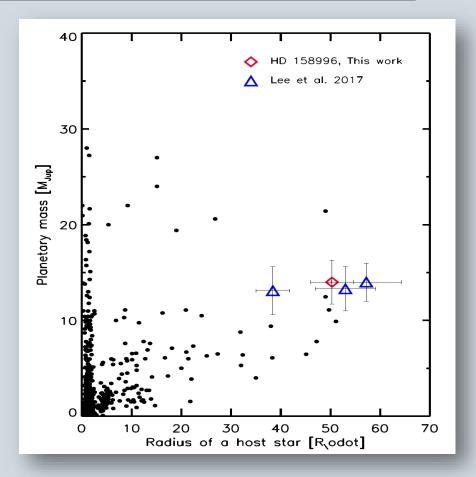
Survey Science Group Workshop 2019

### Developing Spectrophotometer for Exoplanet Transmission Spectra

MYEONG-GU PARK (KYUNGPOOK NAT. U.)

INWOO HAN, KANG-MIN KIM, BYEONG-CHEOL LEE (KASI), TAE-YANG BANG, YEONHO CHOI (KNU) G. VALYAVIN (SAO) ETC


High1 2019-02-22

## Exoplanet studies with BOES

#### 29 exoplanets so far

- Largest sample of giants with planets
- Largest stars with planets
- Evolved stars with planets

Stellar oscillations, rotations, surface activities



## From discovery to the characterization of planets

Density: rocky or gaseous

- Radius Transit observation
- Mass RV observation

#### **Exoplanet** atmosphere

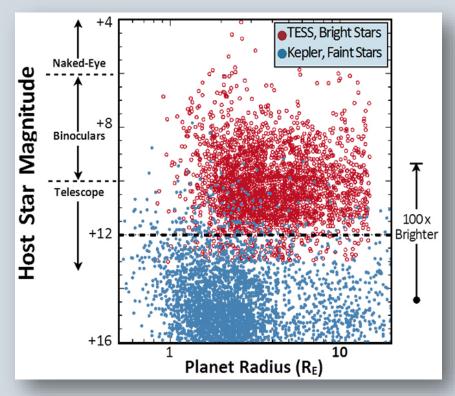
- Composition of exoplanet atmosphere
- Biomarker from earth-like planets within habitable zone
  - Key science of GMT+G-CLEF

Bright-enough targets from TESS

# Transiting Exoplanet Survey Satellite (TESS)

#### Launched April 2018

- 4 x 100 mm
- 24°x24°


#### 2 yr survey

- m < 12 mag
  - 100 times brighter than Kepler sample

#### Expectations

- ~ 5,000 super-Earths
- ~ 1,600 from nearby bright stars
- ~ 50 Earths in HZ confirmed by RV follow-ups

Observable with 1 ~ 2 m telescopes



# Follow-up observations on the TESS candidates

#### RV

- Confirmation and mass determination by RV observations.
- Telescope size
  - BOES: BOAO 1.8 m
  - HARPS: ESO 3.6 m
- RV precision
  - BOES: ~ 7 m/s
  - HIDES: ~ 3 m/s (being upgraded to 25% higher sensitivity)
  - HARPS: ~ 0.3 m/s

#### Photometry

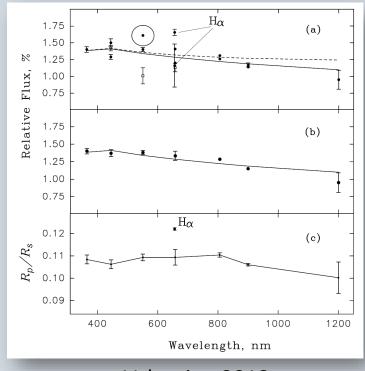
- Confirmation and precise radius determination
- Possible with 1 2 m class telescopes

## **TEN-X** collaboration

#### - KASI, NAOJ, MPE, NAOC, TITECH, SAO, KNU, CBNU, NYSC



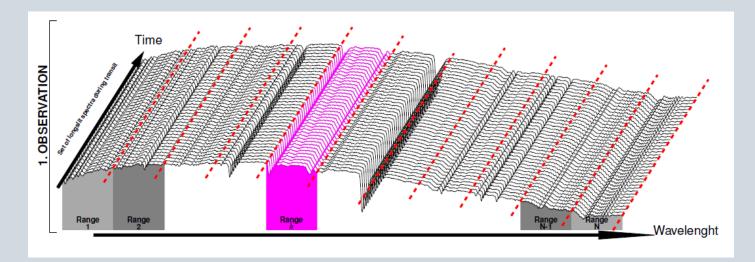
Oct. 2018


### Transmission Spectroscopy

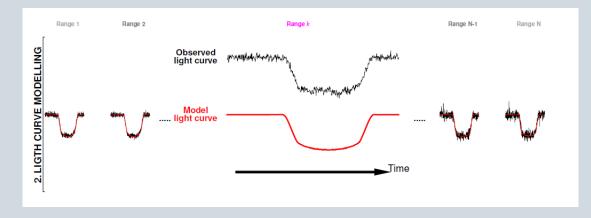
Spectroscopy of starlight through exoplanet atmosphere

