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1) Review of basics     

2)  Decay to AdS — a looming threat
          False to true may be forbidden

3)  de Sitter transitions — history (and future?)
          True to false always allowed



I. INTRODUCTION

There has recently been renewed interest in the problem of vacuum tunneling in de Sitter
spacetime. Although this interest has been sparked in large part by developments in string
theory, the tunneling problem itself can be addressed within the context of quantum field
theory. The essence of the problem is captured by considering a theory with a single scalar
field described by the Lagrangian

L =
1

2
(∂µφ)2 − V (φ) (1.1)

where the scalar field potential has two unequal minima, as illustrated in Fig. 1. The
lower minimum corresponds to the stable “true vacuum” state, while the higher minimum
corresponds to a metastable “false vacuum”.

At zero temperature, and in the absence of gravitational effects, the false vacuum decays
via a quantum mechanical tunneling process that leads to the nucleation of bubbles of true
vacuum. The semiclassical calculation of the bubble nucleation rate per unit volume, Γ, is
well understood [1,2]. It can be written in the form

Γ = Ae−B (1.2)

where B is obtained from the action of the “bounce” solution to the Euclideanized field
equations. This bounce solution has a region of approximate true vacuum (essentially, a
four-dimensional bubble) separated by a wall region from a false vacuum exterior.
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FIG. 1. The potential for a typical theory with a false vacuum.

At finite temperature, bubble nucleation proceeds via both quantum tunneling and ther-
mal fluctuations. When the temperature T is high enough that the latter process dominates,
Γ can still be written in the form of Eq. (1.2), but with B = E/T , where E is the energy of
a critical bubble.

In this paper we will be concerned with vacuum tunneling in situations where gravita-
tional effects are important. We will assume that V (φ) > 0 everywhere, so that both the
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Formal O(4) symmetry: Look for O(4)-symmetric bounces
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Fig. 12.5. The potential of Eq. (12.21) for various values of b. From top to
bottom, the curves correspond to b = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.

Numerically solving the bounce equation for several values of b gives the
solutions shown in Fig. 12.6. Notice that for b ! 0.6 the field at the center
of the bounce, s = 0, is visibly different from its true vacuum value. The
actions for these bounces are shown in Fig. 12.7, where g2B is plotted as a
function of b. It can be seen that the quantity C in Eq. (12.20), although
formally of order unity, can be quite large.

An expression for the pre-exponential factor in the decay rate for a sin-
gle degree of freedom was obtained in Sec. 9.4. This is easily generalized
to the field theory case [230]. Because the bounce solution is not spa-
tially homogeneous, there are three zero modes, corresponding to spatial
translation of the bounce, in addition to the zero mode corresponding
to translation in Euclidean time.3 These new zero modes require the in-
troduction of three collective coordinates, which can be chosen to be the
location of the center of the bounce.

A second factor to be taken into account is that in a field theory the
determinant factors have divergences that remain even after their ratio
is taken. These are completely analogous to the divergence that we en-
countered in the course of calculating the first quantum corrections to the
energy of a soliton in Sec. 2.2. The remedy is similar — we simply add
the leading counterterm corrections to the calculation of our Euclidean

3 Further zero modes can appear if the theory has an internal symmetry that is broken
by the bounce [272]. However, as discussed in Sec. 9.5, there must be only a single
negative mode because a solution with multiple negative modes gives only a saddle
point, rather than a minimum, of the tunneling exponent B.
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Fig. 12.6. The bounce solutions for the potential of Eq. (12.21). Reading from
left to right, these correspond to b = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2.
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Fig. 12.7. The quantity g2B as a function of b for the potential of Eq. (12.21).
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FIG. 1: Schematic view of a bounce in flat spacetime. The shaded region represents the region

of approximate true vacuum. This is separated from the false vacuum exterior by the wall region

represented by the solid black line. (In actuality the field has an exponential tail and only reaches

its exact false vacuum value at τ = −∞.) The horizontal dashed lines represent hypersurfaces of

constant τ that trace out a path in configuration space. The heavy dashed lines correspond to the

initial pure vacuum configuration and to the final field configuration at bubble nucleation. {flat-bounce

bounce is a local minimum of B, it only corresponds to a saddle point of SE , a point to

which we will return shortly.

In a scalar field theory, with thermal and gravitational effects ignored, the bounce describ-

ing tunneling from a false vacuum is a solution on Euclidean R4 that approaches the false

vacuum value φfv as either |x| or τ tends to infinity. With only minimal restrictions on the

potential U(φ), it can be shown that the bounce with the smallest action is O(4)-symmetric.

Figure 1 illustrates such a bounce in the thin-wall limit.

The prefactor C can be obtained by a path integral argument. Consider the matrix

element

⟨φfv|e−HT |φfv⟩ =

∫

[dφ(x, τ) e−SE [φ]

=
∑

n

e−EnT ⟨φfv|n⟩⟨n|φfv⟩ (2.4)

Here the path integral is restricted to paths that begin and end on the false vacuum config-

uration. In the limit T → ∞, the sum over energy eigenstates in the second expression is

dominated by the state with the lowest energy among those that contribute to the matrix

element. Identifying this as the energy of the false vacuum, we have

Efv = − lim
T→∞

1

T
ln ⟨φfv|e−HT |φfv⟩ (2.5) {EfvFromLog
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The path integral is evaluated by expanding about its stationary points. The first of

these is the constant solution with φ(x) = φfv everywhere. A Gaussian integral about this

gives

I0 = [detS ′′(φfv)]
−1/2 e−SE(φfv) (2.6)

where S ′′ denotes the second functional derivative of the Euclidean action and the deter-

minant should be formally viewed as the product of the eigenvalues of this operator. It is

convenient to consider space to have a finite volume Ω, which is understood to be taken to in-

finity at the end of the calculation. This regulates an infrared divergence in the determinant,

whose logarithm is proportional to ΩT for large Ω.1

Next, we have the bounce solution. This would give a similar Gaussian integral were it not

for two factors. First, the spectrum of S ′′(φbounce) includes four zero modes, corresponding

to the freedom to translate the bounce in Euclidean space and time; these are handled

by introducing collective coordinates specifying the location of the center of the bounce.

Second, the spectrum also contains a mode with negative eigenvalue, corresponding roughly

(and exactly, in the thin-wall limit) to expansion or contraction of the bounce. This negative

mode leads to a factor of i when the square root of the determinant is taken. The contribution

to the path integral can be written as

I1 =
i

2
ΩT

∣

∣

∣

∣

det′ S ′′(φbounce)]

detS ′′(φfv)

∣

∣

∣

∣

−1/2

J e−[SE(φbounce)−SE(φfv)] I0

≡ iΩTKe−B I0 (2.7) {I1formula}

Here the factor of ΩT arises from integrating over the four collective coordinates, J contains

the Jacobian factors associated with the introduction of the collective coordinates, and the

factor of 1/2 comes from a careful treatment of the negative mode. Finally, the prime on

the bounce determinant indicates that the product of eigenvalues is to be taken only over

the nonzero eigenvalues.

There are also approximate stationary points corresponding to many well-separated

bounces. The n-bounce solution has an action

SE(φn−bounce) = SE(φfv) + n [SE(φbounce)− SE(φfv)] = SE(φfv) + nB (2.8)

1 The determinant also has ultraviolet divergences, but these are cancelled by the usual renormalization

procedures and will not concern us.
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4 zero modes,  1 negative mode

the bounce determinant indicates that the product of eigenvalues is to be taken only over

the nonzero eigenvalues.

There are also approximate stationary points corresponding to many well-separated

bounces. The n-bounce solution has an action

SE(φn−bounce) = SE(φfv) + n [SE(φbounce)− SE(φfv)] = SE(φfv) + nB (2.8)

The integration over the collective coordinates gives a factor of (ΩT )n/n!, with the n! entering

because the bounces are indistingushable. Similarly, the factor of J becomes Jn. We only

are left to consider the determinant factors.

