SENSITIVITIES OF DARK MATTER DIRECT DETECTION EXPERIMENTS TO EFFECTIVE WIMP-NUCLEUS COUPLINGS

Gaurav Tomar KIAS Workshop on Particle Physics and Cosmology Based on arXiv:1805.06113 and arXiv:1810.00607 In collaboration with S. Scopel, S. Kang, and J. H. Yoon

Sogang University, Seoul

- 1. Introduction
- 2. Direct Detection
- 3. Non-relativistic EFT
- 4. Relativistic EFT
- 5. Summary

INTRODUCTION

Dark matter can be searched by many ways:

Status of Dark Matter Detection: 1707.06277

DIRECT DETECTION

Elastic recoil of non relativistic halo WIMPs off the nuclei of an underground detector.

- Recoil energy of the nucleus lies in the keV range.
- Expected signal is very low.

○ large exposures and extremely low background is required.

\bigcirc Spin Independent interaction,

$$\sigma_{\chi N} \propto [c^{p}Z + (A - Z)c^{n}]^{2},$$

- Cross-section is enhanced for heavy nuclei (e.g. Xenon) and non-zero for all targets.
- \bigcirc Is it the case always?

 \bigcirc o Isospin-violating models (1102.4331, 1205.2695),

$$\frac{c^n}{c^p} \simeq \frac{Z}{Z-A} \simeq -0.7$$

- WIMP-Xenon interaction is suppressed which reduces the sensitivity of Xenon detector.
- A Spin–Dependent WIMP–nucleon interaction,

$$\mathcal{L}_{int}
i c^p ec{S}_\chi \cdot ec{S}_p + c^n ec{S}_\chi \cdot ec{S}_n$$

- Only two isotopes with 47% of target number contribute reducing the sensitivity of Xenon detector.
- $\, \odot \,$ What about other non-standard interactions?

Non-relativistic EFT

○ Hamiltonian density of WIMP-nucleus interaction,

$$\mathcal{H}(\mathbf{r}) = \sum_{j=1}^{15} (c_j^0 + c_j^1 au_3) \mathcal{O}_j(\mathbf{r})$$

 $c_j^p = (c_j^0 + c_j^1)/2$ (proton) and $c_j^n = (c_j^0 - c_j^1)/2$ (neutron)

 All operators is guaranteed to be Hermitian if built out of the following four 3-vectors,

$$i\frac{\vec{q}}{m_N}, \ \vec{v}^{\perp}, \ \vec{S}_{\chi}, \ \vec{S}_N$$

with $\vec{v}^{\perp} = \vec{v} + \vec{q}/2\mu_N \Rightarrow \vec{v}^{\perp} \cdot \vec{q} = 0.$

A.L.FITZPATRICK, W.HAXTON, E.KATZ, N.LUBBERS AND Y.XU, JCAP1302, 004 (2013),1203.3542. N.Anand, A.L.Fitzpatrick and W.C.Haxton, Phys.Rev.C89, 065501 (2014),1308.6288.

The expected rate,

$$\frac{dR_{\chi T}}{dE_R}(t) = \sum_{T} N_T \frac{\rho_{\text{WIMP}}}{m_{\text{WIMP}}} \int_{v_{min}} d^3 v_T f(\vec{v}_T, t) v_T \frac{d\sigma_T}{dE_R},$$

with,

$$\frac{d\sigma_T}{dE_R} = \frac{2m_T}{4\pi v_T^2} \left[\frac{1}{2j_{\chi}+1} \frac{1}{2j_T+1} |\mathcal{M}_T|^2 \right],$$

$$\frac{1}{2j_{\chi}+1} \frac{1}{2j_{T}+1} |\mathcal{M}|^{2} = \frac{4\pi}{2j_{T}+1} \sum_{\tau=0,1} \sum_{\tau'=0,1} \sum_{k} \bigcup_{r' \in \mathcal{M}_{k}^{\tau \tau}} \left[c_{j}^{\tau}, (v_{T}^{\perp})^{2}, \frac{q^{2}}{m_{N}^{2}} \right]_{y = (q\sigma/2)^{2}}^{\mathsf{NUCEUS}} (W_{Tk}^{\tau}) (y) = (q\sigma/2)^{2} \sum_{k=M, \ \Phi'', \ \Phi''M, \ \tilde{\Phi}', \ \Sigma'', \ \Sigma', \ \Delta, \Delta\Sigma'} \left[c_{j}^{\tau}, (v_{T}^{\perp})^{2}, \frac{q^{2}}{m_{N}^{2}} \right]_{y = (q\sigma/2)^{2}}^{\mathsf{NUCEUS}} (y)$$

