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Swampland, Duality, & de Sitter Entropy



de Sitter vacua in String Theory
• Observation of accelerating universe poses the dark energy puzzle. 

Simplest explanation is that we are living in a metastable dS vacuum. 

• Despite heroic efforts (e.g., [Silverstein]; [KKLT]; [LVS]), explicit, controlled 
de Sitter vacua seem difficult to construct.  

• Attempts to find simpler de Sitter vacua run into potentials with too steep a 
gradient or tachyonic directions 
[Hertzberg, Kachru, Taylor, Tegmark];[Silverstein];[Haque, GS, Underwood, Van 
Riet];[Flauger, Paban, Robbins, Wrase];[Caviezel, Koerber, Kors, Lust, Wrase, 
Zagermann];[Danielsson, Haque, GS, Van Riet];[Danielsson, Haque, Koerber, GS, 
Van Riet, Wrase]; [GS, Sumitomo];[Danielsson, Haque, Van Riet, Wrase]; …

• This state of affairs motivated [Obied, Ooguri, Spodyneiko, Vafa] to 
conjecture: 

• Could there be some general physics underlying this behavior?
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Among Swampland conditions, the distance conjecture characterizes the geometry of scalar fields
and the de Sitter conjecture constrains allowed potentials on it. We point out a connection between
the distance conjecture and a refined version of the de Sitter conjecture in any parametrically
controlled regime of string theory by using Bousso’s covariant entropy bound. The refined version
turns out to evade all counter-examples at scalar potential maxima that have been raised. We
comment on the relation of our result to the Dine-Seiberg problem.
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INTRODUCTION

Recently, motivated by a number of string theoretical
constructions with controlled approximations, it was pro-
posed in [1] that the potential for scalar fields in string
theory satisfies the universal bound,

|∇ V | ≥ c

Mp
· V , (1)

for some constant c > 0 of order 1, where Mp is the
Planck mass.1 Cosmological implications of this conjec-
ture were studied in [2]. The bound is called the de Sitter
conjecture as it excludes (meta-)stable de Sitter vacua in
string theory. There have been a number of follow up
papers [3–48].2 The main aim of this paper is to connect
this conjecture to another better established swampland
condition, which is known as the distance conjecture [52].
We will show that, in any weak coupling regime of string
theory,3 a refined version of this conjecture follows from
the distance conjecture, combined with Bousso’s covari-
ant entropy bound [53] applied to an accelerating uni-
verse.

The refined version of the de Sitter conjecture which
we propose in this paper is stated as follows:

Refined de Sitter Conjecture. A potential V (φ) for
scalar fields in a low energy effective theory of any con-

1 The power of Mp in the conjecture depends on the dimensions.
In this paper, for brevity, we write the formulas for the specific
case of 4 dimensions.

2 For alternative perspectives on cosmology and microscopic as-
pects of de Sitter see [49], [50] and [51].

3 In this paper, weak coupling refers to any limit in any direction
in the space of low energy scalar fields where a parametrically
controlled approximation to a physical observable is possible,
while the weak string coupling refers to the specific limit of the
dilaton field.

sistent quantum gravity must satisfy either,

|∇V | ≥ c

Mp
· V , (2)

or

min (∇i∇jV ) ≤ − c′

M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
conditions. However, we have been informed by the authors of
the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
tials.

c ∼ 𝒪(1) > 0



Swampland Distance Conjecture
• Approaching any infinite distance locus in moduli space, there is an infinite 

tower of states which becomes exponentially light: 

• Simple example: compactification on a circle 

• This conjecture has passed some non-trivial tests (at least for theories with 8 
supercharges) [Cecotti,‘15];[Grimm,Palti, Valenzuela,‘18]; [Lee, Lerche, Weigand,‘18]

mtower ∼ e−aϕ for ϕ → ∞ [Ooguri, Vafa, ’06]

Trivial prototypical example: compactification on a circle

! → ∞−∞ ← !

&' ∼ )* &++ ∼ ),*

Highly non-trivial evidence this is general in String Theory (for 8 supercharges)

[Ooguri, Vafa ‘06; … ; 
Cecotti ‘15; Grimm, EP, Valenzuela ‘18; Lee, Lerche, Weigand ’18; Grimm, Li, EP ‘18]

Model-independent general results – highly mathematical 



Swampland Distance Conjecture
• While there are open questions [Landete, GS];[Hebecker, Henkenjohann, 

Witkowski] regarding what is Δ𝜙 at the onset of this exponential behavior: 

and the notion of distance in the presence of a potential V(𝜙), such 
subtleties do not affect the proposed universal behavior at 𝜙→∞. 

• The infinite distance regime is where we will use this conjecture for our 
entropy argument.

mtower ∼ e−aϕ for ϕ → ∞



Swampland Distance Conjecture & Duality
• The underlying motivation for this conjecture is duality: at large 

distance, there is a dual description in terms of the light states.

Couplings in string theory are scalar fields

Weak Coupling g → 0 ⇔ Large distance ϕ → ∞



Swampland Distance Conjecture & Duality
• We interpret the Swampland Distance Conjecture as: 

• We argued how this tower of states may provide a dual description of 
the potential V(𝜙)>0 and the associated entropy.

Any weakly coupled region in string theory 
should have a dual description in terms of 
the tower of light states.



de Sitter Entropy
• The Gibbons-Hawking entropy of de Sitter space: 

• This entropy has been interpreted in terms of: 

in an observer’s causal domain [Banks];[Witten].

• Instead of Λ, we have V(𝜙)>0. If V(𝜙) has a local minimum, we have a 
long-lived metastable de Sitter vacuum, and SGH is meaningful.  

• Even if V has a non-zero gradient, as long as ∣∇V∣/V < √2, there is an 
apparent horizon with

3

HORIZON AND BOUSSO BOUND

The Gibbons-Hawking entropy SGH [69] of a de Sitter
space is proportional to the area of its event horizon,

SGH = R2 = 1/Λ , (5)

where R is the curvature radius and Λ is the cosmologi-
cal constant, neglecting numerical factors of O(1). This
quantity has been interpreted in term of the dimension
of the Hilbert space H in an observer’s causal domain
[87, 88],

dim H = e1/Λ . (6)

In the limit of Λ → 0, the dimension becomes infinite as
expected for the Minkowski space.
Suppose there is a positive potential V (φ) with non-

trivial dependence on φ. If V has a local minimum and
the resulting meta-stable de Sitter space is long lived, its
entropy is meaningful. Even if the potential has non-
zero gradient, as far as |∇V |/V is less than

√
2, we have

a universe with accelerated expansion with an apparent
horizon at R = 1/

√
V . Since the apparent horizon is al-

ways inside of a cosmic event horizon if the latter exists,
lightsheets emanating from it will close at caustics, en-
abling us to use the Bousso bound [53] for the entropy
in the portion of the Cauchy surface enclosed by the ap-
parent horizon.
This semi-classical picture is valid provided quantum

fluctuations of φ are negligible. If the Hessian ∇i∇jV
has a negative eigenvalue below −c′/R2, with c′ of O(1),
zero-point fluctuations at the horizon crossing becomes
tachyonic and the semi-classical picture breaks down.
We conclude that, if V is positive and satisfies,

|∇V | ≤
√
2 · V and min(∇i∇jV ) ≥ −c′V , (7)

there is an accelerating universe, and the entropy inside
of its apparent horizon is bounded by R2. Note that,
though the second inequality is required for the stability
of zero point fluctuations at the horizon crossing, it also
ensures that the first inequality holds within one Hubble
time.

ENTROPY AND TOWERS OF PARTICLES

In a weak coupling regime, the distance conjecture
claims that the number of effective degrees of freedom in-
creases by having towers of light particles with exponen-
tially small masses. This should increase the entropy and
influence how the potential behaves in any weak coupling
limit. To quantify this, let us parametrize the number of
particle species below a certain cutoff of the effective the-
ory as,

N(φ) ∼ n(φ)ebφ . (8)

Here n (φ) is effective the number of towers of states that
are becoming light, which we expect to increase mono-
tonically dn/dφ ≥ 0 toward the weak coupling limit. The
exponent b depends on mass gaps and other features of
the towers and is in general different from a in (4).
Let R denote the radius of the apparent horizon, as in

the last section. We expect that the entropy Stower(N,R)
coming from the towers of particles increases as the num-
ber N of the species increases. For large N and R, we
parametrize the N and R dependence of the entropy as,

Stower(N,R) ∼ NγRδ , (9)

with some positive exponents γ and δ. When the universe
is accelerating and an apparent horizon forms, the Bousso
bound applied to Stower(N,R) gives,

NγRδ ≤ R2 . (10)

As we take the weak coupling limit, N increases exponen-
tially as (8), and R should also change accordingly so that
the bound is not violated.7 Since light degrees of freedom
dominate the Hilbert space in the weak coupling regime,
we expect them to saturate the Bousso bound leading to,

V (φ) ∼ R−2 ∼ N−
2γ
2−δ . (11)

The exponential behavior (8) of the number N of species
combined with the inequality dn/dφ ≥ 0 implies the first
condition (2) of the refined de Sitter conjecture with,8

c =
2bγ

2− δ
. (12)

As we discussed in the previous section, the second
condition (3) is prerequisite for the apparent horizon to
exist. We note that the condition also evades the pro-
posed counter-examples to the original de Sitter conjec-
ture [10, 17, 23, 26, 45] since these are all based on max-
ima of potentials and can be checked to satisfy (3). More
generally, we note that the maxima of any axion-type
potentials, where V ∼ Λ4cos(φ/f), satisfy,

min (∇i∇jV )

V
! − 1

f2
, (13)

where f is the axion decay constant. The weak gravity
conjecture [85] states that f ! 1 for any controlled axion
potential, in particular also for the QCD axion, and so

7 The Bousso bound generalizes the Bekenstein bound [89], which
sets an upper bound on the number of allowed states in a box
with a given energy [90, 91]. The Bekenstein bound is satisfied
with appropriate definitions of the energy and the entropy, and
becomes saturated in the large N limit [92–97]. Similarly, we
expect that the Bousso bound be saturated in the large N limit.

