Strongly Correlated Quantum Materials : Platform for new physics

KIAS colloquium Apr. 10, 2019

Outline

1. Motivation

2. Review of Landau paradigms

3. Novel universality class of symmetry breaking transitions

4. Conclusion

Motivation

Condensed matter physics

- made of electrons and ions on lattices
- many-body quantum mechanics (N > 10^{23})
- Lots of materials

Landau's two influential works

1. interacting many particles ~ (independent particle)^N

Landau's Fermi liquid paradigm

ex) Many electrons ~ (electronic quasi-particle) N

Theory of metals

$$\rho(T) = \rho_0 + A T^2$$

Hardy et. al. (2013)

Landau's two influential works

1. interacting many particles ~ (independent particle)^N

Landau's Fermi liquid paradigm

Landau's two influential works

1. interacting many particles ~ (independent particle)^N

Landau's Fermi liquid paradigm

Landau's two influential works

1. interacting many particles ~ (independent particle)^N

Landau's Fermi liquid paradigm

UV d.o.f \simeq IR d.o.f

Landau's two influential works

2. Symmetries characterize many-body phases

Landau's symmetry breaking transition paradigm

Landau's two influential works

2. Symmetries characterize many-body phases

Landau's symmetry breaking transition paradigm

- order parameter : non-trivial rep. of a sym. group
- scale invariance at continuous transitions (universality)

$$C \sim |t|^{-\alpha}, \langle \Phi \rangle \sim |t|^{\beta}, \chi \sim |t|^{-\gamma}, \xi^{-1} \sim |t|^{\nu}, [\Phi] = \frac{1+\eta}{2}, \langle \Phi \rangle \sim h^{1/\delta}$$

Landau's two influential works

2. Symmetries characterize many-body phases

Landau's symmetry breaking transition paradigm

$$C \sim |t|^{-\alpha}, \langle \Phi \rangle \sim |t|^{\beta}, \chi \sim |t|^{-\gamma}, \xi^{-1} \sim |t|^{\nu}, [\Phi] = \frac{1+\eta}{2}, \langle \Phi \rangle \sim h^{1/\delta}$$

Z₂ symmetry in 2d : Onsager's exact solution

	α	β	γ	δ	η	ν
d=2	0	$\frac{1}{8}$	$\frac{7}{4}$	15	$\frac{1}{4}$	1

Univ. class in $3d$	α	β	γ	ν	η	δ
Z_2 (Ising) [33]	0.11	0.33	1.24	0.63	0.036	4.79
U(1) (XY) [33]	-0.015	0.35	1.32	0.67	0.038	4.78
Mean-field	0	0.5	1	0.5	0	3

Landau's two influential works

2. Symmetries characterize many-body phases

Landau's symmetry breaking transition paradigm

$$C \sim |t|^{-\alpha}, \langle \Phi \rangle \sim |t|^{\beta}, \chi \sim |t|^{-\gamma}, \xi^{-1} \sim |t|^{\nu}, [\Phi] = \frac{1+\eta}{2}, \langle \Phi \rangle \sim h^{1/\delta}$$

Z₂ symmetry breaking transitions

- Specific heat anomaly : jump or divergent
- Order parameter : sub-linear onset

https://www.researchgate.net/publication/228375244_ Closed_Forms_What_They_Are_and_Why_We_Care

2-D Ising	0,125	$\nu = \nu, 0, 1, 0, 1$ $\nu = \nu' = 1.0$	r	0.25	 found from many experiments, such as on susceptibilities, magnetic specific heats? 	of the sublattice magnetization and spin correl DDM function, from which critical exponents β , ν , γ
		· · · · · · · · · · · · · · · · · · ·			direct neutron scattering, ^{4,5} that K ₂ NiF ₄ .	were obtained by the least-squares fitting proc
ces for K ₂ CoF,	and Rb ₂ CoF ₂ determ	nined by regarded	as having $S = 1/2$ Is	sing-like	magnpounds give a nearly ideal model for the two and	d Kinusing an instrumental resolution function.
neutron meas	surements together w	vith the propertie	s because the lowes	t Kramers	s doutal (2-D) magnetic system. In such 2-D	
retical values	for the two-dimension	nal Ising lies belo	w the first-excited	Ktamers	douphase transition is brought about by an versity of	Tokyo, High quality single crystals were prepared
lel.		with the	energy separation of	f 400 K**	whicly in the interaction parameter (i.e. Ising	mixtures of $CoCl_2 + 4KF$ and a small amount
$1 K_2 CoF_4$ and 1	Rb_2CoF_4 , the two-dim	ensional much hi	igher than the transi	tion temp	eratu) and/or by the lattice dimensionality (i.e.	KF HF. A reddish violet transparent single cry
						-