In general form,

$$R_{k}^{\tau\tau'} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{(v_{T}^{\perp})^{2}}{c^{2}} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{v_{T}^{2} - v_{min}^{2}}{c^{2}},$$

 \bigcirc Besides usual spin-dependent and spin-independent interactions, new contributions arise with explicit dependence on \vec{q} and WIMP incoming velocity.

- *M* : vector-charge (**spin-independent part**, non-zero for all nuclei)
- Φ'' : vector-longitudinal, related to spin-orbit coupling $\sigma \cdot I$ (also spin-independent, non-zero for all nuclei)
- \sum' , Σ'' : longitudinal and transverse components of nuclear spin, their sum is the usual spin-dependent interaction, require j > 0
- $\bigcirc \Delta$: associated to orbital angular momentum operator I, requires j > 0
- $\odot~\tilde{\Phi'}$: related to the vector-longitudinal operator, transforms as a tensor under rotation, require j>1/2

 Correspondence between WIMP and non-relativistic EFT nuclear response function,

coupling	$R_{0k}^{\tau\tau'}$	$R_{1k}^{\tau\tau'}$	coupling	$R_{0k}^{\tau\tau'}$	$R_{1k}^{\tau\tau'}$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4	$\Sigma''(q^0), \Sigma'(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$
6	$\Sigma''(q^4)$	-	7	-	$\Sigma'(q^0)$
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-
10	$\Sigma''(q^2)$	-	11	$M(q^2)$	-
12	$\Phi''(q^2), \tilde{\Phi}'(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$ ilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14	-	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$

 \bigcirc Nuclear response functions at vanishing momentum transfer ,

 \bigcirc Nuclear response function W's is normalized such as,

$$\frac{16\pi}{(j_{T}+1)} \times W^{p}_{TM}(y=0) = Z^{2}_{T} \quad , \frac{16\pi}{(j_{T}+1)} \times W^{n}_{TM}(y=0) = (A_{T}-Z_{T})^{2}$$

- We assume a Maxwellian velocity distribution.
- We assume that one coupling is dominant at a time.
- In our analysis, we included 15 existing experiments:

XENON1T, PandaX-II, KIMS, CDMSLite, SuperCDMS, COUPP, PICASSO, PICO-60 (CF_3I and C_3F_8 targets), CRESST-II, DAMA (modulation data), DAMA0 (average count rate), CDEX, DAMIC, and DarkSide-50

- \odot We have also included projections from LZ, COSINUS, PICO500 (*CF*₃*I* and *C*₃*F*₈ targets)
- \odot Sensitivity is expressed in terms of 90% C.L. bounds on effective cross-section,

$$\sigma_{\mathcal{N},lim} = \max(\sigma_p, \sigma_n)$$

$$\sigma_p = (c_j^p)^2 \frac{\mu_{\chi\mathcal{N}}^2}{\pi} \quad , \qquad \sigma_n = (c_j^n)^2 \frac{\mu_{\chi\mathcal{N}}^2}{\pi}$$

○ Categorize the couplings,

○ Velocity dependent contribution is important in 5 cases,

 $\textit{c}_{7}, \textit{ c}_{14}, \textit{ c}_{5}, \textit{ c}_{8}, \textit{c}_{13}$

 \bigcirc N.B. $W_{\Sigma'}^{\tau\tau'} \sim 2W_{\Sigma''}^{\tau\tau'}$

- Two free parameters viz. WIMP mass m_{χ} and $r = c^n/c^p$.
- Spin-independent coupling, no velocity dependence in the cross-section, *M* response function

○ Similar results exist for $c_{11}(q^2)$.

S. Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv:1805.06113

 Φ" response function, favors heavy nuclei with partially filled orbitals

 \bigcirc Similar results exist for couplings $c_{12}(q^2)$ and $c_{15}(q^6)$

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv:1805.06113

 $17 \, / \, 46$

• Standard spin-dependent coupling with no velocity dependent term in the cross-section, Σ', Σ'' response functions

 \bigcirc Similar results exist for couplings $c_6(q^4)$, $c_9(q^2)$, and $c_{10}(q^2)$

○ Similar results exist for couplings c_8 with $\Delta(q^2)$ and M.

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv:1805.06113

○ Similar results exist for couplings $c_{14}(q^2)$.

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv:1805.06113

 Φ'(q⁴) and velocity dependent Σ''(q²) response functions, require nuclear spin j > 1/2, non-zero for Na²³, Ge⁷³, I¹²¹, Xe¹³¹.

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv:1805.06113

- We have calculated 75768 response functions for 19 experiments and 14 couplings.
- If include interferences then 37884 more response functions.

Relativistic EFT

- We extended our analysis to relativistic operators.
- Set of operators upto dim-7 is considered.
- Lagrangian describing DM interactions with quarks and gluons,

$$\mathcal{L}_{\chi} = \sum_{q} \sum_{a,d} \mathcal{C}_{a,q}^{(d)} \mathcal{Q}_{a,q}^{(d)} + \sum_{b,d} \mathcal{C}_{b}^{(d)} \mathcal{Q}_{b}^{(d)},$$

 $C_{a,q}^{(d)}$, $C_b^{(d)} \equiv \frac{1}{\tilde{\Lambda}^{d-4}}$ are dimensional Wilson coefficients, fixed at EW scale.

• Once NR Wilson coefficients c_j^{τ} is obtained from $\mathcal{C}_{a,q}^{(d)}$, $\mathcal{C}_b^{(d)}$ our previous analysis holds.

 \bigcirc The dimension-five operators:

$$\mathcal{Q}_{1}^{(5)} = \frac{e}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi) F_{\mu\nu} ,$$

$$\begin{aligned} \mathcal{Q}_{1,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}q) \,, \\ \mathcal{Q}_{3,q}^{(6)} &= (\bar{\chi}\gamma_{\mu}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q) \,, \end{aligned}$$

○ The dimension-seven operators are:

$$\begin{split} \mathcal{Q}_{1}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi}\chi) G^{a\mu\nu} G^{a}_{\mu\nu} ,\\ \mathcal{Q}_{3}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi}\chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} ,\\ \mathcal{Q}_{5,q}^{(7)} &= m_{q} (\bar{\chi}\chi) (\bar{q}q) ,\\ \mathcal{Q}_{7,q}^{(7)} &= m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) ,\\ \mathcal{Q}_{9,q}^{(7)} &= m_{q} (\bar{\chi}\sigma^{\mu\nu}\chi) (\bar{q}\sigma_{\mu\nu}q) , \end{split}$$

$$\mathcal{Q}_2^{(5)} = \frac{e}{8\pi^2} (\bar{\chi} \sigma^{\mu\nu} i \gamma_5 \chi) F_{\mu\nu}$$

$$egin{aligned} \mathcal{Q}_{2,q}^{(6)} &= (ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}q)\,, \ \mathcal{Q}_{4,q}^{(6)} &= (ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)\,, \end{aligned}$$

$$\begin{split} \mathcal{Q}_{2}^{(7)} &= \frac{\alpha_{s}}{12\pi} (\bar{\chi} i \gamma_{5} \chi) G^{a\mu\nu} G^{a}_{\mu\nu} ,\\ \mathcal{Q}_{4}^{(7)} &= \frac{\alpha_{s}}{8\pi} (\bar{\chi} i \gamma_{5} \chi) G^{a\mu\nu} \widetilde{G}^{a}_{\mu\nu} ,\\ \mathcal{Q}_{6,q}^{(7)} &= m_{q} (\bar{\chi} i \gamma_{5} \chi) (\bar{q} q) ,\\ \mathcal{Q}_{8,q}^{(7)} &= m_{q} (\bar{\chi} i \gamma_{5} \chi) (\bar{q} i \gamma_{5} q) ,\\ \mathcal{Q}_{10,q}^{(7)} &= m_{q} (\bar{\chi} i \sigma^{\mu\nu} \gamma_{5} \chi) (\bar{q} \sigma_{\mu\nu} q) \end{split}$$

Assumptions:

1-We assume single coupling, $C_{a,q}^{(d)} = 1$ to all quarks and gluon $C_b^{(d)} = 1$. 2-Single NR coupling is dominant at a time.