8 Note that δ < 2 since we assume the light tower of states domi-
nates low energy states in the Hilbert space.
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of the Hilbert space H in an observer’s causal domain
[87, 88],
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Bousso Bound
• Since the apparent horizon is always inside of a cosmic event horizon (if 

the latter exists), lightsheets emanating from it will close at caustics:The apparent horizon has area !" as utilized in the computation 

An entropy can be associated this horizon using the Covariant Entropy Bound
[Fischler, Susskind ’98; Bousso ‘99]  Light sheets 

sweep out a 
volume #

Apparent HorizonS(#) ≤ !"

[Fischler, Susskind, ’98];[Bousso, ’99]



de Sitter Entropy
• This semi-classical picture is valid provided quantum fluctuations of ϕ 

are negligible. 

• If the Hessian ∇i ∇j V has a negative eigenvalue below -c’/R2 , with c’~ O 
(1) , the zero point fluctuations at horizon crossing becomes tachyonic  
⇒ semi-classical picture breaks down. 

• If V is positive and satisfies: 

there is an accelerating universe, and the entropy inside of its apparent 
horizon is bounded by R2. 

• The second inequality also ensures that the first inequality holds for at 
least one Hubble time.

3

HORIZON AND BOUSSO BOUND

The Gibbons-Hawking entropy SGH [69] of a de Sitter
space is proportional to the area of its event horizon,

SGH = R2 = 1/Λ , (5)

where R is the curvature radius and Λ is the cosmologi-
cal constant, neglecting numerical factors of O(1). This
quantity has been interpreted in term of the dimension
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2, we have

a universe with accelerated expansion with an apparent
horizon at R = 1/

√
V . Since the apparent horizon is al-

ways inside of a cosmic event horizon if the latter exists,
lightsheets emanating from it will close at caustics, en-
abling us to use the Bousso bound [53] for the entropy
in the portion of the Cauchy surface enclosed by the ap-
parent horizon.
This semi-classical picture is valid provided quantum

fluctuations of φ are negligible. If the Hessian ∇i∇jV
has a negative eigenvalue below −c′/R2, with c′ of O(1),
zero-point fluctuations at the horizon crossing becomes
tachyonic and the semi-classical picture breaks down.
We conclude that, if V is positive and satisfies,

|∇V | ≤
√
2 · V and min(∇i∇jV ) ≥ −c′V , (7)

there is an accelerating universe, and the entropy inside
of its apparent horizon is bounded by R2. Note that,
though the second inequality is required for the stability
of zero point fluctuations at the horizon crossing, it also
ensures that the first inequality holds within one Hubble
time.

ENTROPY AND TOWERS OF PARTICLES

In a weak coupling regime, the distance conjecture
claims that the number of effective degrees of freedom in-
creases by having towers of light particles with exponen-
tially small masses. This should increase the entropy and
influence how the potential behaves in any weak coupling
limit. To quantify this, let us parametrize the number of
particle species below a certain cutoff of the effective the-
ory as,

N(φ) ∼ n(φ)ebφ . (8)

Here n (φ) is effective the number of towers of states that
are becoming light, which we expect to increase mono-
tonically dn/dφ ≥ 0 toward the weak coupling limit. The
exponent b depends on mass gaps and other features of
the towers and is in general different from a in (4).
Let R denote the radius of the apparent horizon, as in

the last section. We expect that the entropy Stower(N,R)
coming from the towers of particles increases as the num-
ber N of the species increases. For large N and R, we
parametrize the N and R dependence of the entropy as,

Stower(N,R) ∼ NγRδ , (9)

with some positive exponents γ and δ. When the universe
is accelerating and an apparent horizon forms, the Bousso
bound applied to Stower(N,R) gives,

NγRδ ≤ R2 . (10)

As we take the weak coupling limit, N increases exponen-
tially as (8), and R should also change accordingly so that
the bound is not violated.7 Since light degrees of freedom
dominate the Hilbert space in the weak coupling regime,
we expect them to saturate the Bousso bound leading to,

V (φ) ∼ R−2 ∼ N−
2γ
2−δ . (11)

The exponential behavior (8) of the number N of species
combined with the inequality dn/dφ ≥ 0 implies the first
condition (2) of the refined de Sitter conjecture with,8

c =
2bγ

2− δ
. (12)

As we discussed in the previous section, the second
condition (3) is prerequisite for the apparent horizon to
exist. We note that the condition also evades the pro-
posed counter-examples to the original de Sitter conjec-
ture [10, 17, 23, 26, 45] since these are all based on max-
ima of potentials and can be checked to satisfy (3). More
generally, we note that the maxima of any axion-type
potentials, where V ∼ Λ4cos(φ/f), satisfy,

min (∇i∇jV )

V
! − 1

f2
, (13)

where f is the axion decay constant. The weak gravity
conjecture [85] states that f ! 1 for any controlled axion
potential, in particular also for the QCD axion, and so

7 The Bousso bound generalizes the Bekenstein bound [89], which
sets an upper bound on the number of allowed states in a box
with a given energy [90, 91]. The Bekenstein bound is satisfied
with appropriate definitions of the energy and the entropy, and
becomes saturated in the large N limit [92–97]. Similarly, we
expect that the Bousso bound be saturated in the large N limit.

8 Note that δ < 2 since we assume the light tower of states domi-
nates low energy states in the Hilbert space.



Tower of States
• In the weak coupling regime, we have towers of light states with 

exponentially small masses. 
• This should increase the entropy and influence how V(𝜙) behaves. 

• We expect n(𝜙) to increase toward the weak coupling limit.

On	the	other	hand,	the	distance	conjecture	says	we	get	many	light	states

F is	the	number	of	fields	below	some	scale	Λ0dd which	we	will	define

Mass

0
,
,5 = 0

9:

Fe

F ∼ fgh	[j	6] ;, j ∼ '(1)

F
Λ0dd

Fe ∼ fgh	[;	6]

3

HORIZON AND BOUSSO BOUND

The Gibbons-Hawking entropy SGH [69] of a de Sitter
space is proportional to the area of its event horizon,

SGH = R2 = 1/Λ , (5)

where R is the curvature radius and Λ is the cosmologi-
cal constant, neglecting numerical factors of O(1). This
quantity has been interpreted in term of the dimension
of the Hilbert space H in an observer’s causal domain
[87, 88],

dim H = e1/Λ . (6)

In the limit of Λ → 0, the dimension becomes infinite as
expected for the Minkowski space.
Suppose there is a positive potential V (φ) with non-

trivial dependence on φ. If V has a local minimum and
the resulting meta-stable de Sitter space is long lived, its
entropy is meaningful. Even if the potential has non-
zero gradient, as far as |∇V |/V is less than

√
2, we have

a universe with accelerated expansion with an apparent
horizon at R = 1/

√
V . Since the apparent horizon is al-

ways inside of a cosmic event horizon if the latter exists,
lightsheets emanating from it will close at caustics, en-
abling us to use the Bousso bound [53] for the entropy
in the portion of the Cauchy surface enclosed by the ap-
parent horizon.
This semi-classical picture is valid provided quantum

fluctuations of φ are negligible. If the Hessian ∇i∇jV
has a negative eigenvalue below −c′/R2, with c′ of O(1),
zero-point fluctuations at the horizon crossing becomes
tachyonic and the semi-classical picture breaks down.
We conclude that, if V is positive and satisfies,

|∇V | ≤
√
2 · V and min(∇i∇jV ) ≥ −c′V , (7)

there is an accelerating universe, and the entropy inside
of its apparent horizon is bounded by R2. Note that,
though the second inequality is required for the stability
of zero point fluctuations at the horizon crossing, it also
ensures that the first inequality holds within one Hubble
time.