near behavior arise due to rounding.¹³⁾ In th

two-dimensional nature of spin correlations examined in this material. No extinction effects were found after inspection of the $(100)_M$ and $(300)_M$ reflections and of the agreement of twelve measured nuclear integrated intensities with the calculated ones. The sublattice magnetization normalized with the extrapolated intensity at 0 K is plotted in Figs. 1 and 2. Figure 1 shows that both the $(100)_M$ and $(300)_M$ normalized intensities, corrected for background contributions, fall on the same curve. Figure 2 shows that the magnetization of $K_2 CoF_4$ obeys Onsager's formula⁸ for the 2- $DS = \frac{1}{2}$ Ising model, ⁴⁰-muta

Perfect match between theory and experiment

Landau Paradigms

Triumph of 20th century condensed matter physics

0	0	0	0	0	0	0	0
0	\circ	\circ	\circ	0	\circ	\circ	0
0	0	0	0	0	0	0	0
0	\circ	0	0	0	\circ	0	0
0	0	0	0	0	0	0	0
0	\circ	0	\circ	0	\circ	0	0
0	0	0	0	0	0	0	0
11							

Renormalization group

: Kadanoff, Ginzburg, Wilson, Fisher,...

Strongly correlated quantum materials

YB₂Cu₃O₇

 α -RuCl₃

Twisted bi-layer graphene

Many more ...

Images from Google

Strongly correlated quantum materials

 $\mathsf{YB}_2\mathsf{Cu}_3\mathsf{O}_7$

Strongly correlated quantum materials

Mann, Nature 2011 High Tc Superconductivity

Strongly correlated quantum materials

J. Zannen, Nature (2007)

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Anyons in an exactly solved model and beyond

Alexei Kitaev *

California Institute of Technology, Pasadena, CA 91125, USA

Received 21 October 2005; accepted 25 October 2005

$$H_{\kappa} = -J_x \sum_{x-\text{links}} \sigma_j^x \sigma_k^x - J_y \sum_{y-\text{links}} \sigma_j^y \sigma_k^y - J_z \sum_{z-\text{links}} \sigma_j^z \sigma_k^z,$$

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Anyons in an exactly solved model and beyond

Alexei Kitaev *

California Institute of Technology, Pasadena, CA 91125, USA

Received 21 October 2005; accepted 25 October 2005

$$H_{\kappa} = -J_x \sum_{x-\text{links}} \sigma_j^x \sigma_k^x - J_y \sum_{y-\text{links}} \sigma_j^y \sigma_k^y - J_z \sum_{z-\text{links}} \sigma_j^z \sigma_k^z,$$

Kitaev representation

: spin ~ four Majorana fermions

$$\vec{\sigma} = ic\vec{b}$$
 $c^{\dagger} = c$, $\vec{b}^{\dagger} = \vec{b}$, $c^2 = 1 = b_i^2$

I deconfined phases in quantum materials

ex) Kitaev's spin model:

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Microscopic degrees of freedom (UV d.o.f) Low energy degrees of freedom (IR d.o.f)

I deconfined phases in quantum materials

ex) Kitaev's spin model:

cf) Quarks / Strings

Mesons / Baryons

UV d.o.f \neq IR d.o.f

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Majorana fermions are deconfined.

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Majorana fermions are deconfined. (= spins are fractionalized.)

