Infrared Imaging Spectroscopic Missions: NISS & SPHEREx

Woong-Seob Jeong1,2

& SPHEREx Korean Consortium1,2,3,4,5

1 Space Science Division, Korea Astronomy and Space Science Institute
2 Korea University of Science & Technology
3 Seoul National University
4 Kyung Hee University
5 Kyungpook National University
5 Korea Institute for Advanced Study
Infrared Spectro-Photometric Survey?

- Wide-field Imaging + Wide-\(\lambda\) Range Spectroscopy
- No moving part: reliable observations
- High throughput & survey efficiency
- Technically demonstrated through NISS mission (2018)

Linear Variable Filter
Launch of NISS / Initial Operation

- Near-Infrared Imaging Spectrometer (NISS) onboard NEXTSat-1
- Spectro-photometric survey: ~100 deg² during 2-yr operation

- Infrared imaging spectroscopy (0.95~2.5 μm, R~20)

- Operation: ~2 years
 - Initial operation period: 3 months
 - Main observation: 18 months
 - User observation: 3 months

- Launched (Dec. 04) by Falcon9, SpaceX

- Dimensions: 290mm(L) × 270mm(W) × 392mm(H), 13.6kg
Optics
- Optical design & analysis
- Mirrors & lens

Opto-mechanics, Structure
- Mechanical design & analysis
- Barrel, structure
- Passive & active cooling system

Electronics
- Operation of IR sensor
- Data transfer

Calibration & Operation
- Test, Cal., DR
- Operation
Operations in Space

- Cooling Time (Op-TA)
 - Telescope: ~2 day (~1 day)
 - IR sensor: ~24 hrs (~12 hrs)
- Telescope: 220 – 230K
- IR Sensor: 88 – 96K

Background variation

1 μm 1.6 μm 1.9 μm

Actual PSF
Images from Initial Operations

HST vs NISS

M33

Orion

2MASS vs NISS
Developments of Space IR Instruments

- Study of diffuse components from MIRIS & NISS
 - EBL Study: near Ecliptic poles observed by AKARI
 - Star formation & ionized diffuse gas: Galactic plane

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MIRIS (2014)</th>
<th>NISS (2018)</th>
<th>SPHEREx</th>
</tr>
</thead>
<tbody>
<tr>
<td>FoV</td>
<td>3.6×3.6 deg.</td>
<td>2×2 deg.</td>
<td>3.5×11.3 deg.</td>
</tr>
<tr>
<td>Aperture of Telescope</td>
<td>8cm</td>
<td>15cm</td>
<td>20cm</td>
</tr>
<tr>
<td>Spectral Coverage</td>
<td>1.1 & 1.6 (1.87)μm</td>
<td>0.95 ~ 2.5μm</td>
<td>0.75 ~ 5μm</td>
</tr>
<tr>
<td>Spectral Resolution</td>
<td>5 (45)</td>
<td>20</td>
<td>40 - 150</td>
</tr>
<tr>
<td>Spatial Resolution</td>
<td>51.6"</td>
<td>15"</td>
<td>6"</td>
</tr>
<tr>
<td>Coverage (Deep fields)</td>
<td>~3,000 deg²</td>
<td>150 deg²</td>
<td>All-sky</td>
</tr>
<tr>
<td>Depth</td>
<td>18 AB mag.</td>
<td>17 AB mag.</td>
<td>19 AB mag.</td>
</tr>
</tbody>
</table>
SPHEREx: An All-Sky Spectral Survey

Designed to Explore
- The Origin of the Universe
- The Origin and History of Galaxies
- The Origin of Water in Planetary Systems

The First All-Sky Near-IR Spectral Survey
A Rich Legacy Archive for the Astronomy Community with 100s of Millions of Stars and Galaxies

Low-Risk Implementation
- Single Observing Mode
- No Moving Parts
- Large Technical & Scientific Margins

Finally Selected!
Major Scientific Goals

Cosmology

SPHEREx will probe the 3D Large scale structure today to gain insight into the earliest epochs of the universe. Measure σf_{NL} to high accuracy.