ENTROPY AND TOWERS OF PARTICLES

In a weak coupling regime, the distance conjecture
claims that the number of effective degrees of freedom in-
creases by having towers of light particles with exponen-
tially small masses. This should increase the entropy and
influence how the potential behaves in any weak coupling
limit. To quantify this, let us parametrize the number of
particle species below a certain cutoff of the effective the-
ory as,

N(φ) ∼ n(φ)ebφ . (8)

Here n (φ) is effective the number of towers of states that
are becoming light, which we expect to increase mono-
tonically dn/dφ ≥ 0 toward the weak coupling limit. The
exponent b depends on mass gaps and other features of
the towers and is in general different from a in (4).
Let R denote the radius of the apparent horizon, as in

the last section. We expect that the entropy Stower(N,R)
coming from the towers of particles increases as the num-
ber N of the species increases. For large N and R, we
parametrize the N and R dependence of the entropy as,

Stower(N,R) ∼ NγRδ , (9)

with some positive exponents γ and δ. When the universe
is accelerating and an apparent horizon forms, the Bousso
bound applied to Stower(N,R) gives,

NγRδ ≤ R2 . (10)

As we take the weak coupling limit, N increases exponen-
tially as (8), and R should also change accordingly so that
the bound is not violated.7 Since light degrees of freedom
dominate the Hilbert space in the weak coupling regime,
we expect them to saturate the Bousso bound leading to,

V (φ) ∼ R−2 ∼ N−
2γ
2−δ . (11)

The exponential behavior (8) of the number N of species
combined with the inequality dn/dφ ≥ 0 implies the first
condition (2) of the refined de Sitter conjecture with,8

c =
2bγ

2− δ
. (12)

As we discussed in the previous section, the second
condition (3) is prerequisite for the apparent horizon to
exist. We note that the condition also evades the pro-
posed counter-examples to the original de Sitter conjec-
ture [10, 17, 23, 26, 45] since these are all based on max-
ima of potentials and can be checked to satisfy (3). More
generally, we note that the maxima of any axion-type
potentials, where V ∼ Λ4cos(φ/f), satisfy,

min (∇i∇jV )

V
! − 1

f2
, (13)

where f is the axion decay constant. The weak gravity
conjecture [85] states that f ! 1 for any controlled axion
potential, in particular also for the QCD axion, and so

7 The Bousso bound generalizes the Bekenstein bound [89], which
sets an upper bound on the number of allowed states in a box
with a given energy [90, 91]. The Bekenstein bound is satisfied
with appropriate definitions of the energy and the entropy, and
becomes saturated in the large N limit [92–97]. Similarly, we
expect that the Bousso bound be saturated in the large N limit.

8 Note that δ < 2 since we assume the light tower of states domi-
nates low energy states in the Hilbert space.

effective # of towers b ≠ a 
in general



Entropy and Tower of States
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space is proportional to the area of its event horizon,

SGH = R2 = 1/Λ , (5)

where R is the curvature radius and Λ is the cosmologi-
cal constant, neglecting numerical factors of O(1). This
quantity has been interpreted in term of the dimension
of the Hilbert space H in an observer’s causal domain
[87, 88],

dim H = e1/Λ . (6)

In the limit of Λ → 0, the dimension becomes infinite as
expected for the Minkowski space.
Suppose there is a positive potential V (φ) with non-

trivial dependence on φ. If V has a local minimum and
the resulting meta-stable de Sitter space is long lived, its
entropy is meaningful. Even if the potential has non-
zero gradient, as far as |∇V |/V is less than

√
2, we have

a universe with accelerated expansion with an apparent
horizon at R = 1/

√
V . Since the apparent horizon is al-

ways inside of a cosmic event horizon if the latter exists,
lightsheets emanating from it will close at caustics, en-
abling us to use the Bousso bound [53] for the entropy
in the portion of the Cauchy surface enclosed by the ap-
parent horizon.
This semi-classical picture is valid provided quantum

fluctuations of φ are negligible. If the Hessian ∇i∇jV
has a negative eigenvalue below −c′/R2, with c′ of O(1),
zero-point fluctuations at the horizon crossing becomes
tachyonic and the semi-classical picture breaks down.
We conclude that, if V is positive and satisfies,

|∇V | ≤
√
2 · V and min(∇i∇jV ) ≥ −c′V , (7)

there is an accelerating universe, and the entropy inside
of its apparent horizon is bounded by R2. Note that,
though the second inequality is required for the stability
of zero point fluctuations at the horizon crossing, it also
ensures that the first inequality holds within one Hubble
time.

ENTROPY AND TOWERS OF PARTICLES
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claims that the number of effective degrees of freedom in-
creases by having towers of light particles with exponen-
tially small masses. This should increase the entropy and
influence how the potential behaves in any weak coupling
limit. To quantify this, let us parametrize the number of
particle species below a certain cutoff of the effective the-
ory as,

N(φ) ∼ n(φ)ebφ . (8)

Here n (φ) is effective the number of towers of states that
are becoming light, which we expect to increase mono-
tonically dn/dφ ≥ 0 toward the weak coupling limit. The
exponent b depends on mass gaps and other features of
the towers and is in general different from a in (4).
Let R denote the radius of the apparent horizon, as in
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coming from the towers of particles increases as the num-
ber N of the species increases. For large N and R, we
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with some positive exponents γ and δ. When the universe
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we expect them to saturate the Bousso bound leading to,

V (φ) ∼ R−2 ∼ N−
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2−δ . (11)

The exponential behavior (8) of the number N of species
combined with the inequality dn/dφ ≥ 0 implies the first
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potential, in particular also for the QCD axion, and so
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INTRODUCTION

Recently, motivated by a number of string theoretical
constructions with controlled approximations, it was pro-
posed in [1] that the potential for scalar fields in string
theory satisfies the universal bound,

|∇ V | ≥ c

Mp
· V , (1)

for some constant c > 0 of order 1, where Mp is the
Planck mass.1 Cosmological implications of this conjec-
ture were studied in [2]. The bound is called the de Sitter
conjecture as it excludes (meta-)stable de Sitter vacua in
string theory. There have been a number of follow up
papers [3–48].2 The main aim of this paper is to connect
this conjecture to another better established swampland
condition, which is known as the distance conjecture [52].
We will show that, in any weak coupling regime of string
theory,3 a refined version of this conjecture follows from
the distance conjecture, combined with Bousso’s covari-
ant entropy bound [53] applied to an accelerating uni-
verse.

The refined version of the de Sitter conjecture which
we propose in this paper is stated as follows:

Refined de Sitter Conjecture. A potential V (φ) for
scalar fields in a low energy effective theory of any con-

1 The power of Mp in the conjecture depends on the dimensions.
In this paper, for brevity, we write the formulas for the specific
case of 4 dimensions.

2 For alternative perspectives on cosmology and microscopic as-
pects of de Sitter see [49], [50] and [51].

3 In this paper, weak coupling refers to any limit in any direction
in the space of low energy scalar fields where a parametrically
controlled approximation to a physical observable is possible,
while the weak string coupling refers to the specific limit of the
dilaton field.

sistent quantum gravity must satisfy either,

|∇V | ≥ c

Mp
· V , (2)

or

min (∇i∇jV ) ≤ − c′

M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
conditions. However, we have been informed by the authors of
the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
tials.

3

HORIZON AND BOUSSO BOUND

The Gibbons-Hawking entropy SGH [69] of a de Sitter
space is proportional to the area of its event horizon,

SGH = R2 = 1/Λ , (5)

where R is the curvature radius and Λ is the cosmologi-
cal constant, neglecting numerical factors of O(1). This
quantity has been interpreted in term of the dimension
of the Hilbert space H in an observer’s causal domain
[87, 88],

dim H = e1/Λ . (6)

In the limit of Λ → 0, the dimension becomes infinite as
expected for the Minkowski space.
Suppose there is a positive potential V (φ) with non-

trivial dependence on φ. If V has a local minimum and
the resulting meta-stable de Sitter space is long lived, its
entropy is meaningful. Even if the potential has non-
zero gradient, as far as |∇V |/V is less than

√
2, we have

a universe with accelerated expansion with an apparent
horizon at R = 1/

√
V . Since the apparent horizon is al-

ways inside of a cosmic event horizon if the latter exists,
lightsheets emanating from it will close at caustics, en-
abling us to use the Bousso bound [53] for the entropy
in the portion of the Cauchy surface enclosed by the ap-
parent horizon.
This semi-classical picture is valid provided quantum

fluctuations of φ are negligible. If the Hessian ∇i∇jV
has a negative eigenvalue below −c′/R2, with c′ of O(1),
zero-point fluctuations at the horizon crossing becomes
tachyonic and the semi-classical picture breaks down.
We conclude that, if V is positive and satisfies,

|∇V | ≤
√
2 · V and min(∇i∇jV ) ≥ −c′V , (7)

there is an accelerating universe, and the entropy inside
of its apparent horizon is bounded by R2. Note that,
though the second inequality is required for the stability
of zero point fluctuations at the horizon crossing, it also
ensures that the first inequality holds within one Hubble
time.

