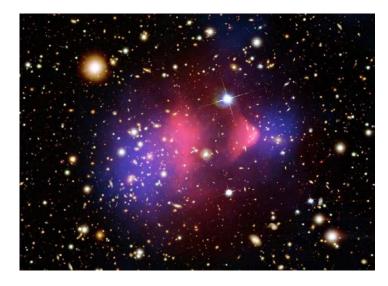
Multi-wavelength Analysis of the Merging Galaxy Cluster Abell, 115

https://arxiv.org/abs/1812.08797

Mincheol Kim

James Myungkook Jee


Kyle Finner, Nathan Golovich, David M. Wittman, R. J. van Weeren, W. A. Dawson

The 8th Survey Science' Grop Workshop

2019. 02. 20 - 22

Merging Galaxy Cluster

Intro

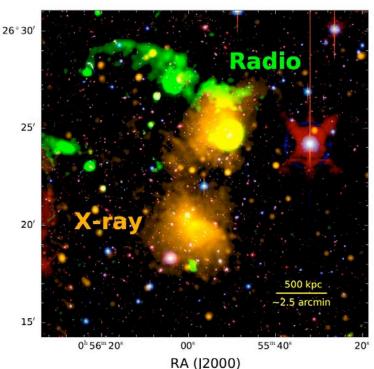
Collision velocity: $\sim 2000 \ km/s$ Dissipated energy of merger shock: $\sim 3 \times 10^{63}$ ergs (Sarazin 2002) => $\sim 8 \times 10^{49}$ kWh

Research Institute

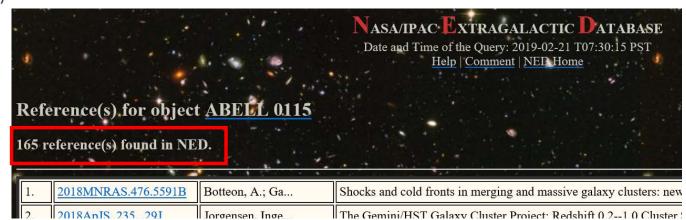
October 2018

Image: Second conditionUnit price (₩/kWh)Total Price (₩)# of the EarthHousehold electricity2812.34×10⁵²7.31×10³⁴Industrial electricity736.10×10⁵¹1.91×10³⁴

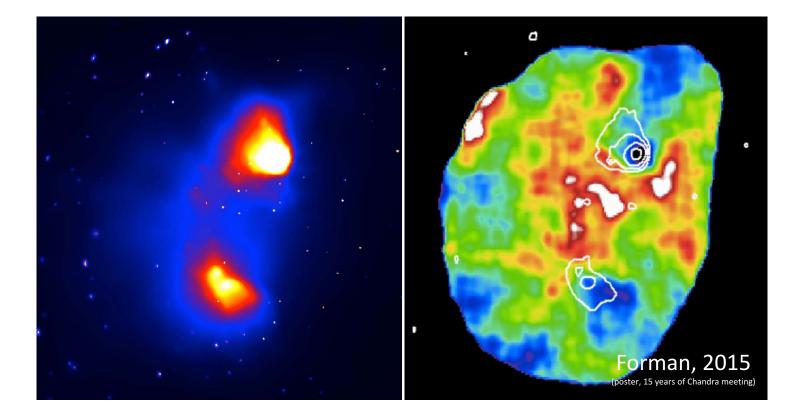
Global wealth:
$$3.2 \times 10^{17}$$
 (3.17×10^{14} \$)



Thought leadership from Credit Suisse Research and the world's foremost experts

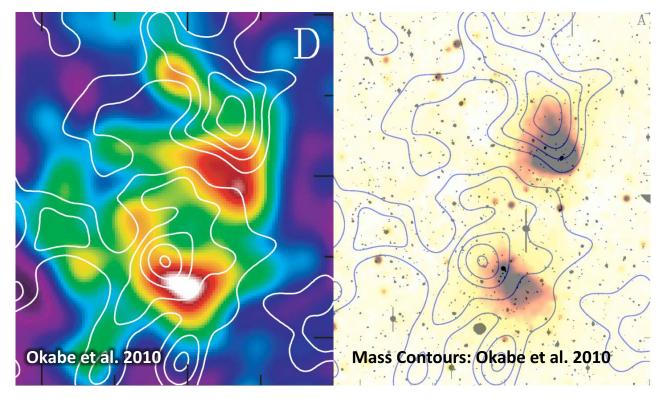

Merging Galaxy Cluster Abell 115

Dec (J2000)