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Thanks to J. Seong

E(q)

I deconfined phases in quantum materials

ex) Kitaev's spin model:

Deconfined (fractionalized) phase with Majorana fermions → Beyond Landau paradigms

Thanks to J. Seong

New Experiments

Discovery of new degrees of freedom

LETTER

https://doi.org/10.1038/s41586-018-0274-0

Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid

Y. Kasahara¹, T. Ohnishi¹, Y. Mizukami², O. Tanaka², Sixiao Ma¹, K. Sugii³, N. Kurita⁴, H. Tanaka⁴, J. Nasu⁴, Y. Motome⁵, T. Shibauchi² & Y. Matsuda¹*

Exotic thermal phase transition

ex) Hidden order transition in URu₂Si₂

Large specific heat jump but no (obvious) order-parameter

Hidden order behaviour in URu₂Si₂ (A critical review of the status of hidden order in 2014)

J.A. Mydosh^a* and P.M. Oppeneer^b

Exotic thermal phase transition

ex) Nematic transition at pseudogap T (cuprates)

Exotic thermal phase transition

ex) Nematic transition at pseudogap T (cuprates)

- nematicy from C₄ symmetry : Z₂ symmetry

Broken rotational symmetry in the pseudogap phase of a high-T_c superconductor

R. Daou¹[†], J. Chang¹, David LeBoeuf¹, Olivier Cyr-Choinière¹, Francis Laliberté¹, Nicolas Doiron-Leyraud¹, B. J. Ramshaw², Ruixing Liang^{2,3}, D. A. Bonn^{2,3}, W. N. Hardy^{2,3} & Louis Taillefer^{1,3}

Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in $YBa_2Cu_3O_y$

Y. Sato¹, S. Kasahara¹, H. Murayama¹, Y. Kasahara¹, E.-G. Moon², T. Nishizaki³, T. Loew⁴, J. Porras⁴, B. Keimer⁴, T. Shibauchi⁵ and Y. Matsuda^{1*}

Phenomena beyond Landau paradigm

Ising class

10

0023-51

530

two-dimensional nature of spin correlations examined in this material-blo extinction effects were found after inspection of the (100)_M and (300)_M reflections and of the agreement of twelve measured nuclear integrated intensities with the calculated ones. The sublattice magnetization normalized with the extrapolated intensities at 0 K is plotted in Figs. 1 and 2. Figure 1 shows with a the (100)_M and (300)_M normalized intensities, corrected for background contributions, fall on the same curve. Figure 2 shows that the magnetization of $K_2 \operatorname{CoF}_4$ obeys Omsager's formula for the 2-D $S = \frac{1}{2}$ Ising model. Planues:

nematicity in cuprates

Super-linear onset

No discernable C(T) anomaly

Phenomena beyond Landau paradigm

Exotic thermal phase transition

ex) Diagonal nematicity in RbFe₂As₂

Shibauchi group (arXiv:1812.05267)

Phenomena beyond Landau paradigm

Intriguing phenomena in quantum materials

ex1) Kitaev quantum spin liquid

ex2) Hidden order transition in URu₂Si₂

ex3) Nematic transition at pseudogap temp. of cuprates

ex4) Diagonal nematicity in RbFe₂As₂

.

New theory? New physics?

Schematic Phase diagram

Quantum spin liquid : massive entanglement Magnetic ordering : minimal entanglement

Schematic Phase diagram

Univ. class $X \stackrel{?}{=}$ Univ. class 1

References

arXiv.org > cond-mat > arXiv:1812.05621

Condensed Matter > Strongly Correlated Electrons

Deconfined Thermal Phase Transitions with Z_2 Gauge Structures

Eun-Gook Moon

arXiv.org > cond-mat > arXiv:1811.00021

Condensed Matter > Strongly Correlated Electrons

Multi-scale Quantum Criticality driven by Kondo-lattice Coupling in Pyrochlore Systems Hanbit Oh, Sangjin Lee, Yong Baek Kim, Eun-Gook Moon

arXiv.org > cond-mat > arXiv:1808.09457

Condensed Matter > Strongly Correlated Electrons

Vestiges of Topological Phase Transitions in Kitaev Quantum Spin Liquids

Ara Go, Jun Jung, Eun-Gook Moon

arXiv.org > cond-mat > arXiv:1803.00578

Condensed Matter > Strongly Correlated Electrons

Exotic Z_2 Symmetry Breaking Transitions in 2D Correlated Systems

Sangjin Lee, Jun Jung, Ara Go, Eun-Gook Moon

References

LETTERS PUBLISHED ONLINE: 24 JULY 2017 | DOI: 10.1038/NPHYS4205

Thermodynamic evidence for a nematic phase transition at the onset of the pseudogap in $YBa_2Cu_3O_y$