Outside the wall region the bounce solution φbounce rapidly approaches the pure false

vacuum, with |φbounce(x)−φfv| decreasing exponentially with distance. Thus, we can imagine

evaluating the determinant for the one-bounce case by dividing Euclidean space into a large

(compared to the bounce radius) region enclosing the bounce, and the remainder. The full

determinant is then the product of the contributions of the two regions. In the latter region

the bounce is exponentially close to the false vacuum and the contributions to the bounce

and the false vacuum determinants are essentially equal. In the region containing the bounce

the determinants corresponding to φbounce and φfv differ precisely by the ratio that appears

in Eq. (2.7).

For an n-bounce configuration, with the bounces all well separated, the Euclidean space-

time can be divided into n regions, each containing one bounce, and the remainder, in which

the field is essentially equal to its false vacuum region. The full determinant is the product

of the contributions from each of these regions, with the net contribution to the path integral

being

In =
1

n!

(

iΩTKe−B
)n

I0 (2.9)

Summing the contributions from all values of n gives

I = I0

∞
∑

n=0

1

n!

(

iΩTKe−B
)n

= I0 exp
[

iΩTKe−B
]

(2.10) {Isum}

Taking the logarithm and using Eq. (2.5) gives

Efv = − lim
T→∞

(

ln I0
T

)

= −iΩKe−B (2.11)
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Complex energy             unstable state

� =
2ImEfv

⌦
= 2Ke�B

One, and only one, negative mode essential    

Coleman:  Additional negative modes            bounce of lower action       



Including gravity -- Coleman-De Luccia 

Add Euclidean Einstein-Hilbert term to action, solve Euclidean 
     matter + metric equations

Assume O(4) symmetry:

a true vacuum bubble at x4 = 0, and then returns in an x4-reversed fashion to a false vacuum
configuration at x4 = ∞ [2, 3]. The tunneling exponent

B = S(φb)− S(φfv) (2.2)

is the difference between the Euclidean action of the bounce and that of the pure false
vacuum1. The Lorentzian configuration at nucleation is given by a spacelike slice through
the bounce at x4 = 0; at nucleation the Lorentzian-time field is instantaneously at rest.

Coleman and De Luccia argued that the effects of gravity on bubble nucleation could be
incorporated by adding a gravitational contribution to the action, which for a theory with
a single scalar field then reads

S =

∫

d4x
√
g

[

1

2
gab∂aφ ∂bφ+ U(φ)−

1

2κ
R

]

+ Sbdy . (2.3)

Here the last term in the integral is the Einstein-Hilbert action, with κ = 8πGN , while Sbdy

is the Euclidean version of the Gibbons-Hawking boundary action [20].
This boundary term, which does not appear explicitly in Ref. [1], requires some comment.

Decays from a de Sitter vacuum are governed by compact bounces, so there is no boundary
term. On the other hand, the bounces for decays from Minkowski or anti-de Sitter vacua
are infinite in extent, so their actions are potentially divergent, as are the Gibbons-Hawking
terms, and must be regularized. The physically significant quantity is the difference B
between the actions of the bounce and of the pure false vacuum. We show in Appendix A
that with proper regularization B is finite and independent of whether or not the Gibbons-
Hawking term is included.

For a single scalar field, it is known that in flat spacetime the bounce has O(4) symme-
try [21]. Although no comparable result has been proven for curved spacetime, in this work
we will assume the same symmetry. With this symmetry the metric takes the form:

ds2 = dξ2 + ρ(ξ)2dΩ2
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The action can then be written as

S = 2π2

∫ ξmax

ξmin

dξ
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ρ3
[

1

2
φ′2 + U(φ)

]

+
3

κ
(ρ2ρ′′ + ρρ′2 − ρ)

}

−
6π2

κ
ρ2ρ′

∣

∣

∣

∣
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ξ=ξmin

(2.5)

with primes indicating differentiation with respect to ξ. An integration by parts, with the
boundary term exactly canceled by the Gibbons-Hawking term, gives
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ξmin

dξ
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ρ3
[

1

2
φ′2 + U(φ)

]

−
3

κ
(ρρ′2 + ρ)

}

. (2.6)

The equations of motion that follow from this action are

φ′′ + 3
ρ′

ρ
φ′ =

dU

dφ
, (2.7)

ρ′2 = 1 +
κ

3
ρ2

[

1

2
φ′2 − U(φ)

]

. (2.8)

1 Because all actions in this paper will be Euclidean, we will simplify notation by omitting a subscript E.
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CDL  Thin-wall approximation

A further useful equation, obtained by differentiating Eq. (2.8) and then using Eq. (2.7),
is

ρ′′ = −
κ

3

[

φ′2 + U(φ)
]

ρ . (2.9)

The boundary conditions for these equations depend on the topology of the solution. To
avoid a singularity, φ′ must vanish at any zero of ρ. In all bounce solutions there is at least
one such zero, which can be taken to lie at ξ = 0. Bounces describing decays from a de
Sitter vacuum have a second zero (and thus an S4 topology), but for decays from an anti-de
Sitter or Minkowski vacuum, such as we are concerned with in this work, any acceptable
bounce must have an R4 topology and thus only a single zero of ρ. We thus have ξmin = 0
and ξmax = ∞ and the boundary conditions

φ′(0) = 0, φ(∞) = φfv, ρ(0) = 0 . (2.10)

The field equations can be used to obtain simpler expressions for the action of the bounce
solution. First, as pointed out by CDL, substitution of Eq. (2.8) into Eq. (2.6) gives

S = 4π2

∫ ∞

0

dξ

[

ρ3U(φ)−
3

κ
ρ

]

. (2.11)

Note that this integral will be divergent for both the bounce and for the initial false vacuum.
An alternative expression is obtained by substituting Eqs. (2.8) and (2.9) for ρ′2 and ρ′′ into
Eq. (2.5). This gives

S = −2π2

∫ ∞

0

dξ ρ3U(φ) + boundary terms . (2.12)

For decay from a Minkowski vacuum the boundary terms of the bounce and of the false
vacuum cancel in the calculation of B. Since U(φ) is identically zero in the false vacuum,
we then have

B = −2π2

∫ ∞

0

dξ ρ3U(φ) . (2.13)

B. Thin-Wall Approximation

Coleman and De Luccia computed the bounce action in the thin-wall approximation. In
this limit we can easily distinguish three regions in the profile of the field φ: a region of pure
true vacuum (inside the bounce), a region of pure false vacuum (outside the bounce) and
a well defined thin wall at ρ = ρ̄ separating the two regions. This approximation requires
that the energy difference between the two vacua,

ϵ = U(φfv)− U(φtv) , (2.14)

be small compared to the other mass scales in the potential.
The existence of these distinct regions suggests splitting the integration region in the

actions into three parts, whose contributions to the tunneling exponent are

Boutside = 0 , (2.15)

Bwall = 2π2ρ̄3σ ≡ 4π2ρ̄3
∫

dξ [U(φ)− U(φfv)] , (2.16)

Binside =
12π2

κ2

{

1

U(φtv)

[

(

1−
κ

3
ρ̄2U(φtv)

)3/2

− 1

]

− (φtv → φfv)

}

. (2.17)
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Why?

Euclidean approach:  Must balance positive wall action 
against negative volume contribution.   Can’t be done in 
AdS if bounce is too large.

Lorentzian approach:   Conservation of energy

These expressions only depend on the location ρ̄ of the wall, the values of the potential at
the vacua, and the surface tension σ of the wall. The location of the wall is determined by
requiring that it be a stationary point of the action.