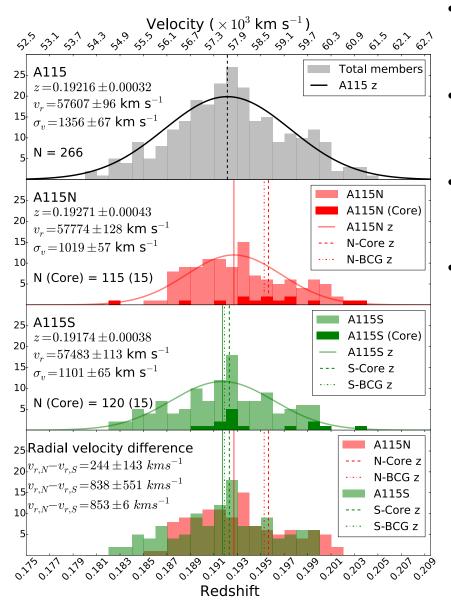
- **Double X-ray peaks** (Forman et al. 1981)
 - each showing a ram-pressure stripped tail
- **Extended Radio Relic** (Govoni et al. 2001) evidence for the energetic collision
- Post merger system
- Subaru V -and i' band
 CFHT g' and r' band
 Chandra ACIS-I
 VLA 1.4 GHz
 NED database, Keck/DEIMOS & MMT/Hectospec

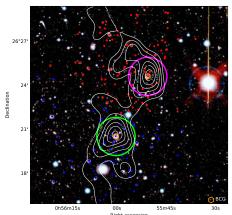
X-ray Analysis on Abell 115



- Temperature maximum between X-ray peaks \rightarrow the clusters are interacting.
- Both clusters host **cool cores** usually found in relaxed clusters.
- The location of the X-ray shock (*M* ~ 1.4 2.0) is coincident with the west end of the radio relic (Botteon et al. 2016) → Evidence of Glancing Merger

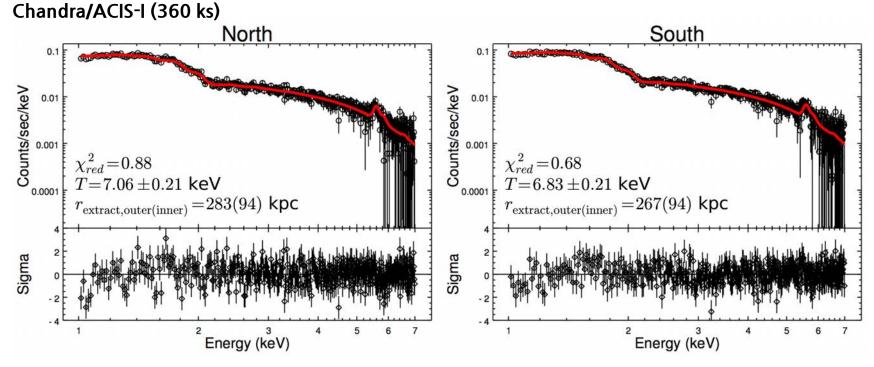
Offset Between Galaxy and Mass


Intro


- There seem to be offsets between galaxy peaks and weak-lensing mass peaks in each cluster.
 → The offsets, if real, have important implications for dark matter.
- Southern ICM was ram-pressure stripped and trails the mass peak.
- Northern X-ray peak leads the mass peak.
- Okabe et al. (2010) have not estimated individual halo masses.

Multi-wavelength I: Spectroscopy

NED database, Keck/DEIMOS (4.9 ks) & MMT/Hectospec

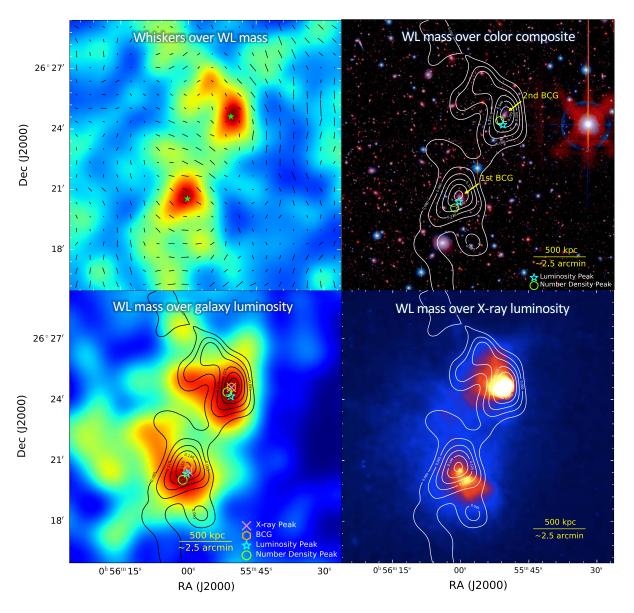


- Spectroscopic redshift galaxy catalog
 (Golovich et al. 2015 and Rines et al. 2018)
- Velocity dispersion: Bi-weight estimator (Beers et al. 1990)
- Dynamical mass: $M \sigma_v$ scaling relation (Saro et al. 2013)
- Dynamical mass estimation $M_{North} = 16.3^{+2.8}_{-2.5} \times 10^{14} M_{\odot}$ $M_{South} = 20.4^{+3.7}_{-3.3} \times 10^{14} M_{\odot}$ $M_{Global} = 37.3^{+5.7}_{-5.2} \times 10^{14} M_{\odot}$

Membership determination: Gaussian Mixture Modeling

Multi-wavelength II: X-ray

Temperature measurement
 MEKAL plasma model
 (Kaastra & Mewe 1993; Liedahl et al. 1995)