Y. Sato¹, S. Kasahara¹, H. Murayama¹, Y. Kasahara¹, E.-G. Moon², T. Nishizaki³, T. Loew⁴, J. Porras⁴, B. Keimer⁴, T. Shibauchi⁵ and Y. Matsuda^{1*}

arXiv.org > cond-mat > arXiv:1805.00276

Condensed Matter > Superconductivity

Diagonal Nematicity in the Pseudogap Phase of $HgBa_2CuO_{4+\delta}$

H. Murayama, Y. Sato, R. Kurihara, S. Kasahara, Y. Mizukami, Y. Kasahara, H. Uchiyama, A. Yamamoto, E.-G. Moon, J. Cai, J. Freyermuth, M. Greven, T. Shibauchi, Y. Matsuda

Summary of results

Existence of a thermal deconfinement transition in 2d

New universality class of sym. breaking transitions

- c=1 Z_2 sym. breaking transition in 2d

- Z_2 and U(1) sym. breaking transitions in 3d deconfined phases are in the same universality class

Univ. class in $3d$	α	β	γ	ν	η	δ
Z_2 (Ising) [33]	0.11	0.33	1.24	0.63	0.036	4.79
U(1) (XY) [33]	-0.015	0.35	1.32	0.67	0.038	4.78
Mean-field	0	0.5	1	0.5	0	3
$DC-Z_N/DC-U(1)$	-0.015	0.83	0.35	0.67	1.47	1.43

DC-U(1) in 3 <i>d</i>	4	β	Y		\mathcal{H}	δ
Z ₂ gauge	- 0.015	0.83	0.35	0.67	1.47	1.43
Z_3 gauge	- 0.015	1.42	- 0.83	0.67	3.23	0.42
Z ₄ gauge	- 0.015	2.09	- 2.17	0.67	5.22	- 0.04

Outline

1. Motivation

2. Review of Landau paradigms

3. Novel universality class of symmetry breaking transitions

4. Conclusion

Symmetry and order parameter

 Z_N sym. = U(1) sym. + Z_N Potential

Symmetry and order parameter

 Z_N sym. = U(1) sym. + Z_N Potential

Symmetry and order parameter

 Z_N sym. = U(1) sym. + Z_N Potential

- Landau functional : Z_N clock model

$$F_L = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(N\theta_i)$$

Symmetry and order parameter

 Z_N sym. = U(1) sym. + Z_N Potential

- Landau functional : Z_N clock model

$$F_L = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(N\theta_i)$$

- order parameter

 $\Phi_i = \cos(\theta_i)$ $\theta_i = \frac{2\pi}{N}n, \quad n = 0, \cdots, N-1$

Symmetry and order parameter

 Z_N sym. = U(1) sym. + Z_N Potential

- Landau functional : Z_N clock model

$$F_L = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(N\theta_i)$$

- order parameter $\Phi_i = \cos(\theta_i)$

$$\theta_i = \frac{2\pi}{N}n, \quad n = 0, \cdots, N-1$$

- field theory (Wilson-Fisher)

$$S = \int d^{d}x \frac{1}{2} (\nabla \phi)^{2} + \frac{r}{2} \phi^{2} + \frac{u}{4} \phi^{4}$$

Kosterlitz-Thouless transition

$$H_{KT} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j)$$

Т

Vortex Free

2pi vortex proliferations

* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * * * * * *
x x x x x x x x x x x x x x x x x x x
* * * * * * * * * * * * * * * * * * * *
x x x x x x x x x x x x x x x x x x x
* * * * * * * * * * * * * * * * * * * *
x x x x x x x x x x x x x x x x x x x
* * * * * * * * * * * * * * * * * * * *
× × × × × × × × × × × × × × × × × × ×
* * * * * * * * * * * * * * * * * * * *
× × × × × × × × × × × × × × × × × × ×
x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x x x x x
××××××××××××××××××××××××
x x x x x x x x x x x x x x x x x x x
х <i>х х х х х х х х х х х х х х х х </i> х х х х

* **** * * * * * * * * * * * * * * * * * * ******* 1111117++++++ 4 4 4 1 + * * * ****** * * * * * * ****** * * * * * * * * * * * **** **** ********** ********* *******