For transitions from Minkowski to anti-de Sitter the wall is located at

ρ̄ =
ρ̄0

1− (ρ̄0/2ℓ)2
, (2.18)

where ρ̄0 = 3σ/ϵ is the location of the wall in the absence of gravity, and

ℓ = (κϵ/3)−1/2 (2.19)

is the anti-de Sitter radius. The tunneling exponent is

B =
B0

[1− (ρ̄0/2ℓ)2]2
, (2.20)

where the subscript zero indicates the value of the action in the absence of gravitational
effects. If we define a critical value

κcr =
4ϵ

3σ2
, (2.21)

the above results can written as
ρ̄ =

ρ̄0
(1− κ/κcr)

, (2.22)

and

B =
B0

(1− κ/κcr)
2 . (2.23)

Gravity quenches vacuum decay when ρ̄0 ≥ 2ℓ or, equivalently, when κ ≥ κcr.
For comparison with later results, we note that the thin-wall approximation for a theory

with a quartic potential with almost degenerate vacua at φ = 0 and φ = v predicts that the
field profile in the wall is

φ =
v

2

{

tanh
[µ

2
(ξ − ξ̄)

]

+ 1
}

, (2.24)

where µ2 = U ′′(φfv).

C. Energy considerations

Quantum tunneling in Minkowski space must conserve energy. With gravitational effects
ignored, this implies that the energy of the spherically symmetric and instantaneously static
configuration at the time of bubble nucleation must vanish; i.e.,

0 = 4π

∫

dr r2
(

1

2
φ′2 + U

)

. (2.25)

This constraint is modified a bit when gravity is taken into account. Recall that a static
spherically symmetric metric can be written in the form

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2
2 . (2.26)
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Einstein’s equations lead to

A(r) =

[

1−
2GNM(r)

r

]−1

, (2.27)

where

M(r) = 4π

∫ r

0

ds s2ρ̃(s) (2.28)

with ρ̃ the energy density. Conservation of energy becomes the requirement that the ADM
mass M = M(∞) vanish. For our scalar field theory,

ρ̃ =
1

2A

(

dφ

dr

)2

+ U

=
1

2

(

dφ

dξ

)2

+ U . (2.29)

If we identify ρ with r on the x4 = 0 spacelike surface, our requirement becomes

0 = 4π

∫ ∞

0

dρ ρ2
(

1

2
φ′2 + U

)

= 4π

∫ ∞

0

dξ ρ2ρ′
(

1

2
φ′2 + U

)

. (2.30)

Now note that

d

dξ

[

−ρ3
(

1

2
φ′2 − U

)]

= ρ3
(

−φ′φ′′ + φ′dU

dφ

)

− 3ρ2ρ′
(

1

2
φ′2 − U

)

= 3ρ2ρ′
(

1

2
φ′2 + U

)

, (2.31)

where the second equality is obtained by using Eq. (2.7) to eliminate φ′′. The quantity in
brackets clearly vanishes at ξ = 0. It also vanishes as ξ → ∞, provided that φ′2 and U fall
faster than 1/ρ3, which they do for a bounce describing decay from a Minkowski vacuum.

Hence, any solution of the Minkowski to AdS bounce equations is guaranteed to conserve
energy. If energy cannot be conserved, then tunneling is impossible. Indeed, both CDL and
S. Weinberg [22] explain the absence of tunneling when κ ≥ κcr by showing that in this
regime it is impossible to construct a thin-wall bounce that conserves energy. We will see
presently how this line of argument can be applied beyond the usual thin-wall approximation.

III. THICK-WALL BOUNCES — NUMERICAL RESULTS

The thin-wall approximation has the attractive feature of producing analytic expressions
for the bounce action and for the field profile of the bounce. Unfortunately, its validity is
restricted to a rather special class of potentials, those for which ϵ, the difference in energy
densities between the true and false vacua, is small compared to the scale set by the potential
barrier separating the two vacua. It is well known that in the absence of gravity a generic
potential that does not satisfy this criterion can yield a “thick-wall” bounce solution in which
the scalar field, even at the center of the bounce, is never close to its true vacuum value.
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Beyond the thin-wall approximation

III. THICK-WALL BOUNCES—NUMERICAL
RESULTS

The thin-wall approximation has the attractive feature of
producing analytic expressions for the bounce action and
for the field profile of the bounce. Unfortunately, its
validity is restricted to a rather special class of potentials,
those for which ϵ, the difference in energy densities
between the true and false vacua, is small compared to
the scale set by the potential barrier separating the two
vacua. It is well known that in the absence of gravity a
generic potential that does not satisfy this criterion can
yield a “thick-wall” bounce solution in which the scalar
field, even at the center of the bounce, is never close to its
true vacuum value. We have explored a number of such
potentials, following the evolution of the bounce as the
strength of gravity is increased. In this section we will use
several examples to illustrate the generic features that we
have found.
First, we consider a number of quartic potentials. An

arbitrary quartic potential can be written in the form

UðϕÞ ¼ λðC0 þ C1ϕþ C2ϕ2 þ C3ϕ3 þ ϕ4Þ: ð3:1Þ

We will assume that λ is positive and that the other
coefficients are such that U has two minima.
Variation of the constants gives five degrees of freedom.

Two, corresponding to translations in the U-ϕ plane, are
fixed by our convention that the true vacuum be at ϕtv ¼ 0
and the requirement that Ufv ¼ 0; the former implies that
C1 ¼ 0, while the latter imposes a constraint relating
ϵ ¼ −λC0, C2, and C3.
Two more degrees of freedom correspond to rescalings

of the height and width of the potential. The first of these is
implemented by varying λ. At the classical level, the effects
of this can be absorbed by a rescaling of the length scale.
Simple scaling arguments show that the bounce action is
proportional to 1=λ, while the width of the field profile is
proportional to 1=

ffiffiffi
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. In our investigation of the bounce

solutions, we find it convenient to work with λ ¼ 1,
keeping in mind the possibility of restoring λ by a rescaling.
In particular, we will be led to consider solutions with fields
comparable to or greater than the Planck mass. By choosing

a suitably small value of λ, the energies associated with
these solutions can always be made sub-Planckian.
Rescaling the width of the potential is implemented by

varying the position of the false vacuum, which we denote
by ϕfv ¼ v. This leaves one remaining degree of freedom.
Although this could be implemented by varying a single
coefficient in the potential, we find it more instructive to
parameterize it by the value of Utop, a quantity that can be
naturally generalized to other, nonpolynomial, potentials.
In Fig. 2, we show the effects of separate variations of the
dimensionless quantities Utop=v4 and ϵ=v4.
Wewill investigate the effects of gravity by following the

evolution of the bounce solutions as the mass scales in the
potential are increased. In order to separate the effects of a
stronger gravitational interaction from those due to a
variation of the field dynamics, we will keep the shape
of the potential unchanged. Thus, we will vary v but hold
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can then be viewed as a measure of the relative strength of
the gravitational interactions. Thus β and Utop=ϵ can be
taken as the dimensionless quantities spanning the param-
eter space of our potentials.
It may be helpful to relate our parameterization of the

quartic potential with that used in Refs. [10] and [11]. For
the case of a Minkowski false vacuum, that potential can be
written as

Uð ~ϕÞ ¼
"
μ
M

#
4
"
−
1

2
M2 ~ϕ2 −

b
3
M ~ϕ3 þ 1

4
~ϕ4

#
þ C ð3:3Þ

where the constant C is chosen so that Ufv ¼ 0, and tildes
have been inserted because their field is shifted relative to
ours, with the top of the barrier lying at ~ϕ ¼ 0. The strength
of gravity is measured by the quantity
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FIG. 2. Quartic potentials with fixed Utop and ϵ=Utop ¼ 0.1, 1, 2, and 5 (on left) and fixed ϵ and Utop=ϵ ¼ 0.1, 1, 2, and 3 (on right).
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III. THICK-WALL BOUNCES—NUMERICAL
RESULTS

The thin-wall approximation has the attractive feature of
producing analytic expressions for the bounce action and
for the field profile of the bounce. Unfortunately, its
validity is restricted to a rather special class of potentials,
those for which ϵ, the difference in energy densities
between the true and false vacua, is small compared to
the scale set by the potential barrier separating the two
vacua. It is well known that in the absence of gravity a
generic potential that does not satisfy this criterion can
yield a “thick-wall” bounce solution in which the scalar
field, even at the center of the bounce, is never close to its
true vacuum value. We have explored a number of such
potentials, following the evolution of the bounce as the
strength of gravity is increased. In this section we will use
several examples to illustrate the generic features that we
have found.
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FIG. 3: Profiles of φ for the quartic potential with Utop/v4 = 0.01 and ϵ/v4 = 1. The solid curves
indicate the best fit of a hyperbolic tangent to the data. Reading from left to right, the curves

correspond to β = 0, 5.747, and 5.763.