 A sizable mixing between vector and axial-vector currents is very important,

 $\begin{aligned} \mathcal{Q}_{1,q}^{(6)} &\to F_1^{q/N} \mathcal{O}_1^N \,, \mathcal{Q}_{2,q}^{(6)} \to 2F_1^{q/N} \mathcal{O}_8^N + 2(F_1^{q/N} + F_2^{q/N}) \mathcal{O}_9^N \,, \\ \mathcal{Q}_{3,q}^{(6)} &\to -2F_A^{q/N} \mathcal{O}_7^N - \frac{m_N}{m_\chi} \mathcal{O}_9^N \,, \mathcal{Q}_{4,q}^{(6)} \to -4F_A^{q/N} \mathcal{O}_4^N + F_{p'}^{q/N} \mathcal{O}_6^N \end{aligned}$

 \bigcirc Specifically the pion form factors are: \bigcirc

$$egin{split} \mathcal{F}^{q/N}_{P,P'}(q^2) &= rac{m_N^2}{m_\pi^2 - q^2} a_\pi^{q/N} + rac{m_N^2}{m_\eta^2 - q^2} a_\eta^{q/N} + b^{q/N}, \ \mathcal{F}^N_{ ilde{G}}(q^2) &= rac{q^2}{m_\pi^2 - q^2} a_{ ilde{G},\pi}^N + rac{q^2}{m_\eta^2 - q^2} a_{ ilde{G},\eta}^N + b_{ ilde{G}}^N. \end{split}$$

- \bigcirc We study the mixing effect by fixing the coupling at scale $\tilde{\Lambda} = 2$ TeV and run it to EW scale through runDM (1605.04917).
- Third family of quarks gives the dominant contribution.
- We further run the coupling to nucleon scale using directDM (1708.02678) and obtain c_i^{τ} .

Bridging the gap!

 \bigcirc Lower bound on the effective scale $\tilde{\Lambda} = (c\mu_{\chi N}/\sqrt{\sigma_{NR}\pi})^{1/d-4}$, $\mu_{scale} = m_Z$,

$$\mathcal{Q}_1^{(5)}
ightarrow - rac{lpha}{2\pi} \mathcal{F}_1^N \Big(rac{1}{m_\chi} \mathcal{O}_1^N - 4rac{m_N}{ec{q}^2} \mathcal{O}_5^N \Big) - rac{2lpha}{\pi} rac{\mu_N}{m_N} \Big(\mathcal{O}_4^N - rac{m_N^2}{ec{q}^2} \mathcal{O}_6^N \Big) \,,$$

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

\odot Lower bound on the effective scale $\tilde{\Lambda}$, $\mu_{scale} = 2 TeV$,

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

Results: dimension 7 operators

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

Results: dimension 7 operators

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

Sunghyun Kang, S. Scopel, G. Tomar, J.H. Yoon, arXiv: 1810.00607

- \bigcirc With the exception of the operators $\mathcal{Q}_{7,q}^{(7)}$ and $\mathcal{Q}_{8,q}^{(7)}$, the single coupling assumption works very well.
- The interference parameter,

 $\epsilon_{ij}^{\alpha\beta} = \frac{\hat{c}_{i,\alpha}^{\tau} \hat{c}_{j,\beta}^{\tau'} \langle \mathcal{O}_{i}^{\tau} \mathcal{O}_{j}^{\tau'} F_{i}^{\alpha}(q^{2}) F_{j}^{\beta}(q^{2}) \rangle}{\sum_{lm} \sum_{\rho\sigma} \hat{c}_{l,\rho}^{\tau} \hat{c}_{m,\sigma}^{\tau'} \langle \mathcal{O}_{l}^{\tau} \mathcal{O}_{m}^{\tau'} F_{l}^{\rho}(q^{2}) F_{m}^{\sigma}(q^{2}) \rangle}, \quad \epsilon \equiv \max(|\epsilon_{ij}^{\alpha\beta}|),$

\bigcirc The interference parameter for operators $\mathcal{Q}_{7,q}^{(7)}$ and $\mathcal{Q}_{8,q}^{(7)}$.