No vortex

 2π vortex - antivortex

 4π vortex - antivortex

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

| * |
|---|
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| * |
| イイナイナナナ オオオオオオオオオオオ |
| * |
| イイナイナナナ オオオオオオオオオオオオ |
| * |
| ×××××××××××××××××××××× |
| * |

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Т

No domain

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Т

Ising transition

$$H_{Z_2} = -J \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Domain free

" 2π " domain proliferations

Ising transition

Review of Landau Paradigm

Ising transition

Symmetry breaking transition = 2π domain proliferation

Wilson-Fisher universality class

| | α | β | γ | δ | η | ν |
|-----|----------|---------------|---------------|----|---------------|---|
| d=2 | 0 | $\frac{1}{8}$ | $\frac{7}{4}$ | 15 | $\frac{1}{4}$ | 1 |

| Univ. class in $3d$ | α | β | γ | ν | η | δ |
|---------------------|------|---------|----------|------|--------|------|
| Z_2 (Ising) [33] | 0.11 | 0.33 | 1.24 | 0.63 | 0.036 | 4.79 |

Outline

1. Motivation

2. Review of Landau paradigms

3. Novel universality class of symmetry breaking transitions

4. Conclusion

Schematic Phase diagram

List of Known Facts

Ithermal deconfinement transition

$$H_W = -g \sum_{I^*} \prod_{(ab) \in \Box} \sigma_{ab}$$

Z₂ gauge transformation

 $\sigma_{ij} \to \sigma_{ij} \eta_i \eta_j, \quad \eta_i = \pm 1$

Wegner : 3 thermal transition in 3d

Polyakov, Kogut, ... : no thermal transition in 2d

Fradkin and Shenker : Higgs = Confinement (fund.)

 Z_2 gauge transformation

 $\sigma_{ij} \to \sigma_{ij} \eta_i \eta_j, \quad \eta_i = \pm 1$

Wilson-loop operator

$$W_{\mathcal{C}} = \prod_{(ij)\in\mathcal{C}} \sigma_{ij}$$

 F_{k^*}

 σ_{ij}

i

Kramers-Wannier duality transformation in 3d

$$H_W = -g \sum_k \prod_{(ij) \in \Box} \sigma_{ij} \equiv -g \sum_k F_{k^*}$$

 F_{k^*}

 σ_{ij} ,

i

Kramers-Wannier duality transformation in 3d

$$H_W = -g \sum_k \prod_{(ij) \in \Box} \sigma_{ij} \equiv -g \sum_k F_{k^*}$$

No symmetry change / topological transition

flux-line in 3d

 $f_{3d}(l) \sim gl - T \log \Omega(l)$

Transition at $T_c \sim g$

flux-line in 3d

-1 -1

fluxes in 2d

 $f_{3d}(l) \sim gl - T \log \Omega(l)$

 $f_{2d}(l) \sim g - T \log \Omega(l)$

Transition at $T_c \sim g$

no transition

■ Gauge fixing in 2d

$$\sigma_{ii+\hat{x}} = 1, \quad \sigma_{ii+\hat{y}} = S_i \qquad F_{i^*} = S_i S_{i+\hat{x}}$$

The Wegner model becomes

$$H_W = -g\sum_i S_i S_{i+\hat{x}}$$

 \Rightarrow decoupled spin chains

$$\Rightarrow$$
 No thermal transition!

Facts

■ ∄ thermal transition in 1d Ising spin-chain (text-book)

$$H_{Ising} = -J\sum_{i} S_i S_{i+1}$$

 $\Delta f \propto T e^{-2J/T}$

no singular point

I thermal transition in 1d Dyson-Ising spin-chain

Received Uctober 28, 1908

Abstract. Existence of a phase-transition is proved for an infinite linear chain of spins $\mu_i = \pm 1$, with an interaction energy

$$H = -\Sigma J(i-j) \mu_i \mu_j,$$

where J(n) is positive and monotone decreasing, and the sums $\sum J(n)$ and $\sum (\log \log n) [n^3 J(n)]^{-1}$ both converge. In particular, as conjectured by KAC and THOMPSON, a transition exists for $J(n) = n^{-\alpha}$ when $1 < \alpha < 2$. A possible extension of these results to Heisenberg ferromagnets is discussed.