ENTROPY AND TOWERS OF PARTICLES

In a weak coupling regime, the distance conjecture
claims that the number of effective degrees of freedom in-
creases by having towers of light particles with exponen-
tially small masses. This should increase the entropy and
influence how the potential behaves in any weak coupling
limit. To quantify this, let us parametrize the number of
particle species below a certain cutoff of the effective the-
ory as,

N(φ) ∼ n(φ)ebφ . (8)

Here n (φ) is effective the number of towers of states that
are becoming light, which we expect to increase mono-
tonically dn/dφ ≥ 0 toward the weak coupling limit. The
exponent b depends on mass gaps and other features of
the towers and is in general different from a in (4).
Let R denote the radius of the apparent horizon, as in

the last section. We expect that the entropy Stower(N,R)
coming from the towers of particles increases as the num-
ber N of the species increases. For large N and R, we
parametrize the N and R dependence of the entropy as,

Stower(N,R) ∼ NγRδ , (9)

with some positive exponents γ and δ. When the universe
is accelerating and an apparent horizon forms, the Bousso
bound applied to Stower(N,R) gives,

NγRδ ≤ R2 . (10)

As we take the weak coupling limit, N increases exponen-
tially as (8), and R should also change accordingly so that
the bound is not violated.7 Since light degrees of freedom
dominate the Hilbert space in the weak coupling regime,
we expect them to saturate the Bousso bound leading to,

V (φ) ∼ R−2 ∼ N−
2γ
2−δ . (11)

The exponential behavior (8) of the number N of species
combined with the inequality dn/dφ ≥ 0 implies the first
condition (2) of the refined de Sitter conjecture with,8

c =
2bγ

2− δ
. (12)

As we discussed in the previous section, the second
condition (3) is prerequisite for the apparent horizon to
exist. We note that the condition also evades the pro-
posed counter-examples to the original de Sitter conjec-
ture [10, 17, 23, 26, 45] since these are all based on max-
ima of potentials and can be checked to satisfy (3). More
generally, we note that the maxima of any axion-type
potentials, where V ∼ Λ4cos(φ/f), satisfy,

min (∇i∇jV )

V
! − 1

f2
, (13)

where f is the axion decay constant. The weak gravity
conjecture [85] states that f ! 1 for any controlled axion
potential, in particular also for the QCD axion, and so

7 The Bousso bound generalizes the Bekenstein bound [89], which
sets an upper bound on the number of allowed states in a box
with a given energy [90, 91]. The Bekenstein bound is satisfied
with appropriate definitions of the energy and the entropy, and
becomes saturated in the large N limit [92–97]. Similarly, we
expect that the Bousso bound be saturated in the large N limit.

8 Note that δ < 2 since we assume the light tower of states domi-
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• The gradient condition follows from the exponential behavior of N(𝜙) 

• A prerequisite for the notion of entropy is: 

• Our analysis naturally led to the Refined de Sitter Conjecture:
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INTRODUCTION

Recently, motivated by a number of string theoretical
constructions with controlled approximations, it was pro-
posed in [1] that the potential for scalar fields in string
theory satisfies the universal bound,

|∇ V | ≥ c

Mp
· V , (1)

for some constant c > 0 of order 1, where Mp is the
Planck mass.1 Cosmological implications of this conjec-
ture were studied in [2]. The bound is called the de Sitter
conjecture as it excludes (meta-)stable de Sitter vacua in
string theory. There have been a number of follow up
papers [3–48].2 The main aim of this paper is to connect
this conjecture to another better established swampland
condition, which is known as the distance conjecture [52].
We will show that, in any weak coupling regime of string
theory,3 a refined version of this conjecture follows from
the distance conjecture, combined with Bousso’s covari-
ant entropy bound [53] applied to an accelerating uni-
verse.

The refined version of the de Sitter conjecture which
we propose in this paper is stated as follows:

Refined de Sitter Conjecture. A potential V (φ) for
scalar fields in a low energy effective theory of any con-

1 The power of Mp in the conjecture depends on the dimensions.
In this paper, for brevity, we write the formulas for the specific
case of 4 dimensions.

2 For alternative perspectives on cosmology and microscopic as-
pects of de Sitter see [49], [50] and [51].

3 In this paper, weak coupling refers to any limit in any direction
in the space of low energy scalar fields where a parametrically
controlled approximation to a physical observable is possible,
while the weak string coupling refers to the specific limit of the
dilaton field.

sistent quantum gravity must satisfy either,

|∇V | ≥ c

Mp
· V , (2)

or

min (∇i∇jV ) ≤ − c′

M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
conditions. However, we have been informed by the authors of
the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
tials.
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· V , (2)

or

min (∇i∇jV ) ≤ − c′

M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
conditions. However, we have been informed by the authors of
the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
tials.

or [Ooguri, Palti, GS, Vafa]



The Refined de Sitter Conjecture
• While not our motivation, our refined de Sitter conjecture can evade 

some counterexamples [Denef, Hebecker, Wrase];[Conlon];[Murayama, 
Yamazaki, Yanagida]; [Choi, Chway,Shin];[Hamaguchi, Ibe, Moroi] to the 
original de Sitter conjecture. 

• The top of the Higgs potential: 

• The top of the potential for the pion or QCD axion 

The WGC for axions gives 

|∇V | ∼
10−55

MPl
V min(∇i ∇jV ) ∼ −

1035

M2
Pl

V

min(∇i ∇jV ) ∼ −
1
f 2

V

f ≤ MPl



The Refined de Sitter Conjecture
[Ooguri, Palti, GS, Vafa]

Recall our assumptions: 

• The Swampland Distance Conjecture holds for potentials 

• In a weakly coupled regime where the tower is a dual description. 

• In a quasi de Sitter setting (accelerating expansion with horizon)
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or
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M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
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the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
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⇒



Entropy Counting
• While the de Sitter conjecture is insensitive to the microstate counting, 

the cosmology depends on γ and δ. 

• There is no known method to compute Stower(N,R) by enumerating all 
states in the Hilbert space of quantum gravity in a quasi-dS space. 

• There are (at least) three types of states: 

• QFT states localized within the bulk of de Sitter 
• Black holes 
• States localized on the horizon  

• We can count their subset when the low energy theory consists of N free 
particles, this can be regarded as a lower bound on Stower(N,R).



Entropy of Free Particles
• Consider a single free field with mass m in a box of size R, up to a 

maximum momentum kmax, the associated entropy and energy are: 

• The maximum energy associated to these modes is: 

• For such configuration to not collapse into a blackhole: 

• Though this cannot saturate the Bousso bound, it may be possible with 
large N species of particles.

4

condition (3) is satisfied.9 For non-axion scalar fields,
we also note that the η-problem [102] implies that any
maximum of an F -term based potential will generically
satisfy (3). A violation would require some fine-tuned
cancellations.

ENTROPY OF FREE PARTICLES

Though there is no known method to compute
Stower(N,R) by enumerating all states in the Hilbert
space of quantum gravity in an accelerating universe, we
can count their subset when the low energy theory con-
sists of N free particles. To justify neglecting gravita-
tional interactions between the particles, we require that
the system does not collapse into a black hole. We may
regard the resulting entropy as a lower bound on Stower.
Our counting of microstates essentially follows [103, 104],
which was used in the cosmological context in [105].
Let us start with counting the number of states of a

single free field with mass m in a box of size R, up to
a maximum momentum kmax. Since particle momenta
are quantized in the unit of 1/R, the entropy and energy
associated to the field are,

SN=1 ∼ (kmaxR)3 , EN=1 ∼ ω (kmaxR)3 , (14)

where ω2 = k2+m2. Let us assume for now that kmax ≫
m. In order for such a configuration not to collapse into
a black hole, we require that the Schwarzschild radius for
the energyEN=1 is less that the box size, namelyEN=1 !
R. Thus, the largest value kmax can take is kmax ∼ R−1/2

and correspondingly SN=1 ∼ R3/2. Though this could
never account for the Bousso bound, which scales as R2,
it may be possible with large N species of particles.
Indeed, it is a straightforward exercise of thermody-

namics to generalize the above to N species of particles.
To maximize the entropy, we can regard each species to
be in a thermal bath of temperature T , common to all
the species. The total entropy and energy for particles
with masses less than T are then,

SN ∼ NT 3R3 , EN ∼ NT 4R3 . (15)

Particles with masses grater than T do not contribute
significantly to the entropy and can be safely ignored.
Requiring that the system does not collapse to a black
hole, the maximum energy one can consider is at EN ∼ R
and therefore the entropy of the largest subspace we can
consider while ignoring gravitational effects is,

SN ∼ N1/4R3/2 . (16)

9 While the effective axion decay constant can be enhanced with
mechanisms such as alignment [98], and with the weak gravity
conjecture satisfied by additional spectator instantons [99–101],
these loopholes are not of concern for the QCD axion.