All results are based on our Direct Detection code.

- Object-oriented, based on Python.
- Flexible to easily implement any new experiment and/or update new information. Efficient to calculate and handle a large number of response functions.
- $\odot\,$ Valid for any velocity distribution of WIMPs.
- Development with rigorous testing is in progress. Plan to eventually make it publicly available.
- A python routine named NRDD-constraints has been released by our group. https://github.com/NRDD-constraints/NRDD

SUMMARY

- \bigcirc Expected cross-section $\sigma_{\mathcal{N},\mathit{lim}}$ varies many orders of magnitude depending on effective couplings.
- \bigcirc In most cases, it is driven by,
 - Xenon target: C_1 , C_3 , C_5 , C_6 , C_8 , C_{11} , C_{12} , C_{13} , and C_{15}
 - Fluorine target: C_4 , C_7 , C_9 , C_{10} , C_{14}
- Out of 15 considered experiments, there are 9 experiments which provide the most stringent bounds on effective couplings:

XENON1T, PandaX-II, CDMSLite, PICASSO, PICO-60, CRESST-II, DAMA0, DarkSide-50

- $\, \odot \,$ It is due to the complementarity between different targets, combinations of count rate and energy thresholds.
- For all the couplings the future experiments could improve the limits by two to three order of magnitudes.

 \bigcirc We extended our analysis to the relativistic operators.

- There are two cases,
 - The operators $Q_{1,q}^{(5)}$, $Q_{2,q}^{(5)}$, $Q_{1,q}^{(6)}$, $Q_{2,q}^{(7)}$, $Q_{1}^{(7)}$, $Q_{2}^{(7)}$, $Q_{5,q}^{(7)}$, $Q_{6,q}^{(7)}$ and $Q_{10,q}^{(7)}$ follow the SI scaling of cross section and constrained by DS50 and Xenon1T.
 - The operators $\mathcal{Q}_{3,q}^{(6)}$, $\mathcal{Q}_{4,q}^{(6)}$, $\mathcal{Q}_{3}^{(7)}$, $\mathcal{Q}_{4}^{(7)}$, $\mathcal{Q}_{7,q}^{(7)}$, $\mathcal{Q}_{8,q}^{(7)}$, and $\mathcal{Q}_{9,q}^{(7)}$ follow the SD scaling of cross section and constrained by PICO60, PICASSO, and Xenon1T.
- In all models with exception of $Q_{7,q}^{(7)}$ and $Q_{8,q}^{(7)}$ the expected rate is driven by one of the NR operator with an accuracy of 60%.
- We released a Python tool called NRDD-constraints using which it is very easy to test any relativistic model against DM direct detection.

Namaste!

