

Horizon Run 5 – III. Evolution of Cosmic Structures

Yonghwi Kim (KIAS)

& Juhan Kim, Changbom Park, Owain Snaith, Jaehyun Lee (KIAS), Jihye Shin (KASI)

+ HR5 Collaboration

Running HR5

- Simulation time : from December 15, 2018 to March 15, 2019.
- HR5 has reached at z=2.7 and is expected to run until z=0.2.

Significance

- Cosmological simulations for galaxy formation and evolution are reaching ever more mature levels of realism and physical complexity.
- The HR5 simulation suite is producing thousands of well-resolved galaxies.
- This simulation includes a broad range of galaxy-physics mechanisms and it hence captures a wide range of phenomena.
- With this self-consistent simulation, we can predict the distribution of the various matter components across orders of magnitudes of galaxy masses, spatial scales and times. → They are a uniquely suited to provide quantitative priors for cosmological quests.
- Gravity-only expectations on the phase-space properties of (C)DM can be modified (a lot) by gastrophysics.
- ➔ DM and DE searches/arguments/quantifications must consider a whole new fan of models.

Post Processing

- Halo Finding (AHF; Gill+04)
 - Adaptive mesh refinement of identify density peaks to identify halos and sub-halos
 - MPI enabled (important for HR5)
 - Builds merger trees to trace objects through time
- SUNRIZE (Jonsson 2002) or SKIRT (Camps 2014)
 - Radiative transfer code for mock observations
- SUNSET (RAMSES utils)
 - SUNRASE on-the-cheap but adequate for many applications at 1 kpc resolution
- Comparison with **SAM**s

z=0 observables of reference

- Galaxy stellar mass function
- Stellar-to-halo mass relation
- Gas fraction within R_{500}
- BH mass vs. Galaxy mass relation
- Stellar sized vs. Galaxy mass relation
-

Preliminary Result : Star Formation History

Output Variable : (a) Dark Matter

z=20.	z=10.	z=8.0
z=6.0	z=5.0	z=4.0
z=3.5	z=3.0	z=2.7

CDM Problems

- Small-scale CDM problems
 - Missing satellites
 - Core/cusp problem
 - Too-big-to-fail problem
 - Diversity problem
 - Plane of satellites problem
- Fundamental problems
 - Generic WIMP/axions not detected so far

5 Mpc/h

Output Variable : (a) Dark Matter

z=20.	z=10.	z=8.0	Solutions
			 Baryon physics (most small-scale problems) have been identified in DM only simulations
z=6.0	z=5.0	z=4.0	 Systematic uncertainties in observations
			 DM is no exactly CDM WDM Self-interacting DM BECDM
z=3.5	z=3.0	z=2.7	
			5 Mpc/h

Output Variable : (b) Baryons Physics – Gas + Temperature

- Cooling & Heating
 - Collisional excitation
 - Collisional ionization
 - Recombination
 - Free-free emission
 - UV background
 - Metal line cooling

Output Variable : (c) Baryonic Physics – Stars + Metallicity

z=20.	z=10.	z=8.0
z=6.0	z=5.0	z=4.0
z=3.5	z=3.0	z=2.7

- SN Ia, SN II, AGBs
- Feedbacks from stars, SMBHs and AGN
- → Galactic outflows & SF regulation
- Chemical enrichment
 & metal diffusion

- 5 chemical elements
 - : H, He, O, Fe, and metal

[Important]

In this simulation, we do not consider

- (a) Complex molecules
- (b) Dust formation/disruption
- (c) Effects of radiation pressure (in most)
- (d) Radiative transfer (just use simple assumptions)

and do not distinguish between HI and H_2 .

Public Outreach : Movies

Thank you