Note that this is N1/4 times the result (14) for a single
species, and γ = 1/4 and δ = 3/2 in the parametrization
of (9). In the large N limit, SN can saturate the Bousso
bound R2. Using (12), we find c = b. This, however,
requires an extremely large number of species, N ∼ R2,
with the minimum entropy assigned to each.
Since (16) is meant to be the lower bound on

Stower(N,R), the exponents in (9) should be bounded
as γ ≥ 1/4 and δ ≥ 3/2. Therefore,

2− δ

γ
≤ 2. (17)

Since (11) relates N ∼ R
2−δ
γ , the number N species

needed to saturate the Bousso bound should scale slower
than R2 in general.

COSMOLOGICAL IMPLICATIONS

While the de Sitter conjecture is not sensitive to the
particular O(1) values of δ and γ, the phenomenology is.
To give a brief overview of this dependence, we consider
a tower which is evenly spaced, so the mass scale of the
nth states is mn ∼ nm. For the cutoff scale ΛN , below
which there are N states contributing to the entropy, we
consider the range N−

1
2 < ΛN < 1. We therefore have

states with a mass scale in the range

R
3(δ−2)

2γ < m < R
δ−2
γ . (18)

If our universe is in a weakly coupled regime, it would
necessarily imply that the dark sector involves a tower
of light states (see [106] for similar scenarios). Since the
Hubble scale of our current universe is R ∼ 1060, taking
the free particle values of δ = 3

2
and γ = 1

4
would give

a phenomenologically unrealistic scenario. Thus, if the
lower bound is saturated, our current universe would be
in a strongly coupled regime. Taking different values, for
example δ = 7

4
and γ = 1, would give N ∼ 1015 and

MeV < m < TeV. There would be time dependence for
the mass of such a tower as the quintessence field evolves
(see in particular a recent study of this [107]). The strong
dependence of the cosmology and phenomenology on the
particular microstate counting scheme of the tower of
states leads to a close interaction between microscopic
physics and observations, and it would be interesting to
develop it further.

RELATION TO WEAK GRAVITY CONJECTURE

While the analysis in this paper has been focused on
the weakly coupled region, it is natural to speculate ex-
tension of the de Sitter conjecture to the entire parameter
space of string theory. In this respect, it is interesting to
point out a similarity between the de Sitter conjecture

EN=1 ∼ kmax (kmaxR)3

EN=1 < R

kmax < R− 1
2 , Stower < R

3
2 [Page’81];[Banks, ‘05]



Entropy of a Tower of Free Particles
• Consider N species of such particles. To maximize the entropy, we can 

regard them to be in a thermal bath of a common temperature T. 

• Not forming black holes implies: 

• SN can saturate the Bousso bound for an extremely large number of 
species, with the minimum entropy assigned to each: 

• The low temperature and entropy per species means at borderline of 
thermodynamics, but can explicitly check by counting microstates.

4

condition (3) is satisfied.9 For non-axion scalar fields,
we also note that the η-problem [102] implies that any
maximum of an F -term based potential will generically
satisfy (3). A violation would require some fine-tuned
cancellations.

ENTROPY OF FREE PARTICLES

Though there is no known method to compute
Stower(N,R) by enumerating all states in the Hilbert
space of quantum gravity in an accelerating universe, we
can count their subset when the low energy theory con-
sists of N free particles. To justify neglecting gravita-
tional interactions between the particles, we require that
the system does not collapse into a black hole. We may
regard the resulting entropy as a lower bound on Stower.
Our counting of microstates essentially follows [103, 104],
which was used in the cosmological context in [105].
Let us start with counting the number of states of a

single free field with mass m in a box of size R, up to
a maximum momentum kmax. Since particle momenta
are quantized in the unit of 1/R, the entropy and energy
associated to the field are,

SN=1 ∼ (kmaxR)3 , EN=1 ∼ ω (kmaxR)3 , (14)

where ω2 = k2+m2. Let us assume for now that kmax ≫
m. In order for such a configuration not to collapse into
a black hole, we require that the Schwarzschild radius for
the energyEN=1 is less that the box size, namelyEN=1 !
R. Thus, the largest value kmax can take is kmax ∼ R−1/2

and correspondingly SN=1 ∼ R3/2. Though this could
never account for the Bousso bound, which scales as R2,
it may be possible with large N species of particles.
Indeed, it is a straightforward exercise of thermody-

namics to generalize the above to N species of particles.
To maximize the entropy, we can regard each species to
be in a thermal bath of temperature T , common to all
the species. The total entropy and energy for particles
with masses less than T are then,

SN ∼ NT 3R3 , EN ∼ NT 4R3 . (15)

Particles with masses grater than T do not contribute
significantly to the entropy and can be safely ignored.
Requiring that the system does not collapse to a black
hole, the maximum energy one can consider is at EN ∼ R
and therefore the entropy of the largest subspace we can
consider while ignoring gravitational effects is,

SN ∼ N1/4R3/2 . (16)

9 While the effective axion decay constant can be enhanced with
mechanisms such as alignment [98], and with the weak gravity
conjecture satisfied by additional spectator instantons [99–101],
these loopholes are not of concern for the QCD axion.

Note that this is N1/4 times the result (14) for a single
species, and γ = 1/4 and δ = 3/2 in the parametrization
of (9). In the large N limit, SN can saturate the Bousso
bound R2. Using (12), we find c = b. This, however,
requires an extremely large number of species, N ∼ R2,
with the minimum entropy assigned to each.
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Stower(N,R), the exponents in (9) should be bounded
as γ ≥ 1/4 and δ ≥ 3/2. Therefore,
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Since (11) relates N ∼ R
2−δ
γ , the number N species

needed to saturate the Bousso bound should scale slower
than R2 in general.

COSMOLOGICAL IMPLICATIONS

While the de Sitter conjecture is not sensitive to the
particular O(1) values of δ and γ, the phenomenology is.
To give a brief overview of this dependence, we consider
a tower which is evenly spaced, so the mass scale of the
nth states is mn ∼ nm. For the cutoff scale ΛN , below
which there are N states contributing to the entropy, we
consider the range N−

1
2 < ΛN < 1. We therefore have

states with a mass scale in the range
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If our universe is in a weakly coupled regime, it would
necessarily imply that the dark sector involves a tower
of light states (see [106] for similar scenarios). Since the
Hubble scale of our current universe is R ∼ 1060, taking
the free particle values of δ = 3

2
and γ = 1

4
would give

a phenomenologically unrealistic scenario. Thus, if the
lower bound is saturated, our current universe would be
in a strongly coupled regime. Taking different values, for
example δ = 7

4
and γ = 1, would give N ∼ 1015 and

MeV < m < TeV. There would be time dependence for
the mass of such a tower as the quintessence field evolves
(see in particular a recent study of this [107]). The strong
dependence of the cosmology and phenomenology on the
particular microstate counting scheme of the tower of
states leads to a close interaction between microscopic
physics and observations, and it would be interesting to
develop it further.

RELATION TO WEAK GRAVITY CONJECTURE

While the analysis in this paper has been focused on
the weakly coupled region, it is natural to speculate ex-
tension of the de Sitter conjecture to the entire parameter
space of string theory. In this respect, it is interesting to
point out a similarity between the de Sitter conjecture
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Cosmological Implications
• While the de Sitter conjecture is insensitive to the O(1) values of γ and δ, 

the phenomenology is. 
• How would these bounds apply to our universe, with R ~1060 ? 
• Consider an evenly spaced tower: mn ~nm and a cutoff scale ΛN below 

which there are N states contributing to the entropy: 

• The tower of states have masses in the range: 

• For free particles, γ =1/4, δ=3/2 give an unrealistic spectrum. If the entropy 
bound is saturated, our universe is not at parametrically weak coupling.  

• Taking different values, γ =1, δ=7/4 gives N ~1015 and  MeV<m<TeV. 
• The mass of the tower is time-dependent as the quintessence field evolves 

and could lead to interesting pheno [See e.g., Matsui, Takahashi, Yamada]
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2 < ΛN < 1

4

condition (3) is satisfied.9 For non-axion scalar fields,
we also note that the η-problem [102] implies that any
maximum of an F -term based potential will generically
satisfy (3). A violation would require some fine-tuned
cancellations.
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Though there is no known method to compute
Stower(N,R) by enumerating all states in the Hilbert
space of quantum gravity in an accelerating universe, we
can count their subset when the low energy theory con-
sists of N free particles. To justify neglecting gravita-
tional interactions between the particles, we require that
the system does not collapse into a black hole. We may
regard the resulting entropy as a lower bound on Stower.
Our counting of microstates essentially follows [103, 104],
which was used in the cosmological context in [105].
Let us start with counting the number of states of a

single free field with mass m in a box of size R, up to
a maximum momentum kmax. Since particle momenta
are quantized in the unit of 1/R, the entropy and energy
associated to the field are,

SN=1 ∼ (kmaxR)3 , EN=1 ∼ ω (kmaxR)3 , (14)

where ω2 = k2+m2. Let us assume for now that kmax ≫
m. In order for such a configuration not to collapse into
a black hole, we require that the Schwarzschild radius for
the energyEN=1 is less that the box size, namelyEN=1 !
R. Thus, the largest value kmax can take is kmax ∼ R−1/2

and correspondingly SN=1 ∼ R3/2. Though this could
never account for the Bousso bound, which scales as R2,
it may be possible with large N species of particles.
Indeed, it is a straightforward exercise of thermody-

namics to generalize the above to N species of particles.
To maximize the entropy, we can regard each species to
be in a thermal bath of temperature T , common to all
the species. The total entropy and energy for particles
with masses less than T are then,

SN ∼ NT 3R3 , EN ∼ NT 4R3 . (15)

Particles with masses grater than T do not contribute
significantly to the entropy and can be safely ignored.
Requiring that the system does not collapse to a black
hole, the maximum energy one can consider is at EN ∼ R
and therefore the entropy of the largest subspace we can
consider while ignoring gravitational effects is,

SN ∼ N1/4R3/2 . (16)

9 While the effective axion decay constant can be enhanced with
mechanisms such as alignment [98], and with the weak gravity
conjecture satisfied by additional spectator instantons [99–101],
these loopholes are not of concern for the QCD axion.