Back Up

\bigcirc Connection to relativistic effective theory: 1203.3542

j	\mathcal{L}_{int}^{j}	Nonrelativistic reduction	$\sum_i c_i O_i$	P/T
1	$\bar{\chi}\chi\bar{N}N$	$1_{\chi} 1_N$	\mathcal{O}_1	E/E
2	$i \bar{\chi} \chi \bar{N} \gamma^5 N$	$i \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	O_{10}	0/0
3	$i \bar{\chi} \gamma^5 \chi \bar{N} N$	$-i\frac{\vec{q}}{m_{\chi}}\cdot\vec{S}_{\chi}$	$-\frac{m_N}{m_\chi}O_{11}$	0/0
4	$\bar{\chi}\gamma^5\chi\bar{N}\gamma^5N$	$-\frac{\vec{q}}{m_{\chi}} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_N} \cdot \vec{S}_N$	$-\frac{m_N}{m_\chi}O_6$	E/E
5	$\bar{\chi} \gamma^{\mu} \chi \bar{N} \gamma_{\mu} N$	$1_{\chi}1_N$	$\tilde{\mathcal{O}}_1$	E/E
6	$\bar{\chi}\gamma^{\mu}\chi\bar{N}i\sigma_{\mulpha}rac{q^{lpha}}{m_{M}}N$	$\frac{\vec{a}^2}{2m_N m_M} 1_{\chi} 1_N + 2 \big(\frac{\vec{a}}{m_{\chi}} \times \vec{S}_{\chi} + i \vec{v}^{\perp} \big) \cdot \big(\frac{\vec{a}}{m_M} \times \vec{S}_N \big)$	$\frac{\tilde{q}^2}{2m_N m_M} \mathcal{O}_1 - 2 \frac{m_N}{m_M} \mathcal{O}_3 \\ + 2 \frac{m_N^2}{m_M m_\chi} \left(\frac{q^2}{m_{\pi^2}^2} \mathcal{O}_4 - \mathcal{O}_6 \right)$	E/E
7	$\bar{\chi}\gamma^{\mu}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$	$-2\vec{S}_N \cdot \vec{v}^{\perp} + \frac{2}{m_{\chi}}i\vec{S}_{\chi} \cdot (\vec{S}_N \times \vec{q})$	$-2O_7 + 2\frac{m_N}{m_r}O_9$	O/E
8	$i \bar{\chi} \gamma^{\mu} \chi \bar{N} i \sigma_{\mu \alpha} \frac{q^{\alpha}}{m_M} \gamma^5 N$	$2i \frac{\vec{q}}{m_M} \cdot \vec{S}_N$	$2\frac{m_N}{m_M}O_{10}$	0/0
9	$\bar{\chi}i\sigma^{\mu\nu}rac{q_{\tau}}{m_{\rm M}}\chi\bar{N}\gamma_{\mu}N$	$-\tfrac{\vec{q}^{2}}{2m_{\chi}m_{M}}1_{\chi}1_{N}-2\bigl(\tfrac{\vec{q}}{m_{N}}\times\vec{S}_{N}+i\vec{v}^{\perp}\bigr)\cdot\bigl(\tfrac{\vec{q}}{m_{M}}\times\vec{S}_{\chi}\bigr)$	$-\frac{\frac{\partial}{\partial m_{\chi}}^{2}m_{M}}{2m_{\chi}m_{M}}\mathcal{O}_{1} + \frac{2m_{M}}{m_{M}}\mathcal{O}_{5} \\ -2\frac{m_{H}}{m_{M}}\left(\frac{\partial}{m_{\chi}^{2}}\mathcal{O}_{4} - \mathcal{O}_{6}\right)$	E/E
10	$\bar{\chi} i \sigma^{\mu\nu} \frac{q_{\nu}}{m_M} \chi \bar{N} i \sigma_{\mu\alpha} \frac{q^{\alpha}}{m_M} N$	$4\left(rac{\vec{a}}{m_M} imes \vec{S}_\chi ight)\cdot\left(rac{\vec{a}}{m_M} imes \vec{S}_N ight)$	$4\left(\frac{\bar{q}^{2}}{m_{M}^{2}}O_{4}-\frac{m_{N}^{2}}{m_{M}^{2}}O_{6}\right)$	E/E
11	$\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{M}}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$4i\left(\frac{\vec{q}}{m_M}\times \vec{S}_{\chi}\right)\cdot \vec{S}_N$	$4 \frac{m_N}{m_M} O_9$	O/E
12	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_M}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_M}\gamma^5N$	$-\left[i\frac{\vec{q}}{m_{\chi}m_{M}}-4\vec{v}^{\perp}\cdot\left(\frac{\vec{q}}{m_{M}}\times\vec{S}_{\chi}\right)\right]\frac{\vec{q}}{m_{M}}\cdot\vec{S}_{N}$	$-\frac{m_N}{m_\chi}\frac{\tilde{q}^2}{m_M^2}O_{10} - 4\frac{\tilde{q}^2}{m_M^2}O_{12} - 4\frac{m_N^2}{m_M^2}O_{15}$	0/0
13	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma_{\mu}N$	$2\vec{v}^{\perp} \cdot \vec{S}_{\chi} + 2i\vec{S}_{\chi} \cdot (\vec{S}_N \times \frac{\vec{q}}{m_N})$	$2O_8 + 2O_9$	O/E
14	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{M}}N$	$4i\vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_N\right)$	$-4\frac{m_N}{m_M}O_9$	O/E
15	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma^{\mu}\gamma^{5}N$	$-4\vec{S}_{\chi}\cdot\vec{S}_{N}$	$-4O_4$	E/E
16	$i\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}\frac{g^{\alpha}}{m_{M}}\gamma^{5}N$	$4i \vec{v}^{\perp} \cdot \vec{S}_{\chi} \frac{\vec{q}}{m_M} \cdot \vec{S}_N$	$4 \frac{m_N}{m_M} O_{13}$	E/O
17	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{M}}\gamma^{5}\chi\bar{N}\gamma_{\mu}N$	$2i \frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi}$	$2\frac{m_N}{m_M}O_{11}$	0/0
18	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{\rm M}}\gamma^5\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^{\alpha}}{m_{\rm M}}N$	$\frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi} \left[i \frac{\vec{q}^2}{m_N m_M} - 4 \vec{v}^{\perp} \cdot \left(\frac{\vec{q}}{m_M} \times \vec{S}_N \right) \right]$	$\frac{\tilde{q}^2}{m_M^2}O_{11} + 4\frac{m_N^2}{m_M^2}O_{15}$	0/0
19	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_{\nu}}{m_{M}}\gamma^{5}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$	$-4i \frac{\vec{q}}{m_M} \cdot \vec{S}_{\chi} \vec{v}_{\perp} \cdot \vec{S}_N$	$-4\frac{m_N}{m_M}O_{14}$	E/O
20	$i\bar{\chi}i\sigma^{\mu\nu}\frac{q_r}{m_M}\gamma^5\chi\bar{N}i\sigma_{\mu\alpha}\frac{q^a}{m_M}\gamma^5N$	$4 \frac{\vec{a}}{m_M} \cdot \vec{S}_{\chi} \frac{\vec{a}}{m_M} \cdot \vec{S}_N$	$4 \frac{m_N^2}{m_M^2} O_6$	E/E