FIG. 4: Similar to Fig. 3, but for Utop/v4 = 0.01 and ϵ/v4 = 0.2. Reading from left to right, the
curves correspond to β = 0, 2.70, 3.33, and 3.38.

gravity limit, β = 0, the bounce is clearly a thick-wall solution, with the initial value of
the field not even close to φtv. The corresponding bounce for a potential with ϵ/Utop = 20,
shown in Fig. 4 begins closer to the true vacuum, but immediately evolves rapidly toward
φfv; although there is a suggestion of a bubble wall, there is no clearly defined true vacuum
interior. The bounces in Fig. 5 are closer to one’s conception of a thin-wall bounce, but
with this moderately small ratio ϵ/Utop = 0.4, the quantitative predictions of the thin-wall
analysis are not borne out.

However, in all three cases, with larger β the transition from φtv to φfv occurs at larger
values of ξ and there is a more clearly defined transition region centered about a value
ξ = ξ0. As β is increased, this transition region moves further outward, but with its shape
remaining roughly constant. There is a critical value βcr beyond which there is no bounce.
As this value is approached, ξ0 rapidly increases and, we will argue, tends to infinity in the
critical limit.

In fact, the field profile in the transition region can be approximated by a hyperbolic
tangent, with

φ(ξ) ≈
v

2
{tanh[b(ξ − ξ0)] + 1} . (3.9)
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FIG. 4: Similar to Fig. 3, but for Utop/v4 = 0.01 and ϵ/v4 = 0.2. Reading from left to right, the
curves correspond to β = 0, 2.70, 3.33, and 3.38.
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shown in Fig. 4 begins closer to the true vacuum, but immediately evolves rapidly toward
φfv; although there is a suggestion of a bubble wall, there is no clearly defined true vacuum
interior. The bounces in Fig. 5 are closer to one’s conception of a thin-wall bounce, but
with this moderately small ratio ϵ/Utop = 0.4, the quantitative predictions of the thin-wall
analysis are not borne out.

However, in all three cases, with larger β the transition from φtv to φfv occurs at larger
values of ξ and there is a more clearly defined transition region centered about a value
ξ = ξ0. As β is increased, this transition region moves further outward, but with its shape
remaining roughly constant. There is a critical value βcr beyond which there is no bounce.
As this value is approached, ξ0 rapidly increases and, we will argue, tends to infinity in the
critical limit.

In fact, the field profile in the transition region can be approximated by a hyperbolic
tangent, with

φ(ξ) ≈
v

2
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FIG. 5: Similar to Fig. 3, but for Utop/v4 = 0.25 and ϵ/v4 = 0.1. Reading from left to right, the
curves correspond to β = 0, 0.588, 0.714, and 0.739.

As can be seen in the figures, the fit is surprisingly good, although there is a slight mismatch
where the exponential tails of the hyperbolic tangent overlap with those of the true and false
vacuum regions. We do not have an analytic explanation for this behavior, which we have
found in all of the examples that we have examined. As we saw in Sec. II, one also finds a
hyperbolic tangent in the thin-wall approximation for a quartic potential. However, in that
case the parameter b could be directly read off from the potential and did not depend on
β. In our more general case b varies with β (even in the quasi-thin-wall solutions of Fig. 5),
decreasing as gravitational effects become stronger, and cannot be read off directly from the
parameters in the potential. In the next section we will discuss the computation of b in the
critical limit.

There is another, quite significant difference from the thin-wall approximation. In that
case, the transition region of the hyperbolic tangent clearly maps onto the potential barrier
between the true and false vacua; there is no ambiguity in referring to it as the bounce
wall. Matters are not so clear in the more general case. When ϵ is large compared to
the height of the potential barrier, only the very last part of the transition region of the
hyperbolic tangent maps onto the region where the potential is higher than in the false
vacuum; i.e., onto the true barrier. The rest corresponds to an AdS-like region with a
negative cosmological “constant” that decreases in magnitude as one moves outward. To
emphasize this distinction, we will refer to the entire transition region as a “step”, and use
of the term “wall” to only refer to the region with positive potential. More specifically, we
will define the wall to be the region lying between φleft, the point on the true-vacuum side
where U(φ) = Ufv = 0, and φright, the point on the false vacuum side where φ has gone 90%
of the way from the top of the barrier to the false vacuum.

The details of the bounces for these three potentials are summarized in Tables I–III. In
each table the mass scale, indicated by β, increases as one moves down the table, while the
shape of the potential is held fixed. All dimensionful quantities are quoted in appropriate
units of v; (e.g., the AdS length ℓ is given as a multiple of v−1). The deviation from the true
vacuum of the field at the center of the bounce is measured by the parameter

η ≡
φ(0)− φtv

φfv − φtv
=

φ(0)

v
. (3.10)

The position of the bubble wall, denoted by ξwall and ρwall, is taken to be the point where
φ = φtop, its value at the top of the barrier. The wall thickness, denoted by ∆ξwall and
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ξ = ξ0. As β is increased, this transition region moves further outward, but with its shape
remaining roughly constant. There is a critical value βcr beyond which there is no bounce.
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critical limit.

In fact, the field profile in the transition region can be approximated by a hyperbolic
tangent, with

φ(ξ) ≈
v

2
{tanh[b(ξ − ξ0)] + 1} . (3.9)

10

FIG. 3: Profiles of φ for the quartic potential with Utop/v4 = 0.01 and ϵ/v4 = 1. The solid curves
indicate the best fit of a hyperbolic tangent to the data. Reading from left to right, the curves

correspond to β = 0, 5.747, and 5.763.

FIG. 4: Similar to Fig. 3, but for Utop/v4 = 0.01 and ϵ/v4 = 0.2. Reading from left to right, the
curves correspond to β = 0, 2.70, 3.33, and 3.38.

gravity limit, β = 0, the bounce is clearly a thick-wall solution, with the initial value of
the field not even close to φtv. The corresponding bounce for a potential with ϵ/Utop = 20,
shown in Fig. 4 begins closer to the true vacuum, but immediately evolves rapidly toward
φfv; although there is a suggestion of a bubble wall, there is no clearly defined true vacuum
interior. The bounces in Fig. 5 are closer to one’s conception of a thin-wall bounce, but
with this moderately small ratio ϵ/Utop = 0.4, the quantitative predictions of the thin-wall
analysis are not borne out.

However, in all three cases, with larger β the transition from φtv to φfv occurs at larger
values of ξ and there is a more clearly defined transition region centered about a value
ξ = ξ0. As β is increased, this transition region moves further outward, but with its shape
remaining roughly constant. There is a critical value βcr beyond which there is no bounce.
As this value is approached, ξ0 rapidly increases and, we will argue, tends to infinity in the
critical limit.

