Cosmological information from the small-scale redshift-space correlation functions

Motonari Tonegawa (Korea Institute for Advanced Study)

Collaborators: Changbom Park, Yi Zeing (KIAS), Hyunbae Park (KASI), and Sungwook Hong (UOS)

> The 8th Survey Science Group Workshop High1 Resort, Jeongsun, 2019/02/22

Dark energy

- Accelerating cosmic expansion
 - Gravitational force is attractive
 - Need the repulsive force
 - Dark energy
 - Modified gravity
- Two types of dark energy test
 - Geometry test
 - Measurement of the cosmic expansion
 - Dynamical test
 - Measurement of dynamical motion of objects

Redshift Space Distortion (RSD)

Purpose of this work

- The large-scale RSD
 - measures the growth rate *f*

Okumura et al. (2016)

- major target of planned/ongoing surveys
- The small-scale RSD
 - also expected to have cosmological information
 - not widely used currently

→ Can the two-point correlation function of small scales add additional constraints on cosmological parameters?

Quantifying FoG

region of $\xi(r_p, r_\pi) > 3$

•
$$R_{|\xi=3} = \frac{r_{\pi|\xi=3}}{r_{p|\xi=3}}$$

- Cosmic variance of the density field is expected to cancel out, giving a clean "length" of FoG
- $R_{|\xi=2}$, $R_{|\xi=4}$, ... can be defined likewise, corresponding to different scales

Data

- Multiverse simulation
 - 2048³ particles in $1024 h^{-1}$ Mpc cubic box
 - $(\Omega_m, w) = (0.21, -1), (0.26, -1), (0.31, -1), (0.26, -0.5), (0.26, -1.5)$
 - Galaxy assignment by the most bound particles (MBPs) approach (Hong et al. 2016)
 - α parameter is adjusted to 1.5 to reproduce $w(r_p)$ of SDSS galaxies
- KIAS value added catalog (KIAS-VAGC)
 - SDSS DR7 main galaxies supplemented by other spectroscopic surveys
 - The nearest-neighbor redshift is assigned for fiber-collided galaxies
 - D5 volume-limited sample
 - $0.025 < z < 0.10713, M_r < -20.0$
 - 134,318 galaxies, ~7000deg²

Choi et al. (2009)

Two-point correlation function

• Two-point correlation function $\xi(r_{\sigma}, r_{\pi}) = \frac{DD - 2DR + RR}{RR}$

Simulation: Mass and threshold dependence

- $(\Omega_m, w, z) = (0.26, -1, 0)$
- Massive galaxies tend to reside in the center of haloes
 → smaller FoG effect
- Lower threshold
 - \rightarrow larger scales
 - \rightarrow less affected by FoG

Comparison with observational data

- $\xi_{\text{thres}} = 3.0$
- absolute r-mag thresholds (SDSS): -20.02, -20.3, and -20.72
- *x*-axis is the number density of the sample (instead of mass/magnitudes)
- Hhigher Ω_m gives larger R

$$\xi_{\rm thres} = 2.0$$

$$\xi_{\rm thres} = 4.0$$

Constraint on Ω_m

- Log-likelihood $^{T}(R_{SDSS} - R_{simu})C^{-1}(R_{SDSS} - R_{simu})$ for
 - 1 data point (dotted)
 - 3 data points (dashed)
 - 9 data points (solid)
- Covariance C estimated from the HR4 mock catalog
- SDSS D5 (~10⁵ galaxies) gives $\Delta\Omega_m$ ~0.02
 - the preferred value is below 0.26 (WMAP) and 0.31 (Planck)
 - due to the velocity bias α < 1?
 (e.g., Guo et al. 2015)

Summary

- We used KIAS-VAGC spectroscopic data to measure $R_{|\xi}$ and compared with Multiverse simulation to see the power of cosmological constraints from the small-scale RSD
- ~10⁵ galaxies give $\Delta\Omega_m$ ~0.02
- The lower value of Ω_m could be due to the existence of the velocity bias