. base change
K → K ′, provided K ′ is a Noetherian commuta-
tive ring.
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Stratifying systems can be constructed in an endo-
morphism ring setting. Originally, the construction
required a difficult Ext1-vanishing condition. This
problem can be partly solved by introducing “de-
signer” exact categories which have smaller Ext1-
groups. The new version was somewhat awkward to
use in the Quillen axiom system. The updated ver-
sion below removes this issue, by replacing all Ext1-
vanishings with existence assertions for needed short
exact sequences.

Let R be a finite and projective K -algebra. We
provide ingredients in mod–R, including anR-module
T with suitable filtrations, which enable the con-
struction of a stratifying system for A–mod, where
A := EndR(T ). Clearly, T is naturally a left A-
module.

We will construct T as an object in a full subcate-
gory A of mod–R, with the following assumptions.
Let A be a full additive subcategory of mod–R,
which is part of an exact category (A ,E ). We as-
sume the exact sequences (X → Y → Z) ∈ E are
among the short exact sequences 0 → X → Y →
Z → 0 in mod–R. Thus, (A ,E ) is a full exact
subcategory of mod–R. Assume there is given a col-
lection of objects Sλ, Tλ ∈ A indexed by Λ. Assume
that T is a finite and projective K -module. For each
λ ∈ Λ, Sλ is a subobject of Tλ, with the inclusion
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Sλ ↪→ Tλ an inflation. For each λ ∈ Λ, fix a positive
integer mλ. Define

T :=
⊕
λ∈Λ

T
⊕mλ
λ .

Note that T is an object in A , so thatA = EndR(T ).
In particular, (A ,E ) is an exact category and T ∈

A . Let � be the contravariant functor A → mod–T ,
given by M � := HomA (M,T ). Consider the

Stratification Hypothesis (Exact category
edition):

(1) For λ ∈ Λ, there is an increasing filtration of Tλ:

0 = T−1
λ ⊆ T 0

λ ⊆ · · · ⊆ T
l(λ)
λ = Tλ

in which each inclusion T i−1
λ ⊆ T iλ is an infla-

tion. In addition, T 0
λ
∼= Sλ, and, for i > 0, the

“section” T iλ/T
i−1
λ is a direct sum of various Sµ,

µ ∈ Λ and µ > λ (repetitions allowed).
(2) For λ, µ ∈ Λ, HomA (Sµ, Tλ) 6= 0 =⇒ λ ≤ µ.
(3) For all λ ∈ Λ and integer i ≥ 0, the natural

sequence

0→ (T iλ/T
i−1
λ )� −→ T i,�λ −→ T i−1,�

λ → 0

of A-modules is exact.
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Theorem 6: (DPS) Assume that the Stratification
Hypothesis holds. For λ ∈ Λ, put{

∆(λ) := HomR(Sλ, T ) = HomA (Sλ, T ) ∈ A–mod;

P (λ) := HomR(Tλ, T ) ∈ A–mod.

(0.0.4)
Assume that each ∆(λ) is projective over K . Then
{∆(λ), P (λ)}λ∈Λ is a stratifying system for A–mod.

Remark: If K = Z := Z[t, t[ − 1]], then ∆(λ) is
projective by Auslander-Goldman, and then it is free
by Swan.

8. FINAL COMMENTS

Put Z\ := S−1Z, the localization of Z at the mul-
tiplicative set S generated by the bad primes of W .
Given a Z-algebra B, let B\ = Z\ ⊗Z B.

Theorem 7: In the notation above, A+\ is quasi-
hereditary.

Remarks: (a) (DPS) The original DPS conjecture
considered all rank 2 examples and determined that
Theorem 7 is not always true if A+\ is replaced by
A+.
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(b) Is it necessary to invert all bad primes for The-
orem 7 to be true?