Note that this is N1/4 times the result (14) for a single
species, and γ = 1/4 and δ = 3/2 in the parametrization
of (9). In the large N limit, SN can saturate the Bousso
bound R2. Using (12), we find c = b. This, however,
requires an extremely large number of species, N ∼ R2,
with the minimum entropy assigned to each.
Since (16) is meant to be the lower bound on

Stower(N,R), the exponents in (9) should be bounded
as γ ≥ 1/4 and δ ≥ 3/2. Therefore,
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Since (11) relates N ∼ R
2−δ
γ , the number N species

needed to saturate the Bousso bound should scale slower
than R2 in general.

COSMOLOGICAL IMPLICATIONS

While the de Sitter conjecture is not sensitive to the
particular O(1) values of δ and γ, the phenomenology is.
To give a brief overview of this dependence, we consider
a tower which is evenly spaced, so the mass scale of the
nth states is mn ∼ nm. For the cutoff scale ΛN , below
which there are N states contributing to the entropy, we
consider the range N−

1
2 < ΛN < 1. We therefore have

states with a mass scale in the range

R
3(δ−2)
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δ−2
γ . (18)

If our universe is in a weakly coupled regime, it would
necessarily imply that the dark sector involves a tower
of light states (see [106] for similar scenarios). Since the
Hubble scale of our current universe is R ∼ 1060, taking
the free particle values of δ = 3

2
and γ = 1

4
would give

a phenomenologically unrealistic scenario. Thus, if the
lower bound is saturated, our current universe would be
in a strongly coupled regime. Taking different values, for
example δ = 7

4
and γ = 1, would give N ∼ 1015 and

MeV < m < TeV. There would be time dependence for
the mass of such a tower as the quintessence field evolves
(see in particular a recent study of this [107]). The strong
dependence of the cosmology and phenomenology on the
particular microstate counting scheme of the tower of
states leads to a close interaction between microscopic
physics and observations, and it would be interesting to
develop it further.

RELATION TO WEAK GRAVITY CONJECTURE

While the analysis in this paper has been focused on
the weakly coupled region, it is natural to speculate ex-
tension of the de Sitter conjecture to the entire parameter
space of string theory. In this respect, it is interesting to
point out a similarity between the de Sitter conjecture



AdS Instability Conjecture



WGC for Branes

• We have seen the applications of the WGC to particles (and 
instantons). Analogously, the WGC for branes is: 

• A stronger form [Ooguri,Vafa, ’16]: this bound is saturated only for 
a BPS state in a SUSY theory.

• A corollary of this strong form: non-SUSY AdS vacua supported 
by fluxes are unstable.

• In AdS space, a brane with T < Q leads to an instability (AdS 
fragmentation) [Maldacena, Michelson, Strominger, ’99]. 

• This brane gets nucleated and expands. It reaches the boundary 
of AdS within a finite time and dilute the flux. 

“Tp  Qp”



AdS Instability

• Instability if there exists a T<Q brane (bubble wall) in AdS: 

• A stronger form of the Ooguri-Vafa conjecture: 

 “all non-SUSY AdS (in theories whose low energy description 
is Einstein gravity coupled to a finite # of fields) are unstable”

• How do we test this conjecture?

AdS vacuum

AdS with
less flux
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The Standard Model Landscape



The Standard Model in the Deep IR

• The deep IR of the SM, below the electron mass scale, is simple: 
• Bosonic dof: photon (2) and graviton (2) 
• Fermionic dof: 𝜈’s (6 or 12 for Majorana/Dirac 𝜈’s) 

• The mass scale of neutrinos:  

• The only other known IR scale is the cosmological constant:  

• This coincidence (?) has been a source of inspiration/speculations:

⇤ ' 3.25⇥ 10�11eV 4 = (0.24⇥ 10�2eV )4

m⌫ ' 10�1 � 10�2eV

⇤ ' m4
⌫



The Higgs Potential

• After the Higgs discovery, we know that there is an additional 
Higgs vacuum at high scale, other than the EW vacuum: 

• This high scale vacuum can be AdS4, M4, or dS4 depending on 
the top quark mass and the higher-dimensional operators. 

• Applying this conjecture to the SM landscape, we can constrain 
the top mass, Higgs potential, and BSM physics. [Hamada, GS]. 
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Figure 1: The 4-dimensional Higgs potential as a function of the physical Higgs field h,
Eq. (1). In the left panel, we put c

6

= 0. The potential has AdS, flat or dS vacua depending
on the value of the top mass. In the right panel, the c

6

term is included while Mt is fixed.
We again have AdS, flat or dS minima corresponding to the value of c

6

.

the mostly positive metric convention. In our universe, we have ⇤
4

' 3.25 ⇥
10meV4. If we consider the high scale vacuum in four dimensions, ⇤

4

can
take other values. We also add V all

S1 , the one-loop Casimir energy, for later
convenience. The remaining terms include the Higgs boson, fermions and the
SU(3)⇥ SU(2) gauge fields.

Since the radius of S1 is denoted by L, the volume of the compactified space
is 2⇡L, and so the momentum is quantized as 2⇡n/L. The metric of this S1

compactification is

ds2 =
�

gij + L2AiAj

�

dxidxj + 2L2Aidxidx3

+ L2 (dx
3

)2 , (5)

where x
3

is the compactified dimension, 0  x
3

 2⇡, Ai is the graviphoton,
and i, j = 0, 1, 2. Then, we have the following decomposition:

det (�gµ⌫) = L2 det (�gij) , R = R(3) � 2
1

L
r2L� 1

4
L2Fµ⌫F

µ⌫ , (6)

where µ, ⌫ = 0, 1, 2, 3, R(3) is the Ricci scalar constructed from gij. The dimen-
sional reduction yields

S =

Z

d3x
p

�g(3)(2⇡L)



1

2
M2

P

⇢

R(3) � 2
1

L
r2L� 1

4
L2Fµ⌫F

µ⌫

�

� ⇤
4

� V all

S1

�

=

Z

d3x
p

�g(3)(2⇡L)



1

2
M2

P

⇢

R(3) � 1

4
L2Fµ⌫F

µ⌫

�

� ⇤
4

� V all

S1

�

, (7)

where the total derivative is omitted in the last equality. Performing the redef-
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Standard Model Landscape

• Upon compactification, the SM gives rise to a rich landscape of 
3d vacua [Arkani-Hamed, Dubovsky, Nicolis, Villadoro].

Casimir energyDimensional reduction

4D action 

Potential for L



Standard Model Landscape
• The Casimir energy depends on the mass, spin, # dof, boundary 

conditions of the particles; negligible unless mL << 1. 
• Photon + graviton (4 dofs) contribute negatively to the potential 

while Λ4  contributes positively; the crossover L ~ 14 microns. 
• Below Lcrossover, L wants to shrink until L reaches the mass scale of 

neutrinos (or other light BSM particles) whose contribution can be positive. 

V (R)

Λ4

g, γ

νi

R

m4
ν

> Λ4

m4
ν
∼ Λ4

m4
ν

< Λ4

Figure 1: Radion potential around the neutrino-cosmological constant scale. The regions where the
cosmological constant, the massless bosons and the neutrino contributions dominate are indicated

with arrows. Depending on the neutrino spectrum the three plots show the three possible scenarios:
no vacua, dS and AdS vacuum.

and the radion potential is runaway while for small radii the Casimir force wins and the
compact dimension start shrinking. We thus get a maximum for R = Rmax, with

Rmax =

(

1

120π2Λ4

)
1
4

, (3)

where we put n0 = 4 in eq. (2) (2 from the graviton + 2 from the photon) and which, for
the current value of the cosmological constant Λ4 ≃ 3.25 · 10−47 GeV4 [2], means Rmax ≃
14 microns.