In fact, the field profile in the transition region can be approximated by a hyperbolic
tangent, with

φ(ξ) ≈
v

2
{tanh[b(ξ − ξ0)] + 1} . (3.9)

10

FIG. 5: Similar to Fig. 3, but for Utop/v4 = 0.25 and ϵ/v4 = 0.1. Reading from left to right, the
curves correspond to β = 0, 0.588, 0.714, and 0.739.

As can be seen in the figures, the fit is surprisingly good, although there is a slight mismatch
where the exponential tails of the hyperbolic tangent overlap with those of the true and false
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decreasing as gravitational effects become stronger, and cannot be read off directly from the
parameters in the potential. In the next section we will discuss the computation of b in the
critical limit.

There is another, quite significant difference from the thin-wall approximation. In that
case, the transition region of the hyperbolic tangent clearly maps onto the potential barrier
between the true and false vacua; there is no ambiguity in referring to it as the bounce
wall. Matters are not so clear in the more general case. When ϵ is large compared to
the height of the potential barrier, only the very last part of the transition region of the
hyperbolic tangent maps onto the region where the potential is higher than in the false
vacuum; i.e., onto the true barrier. The rest corresponds to an AdS-like region with a
negative cosmological “constant” that decreases in magnitude as one moves outward. To
emphasize this distinction, we will refer to the entire transition region as a “step”, and use
of the term “wall” to only refer to the region with positive potential. More specifically, we
will define the wall to be the region lying between φleft, the point on the true-vacuum side
where U(φ) = Ufv = 0, and φright, the point on the false vacuum side where φ has gone 90%
of the way from the top of the barrier to the false vacuum.

The details of the bounces for these three potentials are summarized in Tables I–III. In
each table the mass scale, indicated by β, increases as one moves down the table, while the
shape of the potential is held fixed. All dimensionful quantities are quoted in appropriate
units of v; (e.g., the AdS length ℓ is given as a multiple of v−1). The deviation from the true
vacuum of the field at the center of the bounce is measured by the parameter

η ≡
φ(0)− φtv

φfv − φtv
=

φ(0)

v
. (3.10)

The position of the bubble wall, denoted by ξwall and ρwall, is taken to be the point where
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tunneling exponent one should worry about the validity
of the dilute gas approximation that underlies the
bounce formalism. However, it should be kept in mind
that the values in the table correspond to λ ¼ 1; for
weaker coupling B would be increased by a factor
of 1=λ.
We have also considered a family of nonpolynomial

potentials of the form

U ¼ λv4
!
− cos

"
αϕ
v

#
− p cos

"
3αϕ
v

#
þ q

$
ð3:12Þ

where α and q are determined by the requirement that
there be a Minkowskian false vacuum at ϕ ¼ v. As with
the quartic potentials, the effects of λ at the classical
level can be absorbed by a rescaling, and so for
convenience we set it equal to unity. As an example,
in Fig. 6 we show several bounces for a potential with
p ¼ 0.5, corresponding to ϵ=v4 ¼ 1.404 and Utop=v4 ¼
0.1925, and give related data in Table IV.
We have observed a number of regularities that persist

in all of the examples we have considered:

(1) Equations (2.22) and (2.23) show that in the
thin-wall limit both the bounce radius ρ̄ and the
tunneling exponent B diverge as κ approaches
a critical value, with their values being proportional
to ðκcr − κÞ−1 and ðκcr − κÞ−2, respectively. Figures 7

TABLE II. The same as for Table I, but for the potential used in Fig. 4, with Utop=v4 ¼ 0.01 and ϵ=v4 ¼ 0.2. For this potential
βcr ¼ 3.38058.

β B ξwall ρwall lAdS Δξwall Δρwall η σwall b

0 54.2 4.32 4.318 ∞ 2.39 2.39 0.05013 0.0216 0.70
0.100 54.36 4.31 4.323 38.7 2.397 2.398 0.05014 0.0216 0.70
1.000 67.02 4.42 4.03 3.87 2.472 2.563 0.05053 0.0224 0.68
2.500 309.7 5.17 11.5 1.549 2.857 4.269 0.04094 0.0264 0.56
2.564 355.2 5.24 12.36 1.51 2.881 4.483 0.03955 0.0266 0.56
2.703 500.0 5.41 14.81 1.43 2.934 5.082 0.03598 0.0272 0.54
3.226 8678 6.88 63.9 1.201 3.165 16.77 0.01193 0.0295 0.48
3.367 1.1 × 106 9.54 725.2 1.15 3.236 173.1 9.9 × 10−4 0.0302 0.46
3.378 4.1 × 107 11.6 4427 1.146 3.242 1048 1.3 × 10−4 0.0303 0.46
3.380 1.7 × 108 12.4 9084 1.146 3.243 2148 6.0 × 10−5 0.0303 0.46

TABLE III. The same as for Table I, but for the potential, used in Fig. 4, with Utop=v4 ¼ 0.25 and ϵ=v4 ¼ 0.1. For this potential
βcr ¼ 0.73986.

β B ξwall ρwall lAdS Δξwall Δρwall η σwall b

0 9294 15.5 15.5 ∞ 1.5 1.5 2.2 × 10−19 0.36 1.54
0.200 10820 15.83 16.7 27.39 1.503 1.591 7.3 × 10−20 0.37 1.54
0.333 14640 16.6 19.48 16.43 1.51 1.797 8.0 × 10−21 0.37 1.53
0.500 3.2 × 103 18.64 28.73 10.95 1.525 2.482 2.1 × 10−23 0.37 1.51
0.556 4.9 × 104 19.87 35.87 9.859 1.531 3.008 5.9 × 10−25 0.38 1.51
0.588 6.8 × 104 20.85 42.58 9.311 1.535 3.503 3.3 × 10−26 0.38 1.50
0.625 1.1 × 105 22.33 54.77 8.764 1.54 4.402 4.3 × 10−28 0.38 1.50
0.667 2.6 × 105 24.92 83.49 8.216 1.546 6.518 2.1 × 10−31 0.38 1.49
0.714 2.0 × 106 31.59 230.7 7.668 1.553 17.35 5.7 × 10−40 0.38 1.48
0.735 6.4 × 107 43.67 1279 7.449 1.557 94.58 1.4 × 10−55 0.38 1.48
0.739 1.0 × 1010 58.85 10120 7.416 1.557 746.3 2.9 × 10−75 0.38 1.48

FIG. 6. Similar to Fig. 3, but for the potential of Eq. (3.12), with
p ¼ 0.5 and ϵ=Utop ¼ 7.30. Reading from left to right, the curves
correspond to β ¼ 0, 2.0, 2.2 and 2.5.
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connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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Region III, ⇠3 < ⇠ < 1 E ⇡ 0

Region 1, 0 < ⇠ < ⇠1 E ⇡ ✏� ⇡ �tv , ⇢ ⇡ ` sinh(⇠/`) ,

� ⇡ �fv , ⇢ ⇡ ⇢(⇠3) + (⇠ � ⇠3) ,

Region IIb, ⇠2 < ⇠ < ⇠3

connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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Region IIa, ⇠1 < ⇠ < ⇠2

connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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Analytic understanding