2. Temperature to M_{500} $M_{500} - T$ scaling relation (Mantz et al. 2016)

3. M_{500} to M_{200} NFW halo with concentration relation of Dutton & Macciò (2014)

X-ray mass estimation

$$\begin{split} M_{Global} &= 20.48^{+3.49}_{-2.71} \times 10^{14} M_{\odot} \\ M_{North} &= 9.00^{+2.03}_{-1.48} \times 10^{14} M_{\odot} \\ M_{South} &= 8.52^{+1.90}_{-1.38} \times 10^{14} M_{\odot} \end{split}$$

Multi-wavelength III: Optical (Weak-Lensing) Subaru / SuprimeCam (1.53 ks)

- Two mass clumps are clearly detected at the 3.8 σ and 3.6 σ levels.
- Mass distribution is consistent with BCGs and galaxy luminosity distribution.
- No offset between X-ray peaks and mass peaks.

WL Mass Estimation

$$\begin{split} M_{North} &= 1.58^{+0.56}_{-0.49} \times 10^{14} M_{\odot} \\ M_{South} &= 3.15^{+0.79}_{-0.71} \times 10^{14} M_{\odot} \\ M_{Global} &= 6.41^{+1.08}_{-1.04} \times 10^{14} M_{\odot} \end{split}$$

Mass to Light Ratio

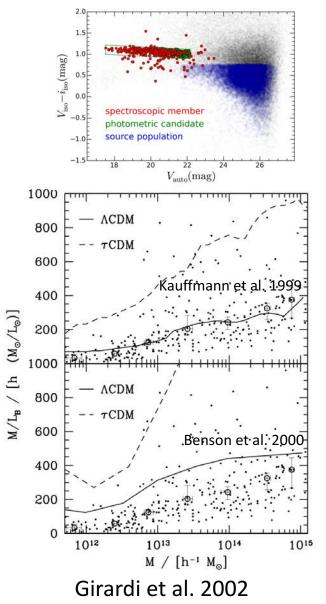
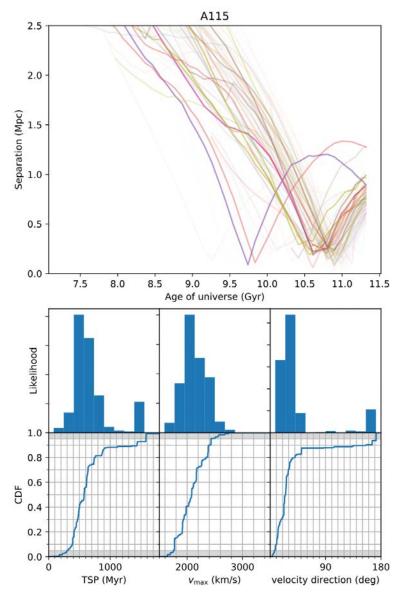


Table 6Mass Comparison


M_{200c}			
$(imes 10^{14} M_{\odot})$	Global	North	South
Weak Lensing	$6.41^{+1.08}_{-1.04}$	$1.58^{+0.56}_{-0.49}$ 9.00 ^{+2.03}	$3.15^{+0.79}_{-0.71}$ $8.52^{+1.90}_{-1.38}$
X-ray		$9.00^{+2.03}_{-1.48}$	$8.52^{+1.90}_{-1.38}$
Velocity Dispersion	$37.4^{+5.7}_{-5.2}$	$9.00_{-1.48} \\ 16.3_{-2.5}^{+2.8}$	$\begin{array}{r} 3.32_{-1.38} \\ 20.4_{-3.3}^{+3.7} \end{array}$

WL provides physically reasonable mass estimation!!

$M_{\odot}/L_{B\odot}$ of Abell 115

$M_{\odot}/L_{B\odot}$	Global	North	South
Weak-lensing	771^{+120}_{-115}	293^{+104}_{-91}	413^{+104}_{-93}
X-ray	2154^{+367}_{-285}	1003^{+226}_{-164}	$1001\substack{+210 \\ -153}$
Dynamical	3837^{+585}_{-533}	1744^{+300}_{-267}	2120^{+384}_{-343}

Merging Scenario

Wittman et al. 2018

Initial input: z = 0.1972 $V_{LOS} = 244 \pm 144 \ km/s$ M1 = $1.58^{+0.56}_{-0.49} \times 10^{14} M_{\odot}$ M2 = $3.15^{+0.79}_{-0.71} \times 10^{14} M_{\odot}$

- Time since pericenter (TSP): ~600 Myr
- Maximum collision velocity: ~2000km/s
- The velocity direction: < 25°
- Separation vector: < 19° with 68% of analogs
- Prefers the outgoing phase
 - -> Short TSP and parallel relative vector to the

separation vector

However, this seems to contradict the visual impression given by the cometary tails in X-ray emission!

Summary

- We performed a multi-wavelength (optical, X-ray, and spectroscopy) analysis on the merging galaxy cluster Abell 115.
- The dark matter distribution has two clear peaks that are consistent with the galaxy luminosity distribution and BCGs.
- The weak-lensing mass of each subcluster is obtained and the mass ratio is ~1:3.
- We reconstruct the **merger scenario** of the cluster.