If we start with a size R smaller than this critical value, the circle wants to shrink,
however, when the inverse size becomes comparable to the lightest massive particle, its
contribution to the effective potential is not suppressed anymore and can change the behavior
of the potential. This is indeed what happens when 1/R approaches the neutrino mass scale.
The contribution of fermions to the Casimir energy is indeed opposite to that of bosons and
since the neutrino d.o.f. are at least 6 (for Majorana neutrino, 12 for Dirac) at shorter scales
their contribution eventually wins against that of bosons. Thus a local minimum in general
appears. However, since neutrino masses are of the same order as the scale (3), the actual
existence of the minimum can depend on the details of the neutrino mass spectrum (see
Fig. 1).

On S1 there is a discrete choice for the spin connection, which results in the choice of
periodic or antiperiodic boundary conditions for fermions. In the first case the contribution
has opposite sign with respect to that of bosons, while in the second case is the same. In
order to have a minimum we thus need to impose periodic boundary conditions for the
neutrinos and have no more than 3 light fermionic d.o.f., where light here means lighter

4



Casimir Energy
• The Casimir energy on S1 : 

where 

• For mL >> 1, 
• For mL << 1,                        (sign depends on spin & charge)

• The more massive the neutrinos, the deeper the AdS vacuum.                
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inition of the metric gij = (2⇡L/L
0

)�2gEij , we obtain4

p

�g(3) = (2⇡L/L
0

)�3

p

�gE(3), R(3) = (2⇡L/L
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,
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)4gEµ⇢gE⌫�Fµ⌫F⇢�.
(8)

Note that the formula for D-dimensional Weyl transformation is

R̃ = e�2!
�

R� 2(D � 1)r2! � (D � 2)(D � 1)@µ!@
µ!
 

, (9)

where R̃ and R are constructed by G̃µ⌫ = e2!Gµ⌫ and Gµ⌫ , respectively.
The resultant action is
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where
R

x3d,E
:=

R

d3x
p

�gE(3). Furthermore, by performing Ai ! 1p
2⇡MPL0

Bi

and denoting the field strength for Bi by Bij, we arrive at
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which agrees with Ref. [2].
Let us calculate the one-loop correction to the e↵ective potential. The pro-

cedure is the same as that of thermal e↵ective potential, see Apps. A and B for
the details. As a result, we obtain5 [2]

V all

S1

(2⇡L)2
=

X

particle

(�1)2spnp

V
(1)

S1

⇣

L,Mp, qpA� +
1�zp
2

⌘

(2⇡L)2
,

V
(1)

S1 (L,M, ✓) = �M4

2⇡2

1
X

n=1

cos(2⇡n✓)

(2⇡LMn)2
K

2

(2⇡LMn),

V
(1)

S1 (L, 0, 0) = � 1

360L4

1

(2⇡)2
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2880L4

1
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, (12)

4L0 is introduced in order to keep g
ij

dimensionless.
5At the next order in perturbation theory, we may need to include the e↵ect of the ring (or daisy)

diagram, which will be presented elsewhere.

8

inition of the metric gij = (2⇡L/L
0

)�2gEij , we obtain4

p

�g(3) = (2⇡L/L
0

)�3

p

�gE(3), R(3) = (2⇡L/L
0

)2
⇢

RE(3) + 4r2 ln(2⇡L) � 2
gEij@iL@jL

L2

�

,

gij@iL@jL = (2⇡L/L
0

)2gEij@iL@jL, gµ⇢g⌫�Fµ⌫F⇢� = (2⇡L/L
0

)4gEµ⇢gE⌫�Fµ⌫F⇢�.
(8)

Note that the formula for D-dimensional Weyl transformation is

R̃ = e�2!
�

R � 2(D � 1)r2! � (D � 2)(D � 1)@µ!@µ!
 

, (9)

where R̃ and R are constructed by G̃µ⌫ = e2!Gµ⌫ and Gµ⌫ , respectively.
The resultant action is

S =

Z

x3d,E

"

1

2
L
0

M2

P

(

RE(3) � 2
gEij@iL@jL

L2

�
✓

2⇡L

L
0

◆

2 1

4
L2Fµ⌫F

µ⌫

)

� L3

0

⇤
4

(2⇡L)2
� L3

0

V all

S1

(2⇡L)2

#

=

Z

x3d,E

"

1

2
L
0

M2

PR
E(3) � L

0

M2

P

gEij@iL@jL

L2

� L
0

M2

P

8

✓

2⇡L

L
0

◆

2

L2Fµ⌫F
µ⌫ � L3

0

⇤
4

(2⇡L)2
� L3

0

V all

S1

(2⇡L)2

#

,

(10)

where
R

x3d,E
:=

R

d3x
p

�gE(3). Furthermore, by performing Ai ! 1p
2⇡MPL0

Bi

and denoting the field strength for Bi by Bij, we arrive at

S =

Z

x3d,E

(L
0

)

"

1

2
M2

PR
E(3) � M2

P

gEij@iL@jL

L2

� 1

4

✓

L

L
0

◆

4

BijB
ij � ⇤

4

L2

0

(2⇡L)2
� V all

S1 L2

0

(2⇡L)2

#

,

(11)
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z=0: anti-periodic, 
z=1: periodic



Majorana Neutrinos
• AdS3 vacuum around the neutrino mass scale ~ meV 
• Balancing three contributions (z=0: anti-periodic, z=1: periodic):

cc γ,graviton neutrino

around ΛQCD V×L6 is plotted for illustration.
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Dirac Neutrinos
• The neutrino vacuum can be AdS, Minkowski, or dS depending 

on the lightest neutrino mass

Difference! 2 (Majorana)→ 4 (Dirac)
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Runaway Behavior
• The SM with minimal Majorana neutrino masses seems to give rise to a non-

SUSY AdS vacuum. Is it in the swampland? 

• The AdS vacuum can decay non-perturbatively, a possibility overlooked in  
[Arkani-Hamed, Dubovsky, Nicolis, Villadoro]; [Ibanez, Martin-Lozano, Valenzuela].

• The Wilson line is stabilized by the heavier charged particles of the SM, 
making the charged fermion contributions negative at small L. 

• We carried out a systematic study of the SM landscape in 2d and 3d, 
including Wilson line and more general BCs and fluxes [Hamada, GS].

Runaway behavior for small radius
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Multiple Point Criticality Principle

• Are there other principles to correlate neutrino mass scale with Λ? 

• The Multiple Point Criticality principle (MPP) [Froggatt, Nielsen, ’96];[Bennett, 
’96] which demands the coexistence of degenerate phases had some 
successes in predicting the Higgs mass. 

• The MPP applied to 2/3d and 4d vacua of the SM suggests that the 𝝂s are Dirac w/ 
the mass of lightest 𝝂≃O (1-10) meV [Hamada, GS, ’17].

• Our predictions can be tested by correlating 0𝝂ββ decay experiments with future 
CMB, large-scale structure, and 21cm line observations.  

• Addition of light BSM particles (sterile neutrino, gravitino, …) can allow for Majorana 
neutrinos; correlated signatures in 0𝝂ββ decay and searches for these light particles.
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Coexisting Phases

• In statistical mechanics, the micro-canonical ensemble is 
fundamental. Given E (extensive variable)→ T (intensive variable)

Equivalent in the 
thermodynamic limit

Micro-canonical

Coexisting phase
•Add heat to water under constant pressure. 

• Point: For wide range of E, the temperature T is 
tuned to be boiling point T*.

Coexisting phase
•Add heat to water under constant pressure. 

• Point: For wide range of E, the temperature T is 
tuned to be boiling point T*.

Canonical



Statistical mechanics

Micro-canonical

Canonical

Equivalent in the 
thermodynamic limit

QFT

Correspondence:  
T ↔ coupling (intensive variable),  
E ↔ ∫ φ2 (extensive variable).

[Froggatt, Nielsen ’95]

Multiple Point Criticality Principle



Degenerate Vacua
• Inspired by the micro-canonical ensemble for statistical systems: 

• Taking natural values of I2=O(V4MP2), the constraint is realized as an 
average of two vacua. 

• We apply this argument to vacua in different dimensions:

L

V

3D
4D

To maintain coexisting phases,
vacua should be degenerate.



Summary of Results

• We have compactified the SM on S1 and T2 , starting from both the 
electroweak vacuum and the high scale vacuum.  

• The MPP can be satisfied by Dirac neutrinos with the mass of the 
lightest neutrino ~ O (1-10) meV.