Region IIa:  

connects the other two.2 (As we have seen, Region I is
absent for some weak gravity solutions, but it always
appears once gravity is strong enough.)
In Region I ϕ is close to its true vacuum value, so to a

good approximation Eq. (2.8) is solved by

ρðξÞ ¼ l sinhðξ=lÞ: ð4:1Þ

In the linearized approximation Eq. (2.7) then reduces to

ϕ00 þ 3 coshðξ=lÞ
l sinhðξ=lÞ

ϕ0 ¼ U00ðϕtvÞðϕ − ϕtvÞ

≡ μ2t ðϕ − ϕtvÞ: ð4:2Þ

Changing variables to y ¼ coshðξ=lÞ and setting ϕtv ¼ 0
gives

ðy2 − 1Þ d
2ϕ
dy2

þ 4y
dϕ
dy

¼ l2μ2tϕ: ð4:3Þ

This has the solution

ϕðξÞ ¼ ϕð0ÞC
ð3=2Þ
α ½coshðξ=lÞ&
Cð3=2Þ
α ð1Þ

¼ ϕð0Þ 2C
ð3=2Þ
α ½coshðξ=lÞ&
ðαþ 2Þðαþ 1Þ

; ð4:4Þ

where Cð3=2Þ
α ðyÞ is a Gegenbauer function of the first kind,

with αðαþ 3Þ ¼ μ2t l2. The fact that Cð3=2Þ
α ð1Þ is finite for

all real positive α guarantees that dϕ=dξ vanishes at ξ ¼ 0,
as required; it is this boundary condition that eliminates the
Gegenbauer function of the second kind, Dð3=2Þ

α ðyÞ. If ξ=l
is moderately large, we can use the large argument
approximation for the Gegenbauer function to obtain

ϕ ∼ eaξ=l ð4:5Þ

with

a¼ −
3

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

4
þ μ2tl2

r
: ð4:6Þ

In Region III ϕ is close to its false vacuum value, so ρ is
almost linear in ξ, with

ρðξÞ ≈ ρðξ3Þ þ ðξ − ξ3Þ: ð4:7Þ

The linearized equation for ϕ then becomes

ϕ00 þ 3

ρ
ϕ0 ¼ U00ðϕfvÞðϕ − ϕfvÞ≡ μ2fðϕ − ϕfvÞ: ð4:8Þ

As we approach the critical solution ρðξ3Þ becomes
exponentially large, so the second term in this equation
can be ignored and we have

ϕfv − ϕðξÞ ∼ e−μfξ: ð4:9Þ

To understand Region II, which connects these two
regions, it is helpful to follow Coleman’s insight [2] and
view the problem in terms of a particle moving in an
upside-down potential −UðϕÞ while subject to a frictional
force given by the ϕ0 term in Eq. (2.7). This suggests
defining a pseudo-energy

E ¼ 1

2
ϕ02 −UðϕÞ: ð4:10Þ

This is not conserved; instead, the friction term in Eq. (2.7)
causes it to decrease with ξ, with3

E0 ¼ −3
ρ0

ρ
ϕ02: ð4:11Þ

Now note that Eq. (2.8) can be recast as

ρ02

ρ2
¼ 1

ρ2
þ κ
3
E: ð4:12Þ

For all but the very beginning of Region I, the second term
dominates the right-hand side, and we can make the
approximation

ρ0

ρ
¼

ffiffiffi
κ
3

r ffiffiffiffi
E

p
: ð4:13Þ

This continues to hold in Region II until we reach a point
ξ2, where E has decreased enough that ðκ=3ÞE ≈ 1=ρ2. We
will refer to this interval, ξ1 < ξ < ξ2, as Region IIa. In
Region IIb, ξ2 < ξ < ξ3, the first term dominates the right-
hand side of Eq. (4.12). (See Fig. 9.)
In Region IIa, Eq. (4.13) leads to

E0 ¼ −
ffiffiffiffiffi
3κ

p
ϕ02

ffiffiffiffi
E

p
: ð4:14Þ

Integrating this and noting that Eðξ1Þ ≈ ϵ leads to

ffiffiffiffiffiffiffiffiffiffi
EðξÞ

p
¼

ffiffiffi
ϵ

p
−

ffiffiffiffiffi
3κ
4

r Z
ξ

ξ1

dξ ϕ02; ð4:15Þ

from which we obtain

2There is some freedom in defining ξ1 and ξ3. One could, e.g.,
arbitrarily choose them to be the values of ξ at which ϕ is equal to
0.01v and 0.99v.

3The CDL formalism allows anti-friction, with E0 > 0; this is
always encountered in decays from a de Sitter false vacuum, and
might seem to be possible here when crossing the potential barrier
where U is positive. However, a bounce that has a period of anti-
friction is necessarily compact, and therefore cannot describe
decay from a Minkowski (or anti-de Sitter) vacuum.
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In Region IIb (and indeed also in Region III)
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with the linear behavior indicating that the space is
approximately Minkowskian. The pseudo-energy is
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As the gravitational interactions grow stronger, the tran-
sition from Region II to Region III takes place at ever larger
values of ξ3. In the critical limit ξ3 → ∞, the Minkowskian
false vacuum is never reached and the bounce solution
disappears. This limit is signaled by the vanishing of Ewhile
Eq. (4.15) is still valid. This implies that
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We can now understand why the field profile in Region II
remains relatively constant for large values of β and κ, even
as the step itself moves to larger and larger ξ. As the critical
value of β is approached, the initial value of ϕmoves closer
to the true vacuum, with the result that the transition from
Region I to Region II occurs at a larger value of ξ1. Because
ρ grows exponentially with ξ in region I [see Eq. (4.1)], its
value at the transition to Region II, ρðξ1Þ, increases
exponentially with increasing β .
We next note that Eq. (4.14), which governs the field

profile in Region IIa, can be rewritten as
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Because ρ does not appear in this equation, the profile for ϕ
as a function of ξ does not depend on the value of ρ in
Region IIa. Further, Eq. (4.16) tells us that the growth factor
ρðξÞ=ρðξ1Þ is also independent of ρ in this region.

Now consider Region IIb. The transition from Region IIa
occurs at ξ2, the point where ðκ=2ÞE ¼ 1=ρ2. As ρðξ1Þ (and
therefore ρ throughout Region IIa) increases, this transition
occurs at an ever larger value of ξ. This has several
consequences. First, Region IIb accounts for a smaller
and smaller fraction of Region II. Second, with ρðξ2Þ
exponentially large in the near-critical regime, the friction
term is negligible in Region IIb, implying a field profile that
is independent of ρ. Finally, we see from Eq. (4.17) that the
variation of ρ in this region is negligible.
The net result is that in the near-critical regime we can

write
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where
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In the thin-wall approximation, the absence of tunneling at
large κ could be explained by the impossibility of finding a
wall radius ρ̄ large enough that the negative contribution
from the true vacuum interior exactly canceled the positive
wall contribution to give zero net energy. We can now see
how this generalizes to the thick wall case. Energy con-
servation requires that the energy integral in Eq. (2.30)
vanish. The contribution to this integral from Region I is