\bigcirc WIMPs response functions: 1203.3542

$$\begin{split} R_{M'}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= c_{1}^{\tau} c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left[\frac{q^{2}}{m_{N}^{2}} v_{T}^{\perp 2} c_{5}^{\tau} c_{5}^{\tau'} + v_{T}^{\perp 2} c_{5}^{\tau} c_{8}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{11}^{\tau} c_{11}^{\tau'} \right] \\ R_{\Phi''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{q^{2}}{4m_{N}^{2}} c_{3}^{\tau} c_{3}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) \left(c_{12}^{\tau'} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau'} \right) \right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Phi''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[c_{3}^{\tau} c_{1}^{\tau'} + \frac{j_{\chi}(j_{\chi}+1)}{3} \left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) c_{11}^{\tau'} \right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Phi''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{j_{\chi}(j_{\chi}+1)}{12} \left(c_{12}^{\tau} c_{12}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{15}^{\tau} \right) \right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Sigma''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \left[\frac{q^{2}}{2 c_{10}^{\tau} c_{10}^{\tau} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left(c_{12}^{\tau} c_{12}^{\tau'} + \frac{q^{2}}{m_{N}^{2}} c_{13}^{\tau} c_{13}^{\tau'} \right) \right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Sigma''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{q^{2}}{4 m_{N}^{2} c_{10}^{\tau} c_{10}^{\tau} + \frac{j_{\chi}(j_{\chi}+1)}{12} \left[c_{4}^{\tau} c_{4}^{\tau} + \frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{10}^{\tau} + \frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{10}^{\tau} + \frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{10}^{\tau} + \frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{11}^{\tau} \right] \\ R_{\Sigma''}^{\tau\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{1}{8} \left[\frac{q^{2}}{m_{N}^{2}} v_{T}^{\perp 2} c_{3}^{\tau} c_{3}^{\tau'} + v_{T}^{\perp 2} c_{7}^{\tau} c_{1}^{\tau} + \frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{11}^{\tau} \right] \\ R_{\Sigma''}^{\tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) &= \frac{1}{8} \left[\frac{q^{2}}{m_{N}^{2}} v_{T}^{\perp 2} c_{3}^{\tau} c_{3}^{\tau'} + v_{T}^{\perp 2} c_{7}^{\tau} c_{1}^{\tau} \right] \\ R_{\Delta}^{\tau' \tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right] \\ = \frac{1}{2} \left(\frac{q^{2}}{m_{N}^{2}} c_{5}^{\tau} c_{5}^{\tau'} + c_{5}^{\tau} c_{5}^{\tau'} \right) \left(\frac{q^{2}}{m_{N}^{2}} c_{10}^{\tau} c_{14}^{\tau} \right) \\ R_{\Delta}^{\tau' \tau'} \left(v_{T}^{\perp 2}, \frac{q^{2}}{m_{N}^{2}} \right) \\ = \frac{1}{2} \left(\frac{q}{m_{N}^{2}} c_{5}^{\tau'} c_{5}^{\tau'$$