I. Introduction

We consider the one-dimensional Ising ferromagnet with sites labeled by an integer *j* taking all values from $-\infty$ to $+\infty$. At each site is a random variable μ_j taking the values ± 1 , the total energy being

$$H = -\sum J(i-j) \mu_i \mu_j , \qquad (1.1)$$

Dyson, CMP 12, 91 (1969)

Facts

■ ∄ thermal transition in 1d Ising spin-chain (text-book)

$$H_{Ising} = -J\sum_{i} S_i S_{i+1}$$

 $\Delta f \propto T e^{-2J/T}$

no singular point

Ithermal transition in 1d Dyson-Ising spin-chain

Received October 28, 1908

Abstract. Existence of a phase-transition is proved for an infinite linear chain of spins $\mu_i = \pm 1$, with an interaction energy

$$H = - \sum J(i-j) \mu_i \mu_j,$$

where J(n) is positive and monotone decreasing, and the sums $\sum J(n)$ and $\sum (\log \log n) [n^3 J(n)]^{-1}$ both converge. In particular, as conjectured by KAC and THOMPSON, a transition exists for $J(n) = n^{-\alpha}$ when $1 < \alpha < 2$. A possible extension of these results to Heisenberg ferromagnets is discussed.

I. Introduction

We consider the one-dimensional Ising ferromagnet with sites labeled by an integer *j* taking all values from $-\infty$ to $+\infty$. At each site is a random variable μ_j taking the values ± 1 , the total energy being

$$H = -\sum J(i-j) \mu_i \mu_j$$
, (1.1)

Dyson, CMP 12, 91 (1969)

New model

Spin Hamiltonian with long range interaction

$$H_X = -J_r \sum_{i} \sum_{r>0} \frac{S_i S_{i+r\hat{x}}}{r^{\omega}}, \quad 1 < \omega \le 2$$

Decoupled Dyson-Ising spin chains

 \Rightarrow 3 thermal transition

$$F_{i^*} = S_i S_{i+\hat{x}} \qquad F_{i^*} F_{i^*+\hat{x}} = S_i S_{i+2\hat{x}} \qquad \prod_{j=0}^{r-1} F_{i^*+j\hat{x}} = S_i S_{i+r\hat{x}}$$
$$H_Z = -J_r \sum_i \sum_{r>0} \frac{\prod_{j=0}^{r-1} F_{i^*+j\hat{x}}}{r^{\omega}}$$

r = 1

 \Rightarrow 3 thermal transition in 2d!

 $f_{2F}(l) = gl^{2-\omega} - T\log\Omega(l)$

Perimeter Law

Spin Hamiltonian with long range interaction

Perimeter Law

Spin Hamiltonian with long range interaction

Thermal transition in 2d exists!

$$H_{Z} = -J_{r} \sum_{i} \sum_{r>0} \frac{\prod_{j=0}^{r-1} F_{i^{*}+j\hat{x}}}{r^{\omega}}$$

Strongly interacting flux models

Spatial symmetry is broken (x-dir)

Would be great to find a simpler model

$$H_{mZ} = -g \sum_{i} F_{i^*} - \sum_{i,j} J_{ij} F_{i^*} F_{j^*}$$

Flux Hamiltonian with long range interaction

$$n_i \equiv \frac{1 - F_i}{2}, \quad \sum_i n_i \in 2\mathbb{Z}$$
$$H_F = g \sum_{i \neq j} J_{ij} n_i n_j + O(n_i^4), \quad J_{ij} > 0$$

For $T \ll g$, $J_{ij} = \log(|i - j|)$

Flux Hamiltonian with long range interaction

$$n_i \equiv \frac{1 - F_i}{2}, \quad \sum_i n_i \in 2\mathbb{Z}$$
$$H_F = g \sum_{i \neq j} J_{ij} n_i n_j + O(n_i^4), \quad J_{ij} > 0$$

For
$$T \ll g$$
, $J_{ij} = \log(|i-j|)$

Ground state : flux-free state

Excited state : two-flux state

 $E_{2F}(r) = g \log(r)$

 $F_{2F}(r) = g \log(r) - T \log(r) \implies \mathsf{KT}$

 \Rightarrow KT-type free energy

Schematic Phase diagram

Schematic Phase diagram

Univ. Class 1 : order parameter

Univ. Class X : order parameter + gauge structure

Schematic Phase diagram

Univ. class $X \stackrel{?}{=}$ Wilson-Fisher

Schematic Phase diagram (with symmetry)

