

Horizon Run 5 – I. Introduction & Initial setup

Jihye Shin (KASI)

& Juhan Kim, Changbom Park, Owain Snaith, Yonghwi Kim, Jaehyun Lee (KIAS)

Previous simulations by our group

	HR1	HR2	HR3	HR4	HR5
Box size (h ⁻¹ Mpc)	6592	7200	10815	3150	
# particles	4120	6000	7200	6300	AMR+particles
Reference	Kim et al. (2008)	Kim et al. (2011)	Kim et al. (2011)	Kim et al. (2015)	-
Code	GOTPM (Dubinski et al. 2004)	GOTPM	GOTPM	GOTPM	RAMSES (Teyssier 2002)
Citations (ADS)	73	64	64	22	-

Produced by Juhan Kim

Previous cosmological hydrodynamic simulations

Epsilon Boxsize M_{gas} **Simulation project** Code (Mpc) (M_{sun}) (kpc) Horizon-AGN 1.6x10⁷ 1 100/h RAMSES (Dobois+2014) (initial) (∆x) Illustris 6.3×10^{6} AREPO 110.7 0.74 (Vogelsberger+2014) Eagle Gadget3 100 1.81×10^{6} 0.70 (Schaye+2015) +ANARCHY MassiveBlack-II P-Gadget3 100/h 2.2x10⁶/h 1.85/h (Khandai+2015) 110.7 6.3x10⁶ 0.74 **TNG Illustris** AREPO (Pillepich +2017) 302.6 5.9x10⁷ 1.48

credit: Illustris project team

Lack of large-scale perturbation (> 100 Mpc/h)		
→ Unable to see the large cosmic structures (massive clusters, big voids, etc.)		~1 kpc res
→ Unable to properly see the large-scale environmental effects on galaxies	~100 M	pc-scale structure
→ Subject to the cosmic variance (wrong statistics)		•

Recent large-scale simulation projects

~1 kpc resolution

Rationale of Horizon Run 5

Why a cosmological hydrodynamic simulation?

- To directly resolve the galaxy formation and evolution in the cosmological context
- To see the morphological segregation of galaxies under the influence of cosmic environments
- To separate the effect of baryons from that of dark matter on cosmological structures

Why a big box size with 1 kpc resolution is required?

- Small-scale physics are correlated with the large-scale cosmic structures.
- We want to minimize the cosmic variance of simulated galaxies ($L_{box} \ge 1$ Gpc/h, Klypin+18)

Collabaration for HR5 project

KIAS (Changbom Park, Juhan Kim, Owain Snaith, Yonghwi Kim, Jaehyun Lee)

KASI (Jihye Shin)

IAP (Christophe Pichon, Yohan Dubois)

University of Hull (Brad Gipson, Gareth Few)

KISTI (Oh-Kyung Gwon, Chan Park)

How to Set HR5

- \rightarrow Large-scale power in L_{box}= 717.229 Mpc/h
- \rightarrow Small-scale physics with 1 kpc-resolution

Method: Zoom technique

 \rightarrow large-scale power in the background and small-scale physics in the target region

717.229 Mpc/h

Simulation size of HR5

Nelson et al. 2019

Adopted simulation code & cosmological model

- Initial-condition generator: MUSIC (Hahn et al. 2011)
- Main simulation code: RAMSES (Teyssier 2002)
- RAMSES is an **AMR** (adaptive-mesh refinement) code.
 - ightarrow Is a hybrid combining Lagrangian particles (DM & star) and Eulerian cells (gas).
 - → Incorporates the physics: gas cooling/heating, reionization, star formation, SN feedback, supermassive black holes, AGN feedback, detailed chemistry etc.
- Well developed post-simulation pipelines (e.g. YT, Pynbody)
- Using the Concordance LCDM cosmology (Planck 1-year)

$\Omega_{\sf m}$	Ω_{Λ}	Ω_{b}	H _o	σ_8	n _{spec}
0.30	0.70	0.046	68.4	0.816	0.967

• Resolutions:

→ICs : ~ $5.2x10^{12}$ Msun, $87.5h^{-1}$ kpc

→Final : ~ 2.5x10⁶ Msun, 0.684h⁻¹kpc (1kpc)

7 refinement levels in zoom region

How to generate IC for HR5

How to generate IC for HR5

Random patterns and zoom region to describe BAO

= different width (5 values from 72.8436 to 95.2570 Mpc/h)

x different **position** (from 7^2 to 9^2 for each width)

- x different **direction** (3 values : x, y, and z)
- x different random pattern (800 patterns)
- = ~ 10⁶ different zoomed box

position

HR5 on the 5th KISTI supercomputer

1st Great Challenge program of the 5th KISTI supercomputer (Nurion cluster)

- -> 90 days (2018.12.15 ~ 2019.3.15)
- -> 2500 node (170,000 cores, 30 % of total system)
- -> 68 core/node (many core system, Intel Xeon Phi 7250)

= 36.7 M CPU hours

Horizon-AGN	Eagle	Illustris	Illustris-TNG	HR5
4 M CPU hours	4.5 M CPU hours	19 M CPU hours	18 M CPU hours	36.7 M CPU hours

Original RAMSES

- MPI-only parallelism
- Performance limit around Ncpu≈2,000

OMP-RAMSES

- Hybrid parallelism combining **OpenMP + MPI**
- mainly by Juhan Kim (KIAS)

and Oh-Kyung Kwon, Chan Park (KISTI)

- Well designed for "N-core" systems
- Well designed for massive simulations
- Performance gain of HR5 = more than 10 times?

Running final HR5

Running at Nurion from 2018.12.15 (-> until 2019.3.15)

Current final snapshot at z = 2.7 (-> hopefully to z=0.2)

Dark matter only version of the HR5 volume (HR5-DM)

 \rightarrow will add extra information about the **role of baryons in the galaxy formation**.

The large volume of HR5

- → will give us access to a wide range of environments, including voids/massive clusters.
- → Massive clusters higher resolution than RHAPSODY-G (Wu et al. 2015), but fewer clusters expected in high resolution volume

These objects will be simulated in their cosmological context, complete with inflowing filaments etc.

→ Explore the **baryonic processes of galaxies in a range of environments**.

: Galaxy quenching, Impact on galaxy morphologies/color,

Dynamics of gas inflow into halos/galaxies across the Hubble sequence, etc.

Galaxy-galaxy interactions:

- \rightarrow Satellite alignments (comparison with other simulations/observations)
- \rightarrow Merger histories of halos/ effect on galaxy properties

 \rightarrow ...