Z
ξ1

0
dξ ρ2ρ0U ¼ −

ϵ
3
ρðξ1Þ3; ð4:23Þ

up to exponentially small corrections. The contribution from
Region II can be written, with the aid of Eqs. (4.13) and
(4.16), as
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FIG. 9. The metric function ρ (dashed red line) and field ϕ (solid blue line) in three examples with, from left to right, weak, medium,
and strong gravity. The metric has been rescaled (by factors of 0.1, 0.005, and 0.00005, respectively) in order to fit it on the same graph
as ϕ. In all three cases the actual asymptotic slope of ρ is unity. Note how the transition from Region IIa to Region IIb occurs later as the
strength of gravity increases.
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therefore ρ throughout Region IIa) increases, this transition
occurs at an ever larger value of ξ. This has several
consequences. First, Region IIb accounts for a smaller
and smaller fraction of Region II. Second, with ρðξ2Þ
exponentially large in the near-critical regime, the friction
term is negligible in Region IIb, implying a field profile that
is independent of ρ. Finally, we see from Eq. (4.17) that the
variation of ρ in this region is negligible.
The net result is that in the near-critical regime we can
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In the thin-wall approximation, the absence of tunneling at
large κ could be explained by the impossibility of finding a
wall radius ρ̄ large enough that the negative contribution
from the true vacuum interior exactly canceled the positive
wall contribution to give zero net energy. We can now see
how this generalizes to the thick wall case. Energy con-
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FIG. 9. The metric function ρ (dashed red line) and field ϕ (solid blue line) in three examples with, from left to right, weak, medium,
and strong gravity. The metric has been rescaled (by factors of 0.1, 0.005, and 0.00005, respectively) in order to fit it on the same graph
as ϕ. In all three cases the actual asymptotic slope of ρ is unity. Note how the transition from Region IIa to Region IIb occurs later as the
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exponentially large in the near-critical regime, the friction
term is negligible in Region IIb, implying a field profile that
is independent of ρ. Finally, we see from Eq. (4.17) that the
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In the thin-wall approximation, the absence of tunneling at
large κ could be explained by the impossibility of finding a
wall radius ρ̄ large enough that the negative contribution
from the true vacuum interior exactly canceled the positive
wall contribution to give zero net energy. We can now see
how this generalizes to the thick wall case. Energy con-
servation requires that the energy integral in Eq. (2.30)
vanish. The contribution to this integral from Region I is
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FIG. 9. The metric function ρ (dashed red line) and field ϕ (solid blue line) in three examples with, from left to right, weak, medium,
and strong gravity. The metric has been rescaled (by factors of 0.1, 0.005, and 0.00005, respectively) in order to fit it on the same graph
as ϕ. In all three cases the actual asymptotic slope of ρ is unity. Note how the transition from Region IIa to Region IIb occurs later as the
strength of gravity increases.
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TABLE V: The values of βcr for the potentials considered in Tables I-IV obtained by three different

methods: (i) extrapolating from the data in the tables; (ii) shooting, using Eq. (4.20); and (iii)
inserting the measured value of b into Eq. (4.26).

Extrapolation Shooting Using b

Table I 5.76 5.75 5.75

Table II 3.38 3.38 3.37

Table III 0.739 0.737 0.735

Table IV 2.50 2.50 2.52

FIG. 10: Boundary of the stability region. Decay from the Minkowski false vacuum is completely

quenched in the region of parameters space above and to the right of the curves. The black curve
corresponds to the quartic potential, the red curve just barely above it to the non-polynomial
potentials of Eq. (3.12), and the blue to a family of potentials such as that in Fig. 11.

and scanned their parameter spaces. We have found, through a combination of analytical
and numerical methods, that there is always a region of parameter space in which tunneling
is quenched by gravity; i.e., for any given potential, increasing the effects of gravity by
uniformly raising the mass scales in that potential will eventually render the false vacuum
stable. This confirms and extends previous work [10–12].

As discussed in Sec. III, the relevant parameter space for our potentials can be spanned
by two dimensionless couplings, β and Utop/ϵ. The former is the distance in field space
between the true and false vacua divided by the Planck mass, while the latter is the ratio
of the barrier height to the depth of the true vacuum. Figure 10 shows the critical line that
separates the region where the false vacuum is stable against decay by bubble nucleation
from the region where nucleation is possible. To determine this line it is not necessary to
solve the coupled equations for φ and ρ. Instead, βcr can be obtained by the computationally
simpler overshoot/undershoot analysis of Eq. (4.20) described in Sec. IV.

As an aside, we recall from Eq. (3.6) that that the numerical analysis of Ref. [11] corre-
sponded to a value Utop/ϵ = 0.8138. Our shooting method then gives βcr = 2.846, and hence
ϵ̃ = 0.7346, consistent with their result ϵ̃ ≈ 0.74.

Figure 10 shows the critical curves for several different families of potentials. The black
curve, corresponding to our quartic potentials, and the red curve, for the non-polynomial
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This expression for Bwall should reduce to the CDL result in the limit where ∆ρ = ρ2−ρ1
is small. To verify this, we write the false vacuum contribution to Eq. (3.2) as

−Afv(ρ1, ρ1 +∆ρ) =
4π2

κ
(3ρ1)

√

1 +
ρ21
ℓ2fv

∆ρ+O[(∆ρ)2] . (3.3)

Now ∆ρ = ρ′(ξ1)∆ξ. In the false vacuum, ρ′ =
√

1 + ρ2/ℓ2fv. Using these facts, we obtain

−Afv(ρ1, ρ1 +∆ρ) =
4π2

κ
(3ρ1)

(

1 +
ρ21
ℓ2fv

)

∆ξ +O[(∆ξ)2]

= 4π2

(

3ρ1
κ

− ρ31Ufv

)

∆ξ +O[(∆ξ)2] . (3.4)

Combining this result with the contribution from the bounce, and working to first order in
∆ξ, we recover the CDL result, with the surface tension given by Eq. (2.19). Note that this
justifies CDL’s use of the flat-spacetime expression for the surface tension.

Let us now return to the more general case, with ρ2−ρ1 not assumed to be small. We can
no longer approximate ρ as being constant through the wall. One consequence is that the
identification of a surface tension becomes problematic. One usually defines surface tension
in terms of an energy per unit area (or action per unit hypersurface area). Because ρ(ξ)
grows in the wall, the area of the outer surface of the wall is larger than that of the inner
surface of the wall. Which, if either, should be used? In fact, it is not even obvious that the
wall action can be written as the product of an area and a radius-independent factor.

To answer these questions we need to examine the form of these new thin-wall solutions
in more detail. The scalar field at the center of the bounce, φ(0), is very close to φtv. The
field remains close to φtv until ξ ≈ ξ1, so for the interior region, ξ ! ξ1, we have, analogously
to Eq. (2.13),

ρ ≈ ℓtv sinh(ξ/ℓtv) . (3.5)

If gravitational effects are made stronger by increasing β, ξ1 increases and ρ1 grows expo-
nentially.

In the near critical regime the growth of ρ in the interior region is such that at ξ1 the
first term on the right-hand side of Eq. (2.5) can be neglected. If ρ1 ≫ ℓfv this remains true
throughout the wall, and beyond. We can then write

ρ′

ρ
=

√

κ

3

√

1

2
φ′2 − U(φ) (3.6)

so that Eq. (2.4) becomes

φ′′ +
√
3κ

√

1

2
φ′2 − U(φ) φ′ =

dU

dφ
. (3.7)

Note that ρ does not appear in this equation. Hence the profile of φ(ξ) in the wall is
independent of ρ.

Furthermore, integration of Eq. (3.6) gives

ρ(ξ) = ρ1 e
G(ξ) (3.8)
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where

G(ξ) =

√

κ

3

∫ ξ

ξ1

dξ

√

1

2
φ′2 − U(φ) (3.9)

is also independent of ρ. This allows us to rewrite Eq. (3.2) as

Bwall = 4π2

∫ ln(ρ2/ρ1)

0

dG

{

1

G′
b

[

ρ31U(φb) e
3G − 3

κ
ρ1 e

G

]

−
√

3

κ

1√
−Ufv

[

ρ31Ufve
3G − 3

κ
ρ1e

G

]

}

.

(3.10)
In the limit of large bounce radius (ρ1 ≫ lfv), the terms cubic in ρ1 dominate. Keeping

only these, we have

Bwall = 4π2ρ31

√

3

κ

∫ ln(ρ2/ρ1)

0

dG e3G

⎡

⎣

U(φb)
√

1
2φ

′2
b − U(φb)

+
√

−Ufv

⎤

⎦ . (3.11)

This suggests that we write
Bwall = 2π2ρ31σ̃ (3.12)

where 2π2ρ31 is the area of the inner surface of the wall and

σ̃ =

√

12

κ

∫ ln(ρ2/ρ1)

0

dG e3G

⎡

⎣

U(φb)
√

1
2φ

′2
b − U(φb)

+
√

−Ufv

⎤

⎦ (3.13)

can be viewed as a generalization of the CDL surface tension σ.7 (Note that, like σ, it is
independent of ρ.) With this definition, the total expression for B takes the same form as
in the CDL thin-wall limit, but with the replacements ρ̄ → ρ1 and σ → σ̃. The line of
reasoning that led to Eq. (2.20) and then to Eq. (1.1) now leads to

σ̃ <
2√
3κ

(

√

|Utv|−
√

|Ufv|
)

. (3.14)

IV. A BOUND FOR ALL BOUNCES

We have obtained upper bounds on the surface tension for both the thin-wall approxi-
mation of CDL and the generalized thin-wall regime of [2]. However, thin-wall bounces of
either type are special cases. There are bounce solutions that are not in any sense thin-wall,
including some for which it is difficult to even define a surface tension. This raises the ques-
tion of whether there is a more general bound that applies to all bounces and that reduces
to Eqs. (1.1) and (3.14) in the appropriate limits.