Univ. class
$$X \stackrel{?}{=}$$
 Wilson-Fisher

\blacksquare Z₂ global symmetry with Z₂ gauge field

$$H_s = -J\sum_{\langle i,j\rangle}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(2\theta_i) - g\sum_{i^*}\prod_{(ab)\in\square}\sigma_{ab}$$

- Gauge transformation :

$$\sigma_{ij} \to \sigma_{ij}\eta_i\eta_j \quad \theta_i \to \theta_i + \pi(1-\eta_i)$$

cf:
$$F_L = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

Z₂ global symmetry with Z₂ gauge field

$$H_s = -J\sum_{\langle i,j\rangle}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(2\theta_i) - g\sum_{i^*}\prod_{(ab)\in\square}\sigma_{ab}$$

- Confinement limit (g << T, J, u)
 - : Z₂ gauge fields are averaged away.
 - : Landau functional is restored.

$$F_L = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(2\theta_i)$$

■ Z₂ global symmetry with Z₂ gauge field

$$H_s = -J\sum_{\langle i,j \rangle} \sigma_{ij} \cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i \cos(2\theta_i) - g\sum_{i^*} \prod_{(ab)\in\square} \sigma_{ab}$$

- Confinement limit (g << T, J, u)

- : Z₂ gauge fields are averaged away.
- : Landau functional is restored.

Symmetry breaking ~ 2π vortex proliferation

Z₂ global symmetry with Z₂ gauge field

$$H_s = -J\sum_{\langle i,j\rangle}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(2\theta_i) - g\sum_{i^*}\prod_{(ab)\in\square}\sigma_{ab}$$

- Deconfinement limit ($g \gg T, J, u$)
 - : Z_2 gauge fluxes (fields) are frozen (σ =+1).

$$H_{eff} = -J\sum_{\langle i,j \rangle} \cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i \cos(2\theta_i)$$

■ Z₂ global symmetry with Z₂ gauge field

$$H_s = -J\sum_{\langle i,j \rangle} \sigma_{ij} \cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i \cos(2\theta_i) - g\sum_{i^*} \prod_{(ab)\in\square} \sigma_{ab}$$

- Deconfinement limit ($g \gg T, J, u$)
 - : Z_2 gauge fluxes (fields) are frozen (σ =+1).

Symmetry breaking ~ 4π vortex proliferation

Deconfinement Limit

$$H_{eff} = -J \sum_{\langle i,j \rangle} \cos(\frac{\theta_i - \theta_j}{2}) - u \sum_i \cos(N\theta_i)$$

Introduce the half-angle variable $\vartheta_i = \frac{\theta_i}{2}$

$$H_{eff} = -J \sum_{\langle i,j \rangle} \cos(\vartheta_i - \vartheta_j) - u \sum_i \cos(2N\vartheta_i)$$

 Z_{2N} clock model : order para. = secondary operator

 $\Phi_i = \cos(\theta_i) = \cos(2\vartheta_i)$

In 3d, Z₄ anisotropy term is irrelevant.

Hasenbusch and Vicari, PRB 84, 125136 (2011)

New universality class is obtained.

An order para. is a **secondary** operator.

 $\alpha < 0$: Harris criteria applies (stable under disorder!)

Quantum-classical mapping : frustrated magnetism

| Univ. class in $3d$ | α | β | γ | ν | η | δ |
|---------------------|--------|---------|----------|------|--------|------|
| Z_2 (Ising) [33] | 0.11 | 0.33 | 1.24 | 0.63 | 0.036 | 4.79 |
| U(1) (XY) [33] | -0.015 | 0.35 | 1.32 | 0.67 | 0.038 | 4.78 |
| Mean-field | 0 | 0.5 | 1 | 0.5 | 0 | 3 |
| $DC-Z_N/DC-U(1)$ | -0.015 | 0.83 | 0.35 | 0.67 | 1.47 | 1.43 |

| DC-U(1) in 3 <i>d</i> | 4 | β | Y | | \mathcal{H} | δ |
|-----------------------|---------|------|--------|------|---------------|--------|
| Z ₂ gauge | - 0.015 | 0.83 | 0.35 | 0.67 | 1.47 | 1.43 |
| Z ₃ gauge | - 0.015 | 1.42 | - 0.83 | 0.67 | 3.23 | 0.42 |
| Z_4 gauge | - 0.015 | 2.09 | - 2.17 | 0.67 | 5.22 | - 0.04 |