Figure 22: The tree level stabilization of ⌧ moduli.
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Table 9: A summary of the analysis in this paper. Here the periodic boundary condition
is taken. We also impose the current upper bound on the neutrino mass, m⌫,lightest .
0.1 eV [50, 51].
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Adding BSM Physics

• Additional light fields can change the vacuum structure:

[Hamada, GS]
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0𝝂ββ Decay & light BSM Particles

• Adding more light fermions can increase the 𝝂 masses that 
satisfy the MPP, making them more detectable via 0𝝂ββ decay.
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FIG. 3: Effective Majorana neutrino mass ⟨mββ⟩ as a function of
the lightest neutrino mass mlightest. The dark shaded regions are
the predictions based on best-fit values of neutrino oscillation pa-
rameters for the normal hierarchy (NH) and the inverted hierarchy
(IH), and the light shaded regions indicate the 3σ ranges calculated
from the oscillation parameter uncertainties [29, 30]. The horizon-
tal bands indicate 90% C.L. upper limits on ⟨mββ⟩ with 136Xe from
KamLAND-Zen (this work), and with other nuclei from Ref. [2, 26–
28], considering an improved phase space factor calculation [17, 18]
and commonly used NME calculations [19–25]. The side-panel
shows the corresponding limits for each nucleus as a function of the
mass number.

nism is dominated by exchange of a pure-Majorana Standard
Model neutrino. The shaded regions include the uncertain-
ties in Uei and the neutrino mass splitting, for each hierar-
chy. Also drawn are the experimental limits from the 0νββ
decay searches for each nucleus [2, 26–28]. The upper limit
on ⟨mββ⟩ from KamLAND-Zen is the most stringent, and it
also provides the strongest constraint on mlightest considering
extreme cases of the combination of CP phases and the uncer-

tainties from neutrino oscillation parameters [29, 30]. We ob-
tain a 90% C.L. upper limit of mlightest < (180− 480)meV.

In conclusion, we have demonstrated effective background
reduction in the Xe-loaded liquid scintillator by purifica-
tion, and enhanced the 0νββ decay search sensitivity in
KamLAND-Zen. Our search constrains the mass scale to lie
below ∼100 meV, and the most advantageous nuclear matrix
element calculations indicate an effective Majorana neutrino
mass limit near the bottom of the quasi-degenerate neutrino
mass region. The current KamLAND-Zen search is limited by
backgrounds from 214Bi, 110mAg, muon spallation and par-
tially by the tail of 2νββ decays. In order to improve the
search sensitivity, we plan to upgrade the KamLAND-Zen ex-
periment with a larger Xe-LS volume loaded with 800 kg of
enriched Xe, corresponding to a twofold increase in 136Xe,
contained in a larger balloon with lower radioactive back-
ground contaminants. If further radioactive background re-
duction is achieved, the background will be dominated by
muon spallation, which can be further reduced by optimiza-
tion of the spallation cut criteria. Such an improved search
will allow ⟨mββ⟩ to be probed below 50 meV, starting to con-
strain the inverted mass hierarchy region under the assump-
tion that neutrinos are Majorana particles. The sensitivity of
the experiment can be pushed further by improving the en-
ergy resolution to minimize the leakage of the 2νββ tail into
the 0νββ analysis window. Such improvement is the target of
a future detector upgrade.
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Grant Numbers 21000001 and 26104002; the World Pre-
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Detectability of m𝝂

• future CMB observation 

• e.g. 

•

[1512.07299]

Our value: Σmν~60meV for NH, 100meV for IH.
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Summary



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Non-SUSY AdS

g ≠ 0

≧ → ＞

Weak Gravity Conjecture (WGC)

[Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Distance Conjecture

Non-SUSY AdS

g ≠ 0

≧ → ＞

Weak Gravity Conjecture (WGC)

[Ooguri, Vafa,’06][Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Distance Conjecture

Non-SUSY AdS dS Conjecture

g ≠ 0

≧ → ＞

Weak Gravity Conjecture (WGC)

[Ooguri, Vafa,’06]

[Obied, Ooguri, Spodyneiko, Vafa,’18]

[Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Distance Conjecture

Non-SUSY AdS dS Conjecture

g ≠ 0

≧ → ＞

g → 0

Weak Gravity Conjecture (WGC)

[Ooguri, Vafa,’06]

[Obied, Ooguri, Spodyneiko, Vafa,’18]

[Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Distance Conjecture

Non-SUSY AdS dS Conjecture

g ≠ 0

≧ → ＞

non-SUSY

g → 0

Weak Gravity Conjecture (WGC)

[Ooguri, Vafa,’06]

[Obied, Ooguri, Spodyneiko, Vafa,’18]

[Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Web of Conjectures

No global symmetry

Tower WGC 

sLWGC

Distance Conjecture

Non-SUSY AdS dS Conjecture

g ≠ 0

≧ → ＞

non-SUSY

g → 0

Weak Gravity Conjecture (WGC)

[Ooguri, Vafa,’06]

[Obied, Ooguri, Spodyneiko, Vafa,’18]

[Banks, Dixon,’88];[Harlow, Ooguri,’18]

Lectures 1 and 2

[Ooguri, Vafa,’16] 
Lecture 4

Lecture 4

[Ooguri, Palti, GS, Vafa,’18]
Lecture 4

[Arkani-Hamed, Motl, Nicolis, Vafa. ’06]

Lecture 1

[Andriolo, Junghans, Noumi, GS, ’18]

[Montero, GS, Soler ’16];[Heidenreich et al, ’16]



Summary

• A web of inter-related swampland conjectures with a variety of interesting 
applications in cosmology & particle physics. 
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• A detection at the targeted level would strongly suggest that the inflaton 
potential is nearly flat over a super-Planckian field range: 
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Summary

• The dS conjecture naturally suggests the possibility that dark energy can be realized 
as a quintessence field, and can be tested experimentally by Euclid, DES, DESI, …  

• The WGC for branes suggest that non-SUSY AdS vacua are unstable [Ooguri, Vafa, 
’16]. This AdS-instability conjecture has interesting consequences in particle physics 
[Ibanez, Martin-Lozano, Valenzuela];[Hamada, GS]. 

• We showed the WGC (mild form) for a wide class of theories, including generic 
string setups with dilation or moduli stabilized below Ms.  

• We pointed out a connection between the distance conjecture and a refined version 
of the dS conjecture in any parametrically controlled regime of string theory. 

• The refined de Sitter conjecture [Ooguri, Palti, GS, Vafa]: 

turns out evade all counterexamples raised about scalar potential maxima.
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INTRODUCTION

Recently, motivated by a number of string theoretical
constructions with controlled approximations, it was pro-
posed in [1] that the potential for scalar fields in string
theory satisfies the universal bound,

|∇ V | ≥ c

Mp
· V , (1)

for some constant c > 0 of order 1, where Mp is the
Planck mass.1 Cosmological implications of this conjec-
ture were studied in [2]. The bound is called the de Sitter
conjecture as it excludes (meta-)stable de Sitter vacua in
string theory. There have been a number of follow up
papers [3–48].2 The main aim of this paper is to connect
this conjecture to another better established swampland
condition, which is known as the distance conjecture [52].
We will show that, in any weak coupling regime of string
theory,3 a refined version of this conjecture follows from
the distance conjecture, combined with Bousso’s covari-
ant entropy bound [53] applied to an accelerating uni-
verse.

The refined version of the de Sitter conjecture which
we propose in this paper is stated as follows:

Refined de Sitter Conjecture. A potential V (φ) for
scalar fields in a low energy effective theory of any con-

1 The power of Mp in the conjecture depends on the dimensions.
In this paper, for brevity, we write the formulas for the specific
case of 4 dimensions.

2 For alternative perspectives on cosmology and microscopic as-
pects of de Sitter see [49], [50] and [51].

3 In this paper, weak coupling refers to any limit in any direction
in the space of low energy scalar fields where a parametrically
controlled approximation to a physical observable is possible,
while the weak string coupling refers to the specific limit of the
dilaton field.

sistent quantum gravity must satisfy either,

|∇V | ≥ c

Mp
· V , (2)

or

min (∇i∇jV ) ≤ − c′

M2
p
· V , (3)

for some universal constants c, c′ > 0 of order 1, where
the left-hand side of (3) is the minimum eigenvalue of the
Hessian ∇i∇jV in an orthonormal frame.

Note that the conjecture is trivial if V is non-positive
because (2) is satisfied, or in the limit Mp → ∞, where
gravity decouples. This refined version still excludes
(meta-)stable de Sitter vacua.
In this paper we provide evidence for the refined con-

jecture only in parametrically controlled regimes of string
theory, but it is natural to conjecture that it holds more
generally. Possible refinements of the original de Sitter
conjecture have been considered in [3, 4, 6]. The refine-
ment above is in essence the same as the proposal of [6].4

Note that the refined version is stronger than the comple-
ment of the slow roll conditions for the cosmic inflation.
Effective descriptions of string theory are controlled

by a multitude of coupling constants, such as the string
coupling or the volume of extra dimensions. All such
couplings are field-dependent, and in particular, any
weak couplings are associated with large distances in
field space. The distance conjecture [52] is about a con-
nected component of the moduli space of string vacua,

4 The refined conjecture stated in [6] reads stronger than the one
we propose here since it was stated with the absolute-value sign
on ηV ∼ ∇2V/V , i.e. the precise complement of the slow roll
conditions. However, we have been informed by the authors of
the paper that this was unintentional as they were motivated by
avoiding application of the dS conjecture to maxima in poten-
tials.

or
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