Axion Monodromy Inflation

Axion Monodromy

 Non-periodic axions whose shift symmetry is broken before nonperturbative effects set in → non-compact field space.

- Monodromy axions are mapped to massive U(1) vector fields in the particle picture, and do not lead to a long range force.
- WGC arguments not immediately apply, but what about the SDC?

Axion Monodromy

 When axion monodromy was first formulated, the shift symmetry was assumed to be broken by coupling to branes:

[Silverstein, Westphal, '08]; [McAllister, Silverstein, Westphal, 08]

Explicit constructions involve NS5-branes and **anti-NS5-branes** wrapping **homologous cycles** in **different warped throats**.

Harder to quantify corrections to the EFT upon super-Planckian field displacements.

F-term Axion Monodromy

• Idea: Flux compactifications stabilize moduli by giving them fluxinduced masses. Same mechanism can generate axion potential.

[Marchesano, GS, Uranga, '14] (see also [Blumenhagen, Plauschinn, '14];[Hebecker; Kraus, Witkowski, '14]).

• For example, consider dim reduction of kinetic terms of RR forms:

$$S_{10} = \int d^{10}x \ G_p \wedge *G_p \qquad G_p = F_p - H_3 \wedge C_{p-3} + \mathscr{F} \wedge e^{B_2}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$dC_{p-1} \ dB_2$$

 $\int_{\Sigma_p} C_p \,, \int_{\Sigma_2} B_2 \to \text{ 4D axions } e.g., \text{ Kahler moduli } T^i = \int_{\Sigma_2^i} B + i \int_{\Sigma_2^i} J$

F-term Axion Monodromy

• Dimensionally reduce kinetic terms → scalar potential for axions

$$V = Z_{ab}(s) \ F_4^a \wedge *F_4^b - 2F_4^a \rho_a(\theta) + \dots$$

- Note the structure that Z (s) depends only on the saxions s and all the axion θ dependence appears in ρ(θ).
- $\rho(\theta)$ also depends on quantized internal fluxes.
- Integrating out the 3-form C_{3:}

A Simple Model

• Consider a single axion and a single 4-form:

The eom

$$d * F_4 = d(m\theta + f_0) \implies * F_4 = f_0 + m\theta$$

• This gives a **multi-branched** effective potential:

$$V = (f_0 + m\theta)^2$$

Moreover, V is invariant under the combined discrete shift:

$$\theta \to \theta - c/m, \quad f_0 \to f_0 + c$$

Multi-branched Potential

• This identifies gauge equivalent branches when $c/m = 2\pi f$

Z_n discrete symmetry

 The combined discrete shift symmetry and gauge symmetry of C₃ constrain the higher order corrections:

$$\delta V \sim \sum_{n} c_n F_4^{2n} \sim \sum_{n} c_n V_0^n$$

higher order corrections are under control

Dual Formulation

• This model can be described in terms of the dual 2-form:

$$d\phi = *_4 db_2$$

• The axion 4-form Lagrangian can be rewritten in terms of the Stuckelberg coupling:

$$|db_2 + nc_3|^2 + |F_4|^2$$
 2-form eaten by 3-form

• The gauge invariance:

$$C_3 \rightarrow C_3 + d\Lambda_2, \quad b_2 \rightarrow b_2 - n\Lambda_2$$

 This gauge invariance protects the axion potential from dangerous UV corrections.

General Properties of F-term Axion Monodromy

In general, with *more fluxes and more axions*, we expect:

- Non-linear couplings: shift invariant function $\rho(\theta)$ can include mixings and higher order terms for axions \Rightarrow more general V θ).
- Multiple 3-forms: higher dim. operators cannot always be written as Vⁿ but rather as $\rho^n(\theta)$. However still under control if $\rho(\theta) \ll 1$.
- Axion-Saxion Mixings: saxion-dependent axion kinetic term ⇒

$$V = [Z^{-1}(s)]^{ab} \rho_a(\theta) \rho_b(\theta)$$

• as θ traverses along the inflationary trajectory, s changes, thus the backreaction of s modifies the field space metric for axions.

Symmetry and Constraints of F-term Axion Monodromy

 Symmetry-based protection mechanism: higher order corrections appear as

 $\rho^n(\theta)$ rather than θ^n

• **Tunneling between branches:** not strong constraints though $\Delta \phi$ cannot be parametrically larger than M_{P_2} [Brown, Cottrell, GS, Soler, '16]

Swampland Distance Conjecture

- Can SDC, a more general statement about field ranges, limit the field range of axion monodromy?
- Naively, the argument we used earlier for KK reduction:

$$\mathcal{L}_{eff} = \int \left(\frac{dR}{R}\right)^2 + \dots$$

does not apply to **axions** because of their **shift symmetries**.