Maxwellian velocity distribution:

$$f(\vec{v}_T, t) = N\left(\frac{3}{2\pi v_{rms}^2}\right)^{3/2} e^{-\frac{3|\vec{v}_T + \vec{v}_E|^2}{2v_{rms}^2}} \Theta(u_{esc} - |\vec{v}_T + \vec{v}_E(t)|)$$
$$N = \left[erf(z) - \frac{2}{\sqrt{\pi}} z e^{-z^2}\right]^{-1},$$

with $z = 3u_{esc}^2/(2v_{rms}^2)$. In the isothermal sphere model hydrothermal equilibrium between the WIMP gas pressure and gravity is assumed, leading to $v_{rms} = \sqrt{3/2}v_0$ with v_0 the galactic rotational velocity.

Back Up

Tabulate full calculation of R response function for each:

- 1) Experiment
- 2) Energy bin/energy threshold/energy value
- 3) Isospin value (c_n/c_p=-1,0,1)
- 4) Nuclear target (including all stable isotopes)
- 5) Effective coupling
- 6) 4 terms including explicit velocity dependence

Isospin rotation with r=cⁿ/c^p:

$$R(r) = \frac{r(r+1)}{2}R(r=1) + (1-r^2)R(r=0) + \frac{r(r-1)}{2}R(r=-1)$$

Back Up

The rate can be written as

$$\begin{split} R &= \sum_{k=1}^{N} \delta \bar{\eta}^{k} \times \\ \left\{ \bar{\mathcal{R}}_{0} \left[E_{R}^{max}(v_{k}) \right] + \left(v_{k}^{2} - \frac{\delta}{\mu_{\chi N}} \right) \bar{\mathcal{R}}_{1} \left[E_{R}^{max}(v_{k}) \right] \\ &- \frac{m_{N}}{2\mu_{\chi N}^{2}} \bar{\mathcal{R}}_{1E} \left[E_{R}^{max}(v_{k}) \right] - \frac{\delta^{2}}{2m_{N}} \bar{\mathcal{R}}_{1E^{-1}} \left[E_{R}^{max}(v_{k}) \right] \right\} \end{split}$$

In terms of four response functions that do not depend on the WIMP mass or mass splitting:

$$\begin{split} \bar{\mathcal{R}}_{0,1}(E_R) &\equiv \int_0^{E_R} dE'_R \mathcal{R}_{0,1}(E'_R) \\ \bar{\mathcal{R}}_{1E}(E_R) &\equiv \int_0^{E_R} dE'_R E'_R \mathcal{R}_1(E'_R) \\ \bar{\mathcal{R}}_{1E^{-1}}(E_R) &\equiv \int_0^{E_R} dE'_R \frac{1}{E'_R} \mathcal{R}_1(E'_R) \end{split}$$

that can be tabulated for later use.