- Comparison of spectra during and off the transit
- HST + Spitzer (GMT)

#### Multi-band photometry


- Transit strength in different band
- Exoplanet radius spectrum
- Problems
  - Simultaneous photometry not possible
  - Filter change time
  - Fixed bands

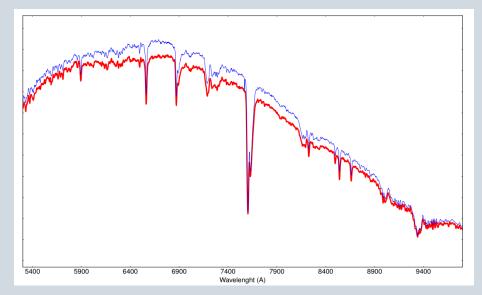



Valyavin+ 2018

## Transmission Spectra with Spectrophotometer

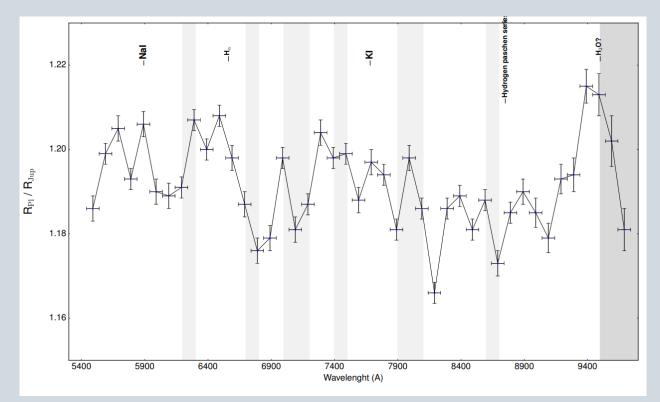
1. Time series low dispersion spectral observation during the transit




2. Light curve from the photometry for each spectral band (~ 100 Å)



- 3. Planet radius determination at each spectral band by transit modeling
- 4. Characterization of planet atmosphere by comparison with exoplanet atmosphere model


- Valyavin et al. (2018)

Spectra of WASP-32 (upper plot) and the reference star (lower plot)

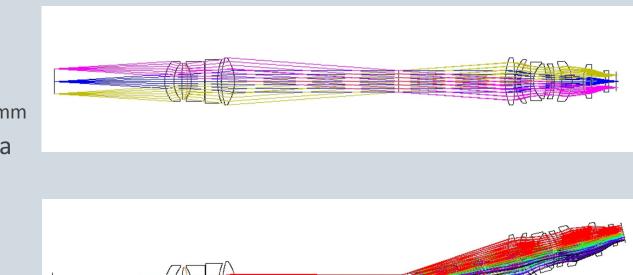


GTC + OSIRIS spectrograph 20 Oct 2013. Grating R1000R resolution ~1000

#### - Radius spectrum of WASP-32b



#### Planet radius limit


- 2 m class telescope
  - $^\circ~$  Down to 0.0016  $R_J~$  for 8 mag stars
  - Probe exosphere of Jupiter- and Saturn-size exoplanets
  - Hot super-Earth or Neptune

#### Photometric precision requirement

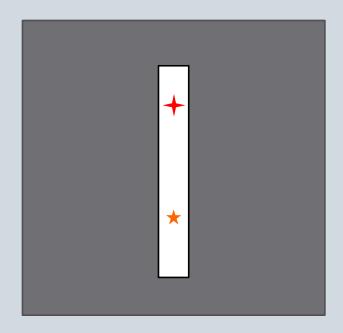
- Better than %
- Reference star
  - Simultaneous observation of a reference star to minimize the atmospheric effect
  - Reference star with similar magnitude and spectral type

## LoSTaS (Low Resolution Spectrophotometer for Transmission Spectroscopy)

- ° 1.8 m, f/8
- Collimator
  - 5 OHARA lens
  - f = 320 mm
  - Beam diam. 30 mm
- Imaging camera
  - 8 OHARA lens
  - f = 160 mm
- Coverage
  - ∘ 4000 8000 Å
- FoV
  - 5 arcmin
- Spectral resolution
  - ° **250**



## Challenges


Spectrophotometer, not spectrometer

#### Absolute calibration

- Sky background
- Comparison(reference) star

#### Slit

- Simultaneous obs of two targets
- Wide FOV
- Large width
  - · 20" ~ 30"



#### **Reference stars**

- Target stars
  - < 10 mag from TESS candidates</li>
- $^{\circ}\,$  Mag difference within 1.5 ~ 2 mag
- Best with similar spectral type
- Number of reference stars expected (Azamat)

| Magnitude | 10 x 10 arcmin |
|-----------|----------------|
| 10.0      | 0.265          |
| 10.5      | 0.440          |
| 11.0      | 0.723          |
| 11.5      | 1.179          |
| 12.0      | 1.905          |