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Introduction

* Examples of Deep Learning in astronomy

 H. Dominguez Sanchez et al.
* Galaxy morphology classification using Deep Convolutional

Neural Network
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Morphology classification T-Type classification

Question Meaning P;nr TPR  Prec. Acc.
0.2 0.97 0.91
Q1 Disk/Features 0.5 0.95 0.96 0.98

0.8 0.90 0.99

0.2 1.00 0.67
Q2 Edge-on 0.5 0.99 0.83 0.97
0.8 0.92 0.95

0.2 0.93 0.48
Q3 Bar sign 0.5 0.79 0.80 0.97
0.8 0.58 0.92

0.2 0.98 0.54
Q6 Merger signature 0.5 0.96 0.82 0.97
0.8 0.90 0.97




Introduction

* Examples of Deep Learning in astronomy

e John F. Wu and Steven Boada
* Predict galaxy metallicity from three-color images
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Introduction

* Examples of Deep Learning in astronomy

e Kevin Schawinski et al.
* Degraded galaxy images and restored them using GAN




Introduction

* Image Stacking

* Averaging pixel values of multiple
pictures taken of a specific area

* Pros

Ecene s e computationally inexpensive
Sinle pass da | * can get higher signal-to-noise ratio
(v/N times better)

* For SDSS Stripe 82 data, we can see ~2
magnitude fainter objects compared to
single pass data

* true value(error < 0.02 mag for SDSS data)

28 images stacked



Introduction

* Image Stacking

* Averaging pixel values of multiple
pictures taken of a specific area

* Pros
G * Cons
Single pass data * complicated Point Spread Function

* object with fast proper motion can be
vanished

* takes long time to observe repeatedly

28 images stacked



Generative Adversarial Network

Discriminator

a ) cg
e J
(Target data) e £
Generator E‘
4 N\ &
Single pass \ / %
| e 5
(Input data) o~
\ /
GENERATOR DISCRIMINATOR
* Trained to generate image that * Trained to discriminate difference
has similar probability between probability distribution
distribution of target data of target image and generated

image



Generative Adversarial Network

Discriminator
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Training Samples
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e SDSS stripe 82 r-band camcol2 data
» Stacked with only 22 individual images
* Single pass data -> 92 fields

* Cutinto 128x128 pixel size with 28 pixels overlapping
e 17930 pairs of image(14234 for training, 3696 for test)
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Training Progress
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Preliminary Results
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* Pixel values comparing of all test images between
* (a) single and stacked image data and
* (b) cGAN-generated and stacked image data.

» Black dashed line is to distinguish between signal and sky background.

* Points deviating from the red diagonal line present pixels with lower
signal-to-noise ratios.



Preliminary Results

 Test galaxy images
Single Stacked

Total Variation GAN
De-noising generated




Preliminary Results

* Test galaxy images
Stacked Total Va|j|z.;\t|on GAN
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stars
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* Photometry |
* magnitude distributions ] f
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Summary

* Deep learning can generate data with more information
from data with less information

* As a part of that, we reproduced stacked image from single
pass data using Deep Learning GAN

* It can lower the completeness limit in the apparent
magnitude as much as that of the stacked sample

* But more precise photometry is needed
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