• Consider the **axio-dilaton**:

$$K = -\log(\Phi + \overline{\Phi}) \quad \text{where} \quad \Phi = s + i\theta$$
$$\rightarrow \mathscr{L}_{kin} = \frac{1}{4s^2} (\partial s)^2 + \frac{1}{4s^2} (\partial \theta)^2 + \dots$$

Backreaction and SDC

[Palti, Klawer, '16]

• The saxions are displaced as the axions traverses in its field space:

$$V = [Z^{-1}(s)]^{ab} \rho_a(\theta) \rho_b(\theta)$$

• This leads to an axion-dependent kinetic term:

$$\mathscr{L}_{kin} \rightarrow \frac{1}{4s^2(\theta)} (\partial \theta)^2 + \dots$$

• One way to estimate this backreaction is to consider the trajectory traced by the minimum of V with respect to s as θ varies:

$$\langle s \rangle = s_0 + \delta s(\theta) \approx s_0 + \lambda \theta \to \lambda \theta$$

• If we evaluate the field range using:

$$\Delta \theta = \int \sqrt{G_{\theta \theta}(s)} d\theta \sim \int \frac{d\theta}{s_0 + \lambda \theta} \sim \frac{1}{\lambda} \log \theta$$

Backreaction and SDC

• The critical field range is set by λ , let θ_c be the value of θ when:

$$s_0 = \delta s(\theta_c) = \lambda \theta_c \quad \rightarrow \quad \Delta \theta_c \sim \frac{1}{\lambda}$$

 In string examples, one finds that λ is of order 1 if the saxion and the axion have about the same mass, but in general:

$$\lambda \sim \frac{m_{\theta}}{m_s}$$

- The critical field range is enhanced. For large field inflation, only a mild hierarchy λ~10⁻¹ is sufficient.
- In fact, we need to maintain this hierarchy for single field inflation:

$$m_{\theta} < H < m_s$$

Dynamical Field Range

Questions:

- Does minimizing V (s, θ) at each θ and substituting s(θ) into $\Delta \theta$ give a proper estimate of the **dynamical field range**?
- If there is no (or weak) mass hierarchy, is $\Delta\theta$ limited to O(1) M_P?
- We found the answers to both questions are no! [Landete, GS, '18]
- In evaluating the field range:

$$\Delta \theta = \int \sqrt{G_{\theta\theta}} d\theta \quad \text{instead of} \quad \int \sqrt{G_{ab}} \dot{\phi}^a \dot{\phi}^b dt$$

this assumed the kinetic terms of the other fields can be ignored. This assumption, by default, implies that the trajectory is a **geodesic** in field space.

Dynamical Field Range

- Minimizing V w.r.t s does not give a trajectory that solves the eom!
- It is known in the study of inflation with multiple fields that the light field trajectory does not always follow a geodesic.

• When is the trajectory a geodesic? i.e., $D_t T^a = 0$

Mass Hierarchy and Dynamical Field Range

- If there is a mass hierarchy, the kinetic terms of the heavy fields can be ignored, but the critical field range is **enhanced by mass ratio.**
- If there is no mass hierarchy, the dynamical field range deviates significantly from the earlier RSDC estimate:

[Landete, GS, '18]

Axion Mondromy and Swampland Constraints

- Upshot: WGC & SDC do not exclude axion monodromy inflation.
- There may be other quantum gravity constraints of these models, but before we know what they are, we should keep an open mind.
- Recently, there has been further evidence for the SDC from studying the complex structure moduli space of Type IIB compactifications:

[Grimm, Palti, Valenzuela, '18]

Massless BPS states (wrapped D3-branes) arise at the singularities

• Infinite geodesic distance occur only if approaching a singularity.

Quantum Corrections and Emergence

- While this confirms the asymptotic behavior suggested by the SDC, the interesting question is the behavior at large but large distances.
- Quantum corrections to the field space metric from integrating out the infinite tower:

$$\delta g_{\phi\phi} \sim \frac{1}{\phi^2}$$

- This resembles the corrections from classical backreaction, though the origin is different (quantum vs classical).
- At a general point in the moduli space, both corrections should be included.
- Regardless of which contribution dominates, we still need to address similar issues in finding the dynamical field range.

WGC for the QCD Axion

WGC for the QCD Axion

The QCD instanton action

 $S_{\rm QCD} = 4 \ln M_* / \Lambda_{\rm QCD} \approx 160$, where $M_* = UV$ scale, e.g., M_{GUT}

- The WGC implies a bound: $f_{\rm QCD} \lesssim 10^{16} \ {\rm GeV}$
- While weaker than the commonly quoted **cosmological bound**:

 $f_{\rm QCD} < 10^{12} {
m GeV}$

scenarios that allow larger $f_{\rm QCD}$ have been proposed, e.g. [Wilczek, '04]

- QCD axion with decay constants above the GUT scale can be tested:
 - laboratory searches e.g., ABRACADABRA
 - **gravitational wave observatory** e.g., LIGO (via black hole superradiance, [Arvanitaki, Dimopoulos, Dubovsky, Kaloper, March-Russell, '09])

Summary of Lecture 3

Summary of Lecture 3

- Inflation models with detectable GWs are sensitive to UV physics.
- The WGC and the SDC can constrain the inflation field range, and hence the amplitude of gravitational waves generated by inflation.
- The WGC for the 0-forms is more subtle, but can be argued using duality or dimensional reduction.
- The WGC rules out simple models of axion inflation, though there are loopholes involving spectator instantons.
- Axion monodromy is not ruled out by the WGC or SDC
- The WGC when applied to the QCD axion implies $f_{\rm QCD} \lesssim 10^{16} \text{ GeV}$ which can be tested by lab. axion searches or GW detectors.