Schematic Phase diagram (with symmetry)

New Universality Class in 2d

New universality class is obtained.

$$H_{eff} = -J \sum_{\langle i,j \rangle} \cos(\vartheta_i - \vartheta_j) - u \sum_i \cos(2N\vartheta_i)$$

 Z_2 sym. breaking transition = Z_4 clock model (c=1).

New Universality Class in 2d

New universality class is obtained.

$$H_{eff} = -J \sum_{\langle i,j \rangle} \cos(\vartheta_i - \vartheta_j) - u \sum_i \cos(2N\vartheta_i)$$

 Z_2 sym. breaking transition = Z_4 clock model (c=1).

CFT with c=1 (similar to KT)

$$[\Delta_{Z_2}] = [e^{i\theta_i}] = [e^{i2\vartheta_i}] = 1/2$$

$$\Delta_{nem_{0,0}^{0,0}} \int_{0,0}^{0,0} \int_{0,0}^{0,0} \int_{0,0}^{0,0} \int_{0,0}^{0,0} |t|$$

$$\xi_{KT} \sim e^{\frac{c}{\sqrt{|T-T_c|}}}$$

$$\Delta_{nem} \sim \xi^{-1/2}$$

Super-linear onset!

$$\Delta_{nem,KT}(T) = \Delta_{nem}(T > T^*) + C_1 e^{-\frac{C_2}{\sqrt{|T - T^*|}}}$$

Fitting parameters : C_1, C_2

Outline

1. Motivation / Facts

2. Existence of a thermal deconfined transition in 2d

3. Novel universality class of symmetry breaking transitions

4. Conclusion
Conclusion

Strongly correlated quantum materials

 $YB_2Cu_3O_7$

 α -RuCl₃

Twisted bi-layer graphene

Mann, Nature 2011 High Tc Superconductivity

Phys. org (2017) Majorana Fermions

Phys. org (2019) **Topological SC?**

Conclusion

Strongly correlated quantum materials

Phenomena beyond Landau paradigms

| Landau | Beyond Landau |
|----------------------------|----------------------|
| UV d.o.f \simeq IR d.o.f | UV d.o.f. ≠ IR d.o.f |
| Wilson-Fisher class | Universality class X |

Conclusion

Strongly correlated quantum materials

Phenomena beyond Landau paradigms

| Landau | Beyond Landau |
|----------------------------|----------------------|
| UV d.o.f \simeq IR d.o.f | UV d.o.f. ≠ IR d.o.f |
| Wilson-Fisher class | Universality class X |

Platform for new physics!

Thank you for your attention!

Excitations

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

- Flux (vison) pair
- 2π vortex of order parameter
- 4π vortex of order parameter

Excitations

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

- Flux (vison) pair
- 2π vortex of order parameter
- 4π vortex of order parameter

Excitations

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

- Flux (vison) pair
- 2π vortex of order parameter
- 4π vortex of order parameter

Two limits

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

Confinement limit (g << T, J, u)
: gauge contributions are averaged away

- Deconfinement limit ($g \gg T, J, u$)
 - : gauge fluxes are frozen. (F =+1, σ =+1)

Two limits

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

- Confinement limit (g << T, J, u)

$$H_{eff} = -\tilde{J} \sum_{\langle i,j \rangle} \cos(\theta_i - \theta_j) - u \sum_i \cos(N\theta_i) + \cdots$$

- Deconfinement limit ($g \gg T, J, u$)

$$H_{eff} = -J\sum_{\langle i,j\rangle} \cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i \cos(N\theta_i)$$

Two limits

$$H_s = -J\sum_{ij}\sigma_{ij}\cos(\frac{\theta_i - \theta_j}{2}) - u\sum_i\cos(N\theta_i) + gV_F(\{F_{i^*}\})$$

- Confinement limit (g << T, J, u)

Symmetry breaking ~ 2π vortex proliferation

- Deconfinement limit ($g \gg T, J, u$)

Symmetry breaking ~ 4π vortex proliferation