Galaxy Formation and Evolution

Biogenic Ices

SPHEREx will measure the H_2O, CO, CO_2, CH_3OH ice content in clouds and disks, determining how ices are inherited from parent clouds vs. processed in disks.

SPHEREx extragalactic background light measurements determine the total light emitted by galaxies

NASA MIDEX Mission
SPHEREx Creates an All-Sky Legacy Archive

<table>
<thead>
<tr>
<th>Detected</th>
<th>Medium-Accuracy Spectra</th>
<th>High-Accuracy Spectra</th>
<th>Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 1 billion</td>
<td>> 100 million</td>
<td>10 million</td>
<td>25,000</td>
</tr>
</tbody>
</table>

Galaxies
- Main Sequence Spectra: > 100 million
- Dust-forming: 10,000
- Brown Dwarfs: > 400
- Cataclysms: > 1,000

Stars
- Quasars: > 1.5 million
- Quasars z > 7: 1 – 300?
- Asteroid & Comet Spectra: 10,000

Other
- Galactic Line Maps: PAH, HI, H$_2$

A spectrum for every 6” pixel on the sky
NEP/SEP: 100 + 100 sq. deg.
 - AKARI Deep Fields (NEP/SEP)
 - Average 60x deeper than all-sky survey
 - Spatially not uniform, but include Euclid Deep Fields (eROSITA)
NEP: 5.4 deg.2 by IRC (Near- & Mid-IR 9 bands)
SEP(ADF-S): 12 deg.2 by FIS (FIR 4 bands)

Ancillary Data (undergoing)
- Optical data: Subaru(N), KMTNet(S)
- NIR: Kitt Peak FLAMINGOS – NEP
 VISTA - SEP
- MIRIS (I & H): up to 10 x 10 deg.
- Spec: MMT/Hectospec
 & WYIN/Hydra – NEP, AOmega - SEP
- FIR-Submm: Herschel PACS & SPIRE
- Submm: SCUBA-2, (ALMA)
- mm: AzTEC – SEP, (ALMA)
Expecting Synergy with KASI’s Facilities

- Korea Microlensing Telescope Network (KMTNet)

- Access to foreign facilities
 - EAOs: JCMT, ALMA, ...
 - Mid-sized optical telescopes: Gemini-S/N, MMT, UKIRT, ...

- GMT, LSST, ...
Data reduction pipeline: experience from NISS

Science (especially extragalactic science)
 - Pre-studies with NISS: operation from 2018
 - Multi-wavelength surveys for NEP/SEP regions

Ground support equipment for characterizing the instrument (cryo. Chamber, integrating sphere, ground station electronics)
 - Re-design of cryo. chamber
 - Test items: optics & system
Phase Studies (10 yrs)

- Phase-A (2018): Conceptual design

- Development Phase (2019 ~ 2022)
 - Detailed design, Assembly & preparation of DR
 - Preparation of Science Cases

- Operational Phase (2023 ~ 2025)
 - Constructs test calibration facilities & Calibration
 - All-sky survey & evaluation of PV data

- Science Phase (2025 ~ 2028)
 - Research activities with legacy science data
 - Revision of DR for Science Enhancement Options (SEO)
Collaborations in Science

- Cosmology: 3D large-Scale structure

- Galactic Sciences
 - Ice Features from YSOs & IRDCs
 - Exploring unshocked SN ejecta in young SNs
 - Deep ecliptic patrol of the southern sky: DEEP-South
 - Transient objects (stars, SNs, ...)

- Extragalactic Sciences
 - SF properties of near-by galaxies
 - Near-by and high-z AGNs & AGNs
 - Properties of High-z emission line galaxies
 - Origin of Cosmic Infrared Background

NISS
Summary

- Space instruments developed by KASI
 - Technical demonstration: imaging spectroscopy with LVFs
 - Imaging spectroscopic survey: Nearby galaxies, star-forming regions, low-background regions ...

- SPHEREx
 - KASI’s contribution
 - Galactic / Extragalactic Sciences
 - Synergy with other Facilities (KMTNet, GMT, GEMINI, MMT ...)
 - More science cases from Korean community
 - Need more manpowers

- Contributing sources to CIB?
 -> Extragalactic Sciences with NEP/SEP Regions