7 In the CDL expression for the surface tension, Eq. (2.19), the integrand is everywhere positive so σ is

manifestly positive. This is not the case for σ̃. Indeed, the integrand in Eq. (3.13) is negative in the lower

part of the integration range and positive in the upper part. In the next section we will show that this

expression for σ̃ is a special case of a more general expression that is manifestly positive.
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We now show that there is. To begin, we recall the definition of the pseudo-energy,
Eq. (2.8), and the expression for its derivative, Eq. (2.9). If follows from the latter that

d
√
E

dξ
= −

√
3κ

2

√

1 +
3

κEρ2
φ′2 . (4.1)

Integrating this, we find that

√

E(0)−
√

E(∞) =

√
3κ

2

∫ ∞

0

dξ

√

1 +
3

κEρ2
φ′2

>

√
3κ

2

∫ ∞

0

dξ φ′2 . (4.2)

Noting that E(0) ≤ |Utv| and recalling that E(∞) = |Ufv|, we have
∫ ∞

0

dξ φ′2
b <

2√
3κ

(

√

|Utv|−
√

|Ufv|
)

. (4.3)

This inequality is exact, and does not depend on any approximations. It therefore applies
to any bounce solution. In particular, it should reduce to our previous results for thin-wall
bounces. In these bounces φ′ is taken to vanish outside the wall region, so the integration
can be restricted to the range ξ1 < ξ < ξ2. In the CDL thin-wall approximation the bounce
profile in the wall region is approximately that of a (1+1)-dimensional kink. Equation (2.19)
gives the surface tension in terms of an integral of the potential U(φb). A virial theorem [17]
relates this to the integral of φ′2 and shows that the bounds of Eqs. (1.1) and (4.3) are
equivalent within the accuracy of the approximation.

For the new thin-wall case, demonstrating the equivalence of Eqs. (1.1) and (3.14) requires
a bit more work. We begin by noting the identity

1

3κ

∫ ξ2

ξ1

dξ
d

dξ

(

ρ3
√
E
)

=

∫ ξ2

ξ1

dξ ρ3U(φb)

√

1 +
3

κEρ2
, (4.4)

which is obtained by evaluating the derivative inside the integral on the left-hand side and
using Eq. (4.1).

Alternatively, using the fact that the integrand is a total derivative gives

1

3κ

∫ ξ2

ξ1

dξ
d

dξ

(

ρ3
√
E
)

=
1

3κ

[

−(ρ32 − ρ31)
√

E2 − ρ31(
√

E2 −
√

E1)
]

=
1

3κ

[

−(ρ32 − ρ31)
√

E2 − ρ31

∫ ξ2

ξ1

dξ
d
√
E

dξ

]

= − 1

κℓfv
(ρ32 − ρ31)−

1

2
ρ31

∫ ξ2

ξ1

dξ φ′2

√

1 +
3

κEρ2
. (4.5)

In the last equality we have used the definition of the AdS length, Eq. (2.1), and the fact
that E2 = −Ufv. Comparing Eqs. (4.4) and (4.5), we have

∫ ξ2

ξ1
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√

1 +
3

κEρ2
+

1

κℓfv
(ρ32 − ρ31) = −1

2
ρ31

∫ ξ2

ξ1

dξ φ′2

√

1 +
3

κEρ2
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where

G(ξ) =

√

κ

3

∫ ξ

ξ1

dξ

√

1

2
φ′2 − U(φ) (3.9)

is also independent of ρ. This allows us to rewrite Eq. (3.2) as

Bwall = 4π2

∫ ln(ρ2/ρ1)

0

dG

{

1

G′
b

[

ρ31U(φb) e
3G − 3

κ
ρ1 e

G

]

−
√

3

κ

1√
−Ufv

[

ρ31Ufve
3G − 3

κ
ρ1e

G

]

}

.

(3.10)
In the limit of large bounce radius (ρ1 ≫ lfv), the terms cubic in ρ1 dominate. Keeping

only these, we have

Bwall = 4π2ρ31

√

3

κ

∫ ln(ρ2/ρ1)

0

dG e3G

⎡

⎣

U(φb)
√

1
2φ

′2
b − U(φb)

+
√

−Ufv

⎤

⎦ . (3.11)

This suggests that we write
Bwall = 2π2ρ31σ̃ (3.12)

where 2π2ρ31 is the area of the inner surface of the wall and

σ̃ =

√

12

κ

∫ ln(ρ2/ρ1)

0

dG e3G

⎡

⎣

U(φb)
√

1
2φ

′2
b − U(φb)

+
√

−Ufv

⎤

⎦ (3.13)

can be viewed as a generalization of the CDL surface tension σ.7 (Note that, like σ, it is
independent of ρ.) With this definition, the total expression for B takes the same form as
in the CDL thin-wall limit, but with the replacements ρ̄ → ρ1 and σ → σ̃. The line of
reasoning that led to Eq. (2.20) and then to Eq. (1.1) now leads to

σ̃ <
2√
3κ

(

√

|Utv|−
√

|Ufv|
)

. (3.14)

IV. A BOUND FOR ALL BOUNCES

We have obtained upper bounds on the surface tension for both the thin-wall approxi-
mation of CDL and the generalized thin-wall regime of [2]. However, thin-wall bounces of
either type are special cases. There are bounce solutions that are not in any sense thin-wall,
including some for which it is difficult to even define a surface tension. This raises the ques-
tion of whether there is a more general bound that applies to all bounces and that reduces
to Eqs. (1.1) and (3.14) in the appropriate limits.

7 In the CDL expression for the surface tension, Eq. (2.19), the integrand is everywhere positive so σ is

manifestly positive. This is not the case for σ̃. Indeed, the integrand in Eq. (3.13) is negative in the lower

part of the integration range and positive in the upper part. In the next section we will show that this

expression for σ̃ is a special case of a more general expression that is manifestly positive.
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I. INTRODUCTION

There has recently been renewed interest in the problem of vacuum tunneling in de Sitter
spacetime. Although this interest has been sparked in large part by developments in string
theory, the tunneling problem itself can be addressed within the context of quantum field
theory. The essence of the problem is captured by considering a theory with a single scalar
field described by the Lagrangian

L =
1

2
(∂µφ)2 − V (φ) (1.1)

where the scalar field potential has two unequal minima, as illustrated in Fig. 1. The
lower minimum corresponds to the stable “true vacuum” state, while the higher minimum
corresponds to a metastable “false vacuum”.

At zero temperature, and in the absence of gravitational effects, the false vacuum decays
via a quantum mechanical tunneling process that leads to the nucleation of bubbles of true
vacuum. The semiclassical calculation of the bubble nucleation rate per unit volume, Γ, is
well understood [1,2]. It can be written in the form

Γ = Ae−B (1.2)

where B is obtained from the action of the “bounce” solution to the Euclideanized field
equations. This bounce solution has a region of approximate true vacuum (essentially, a
four-dimensional bubble) separated by a wall region from a false vacuum exterior.

Φfv Φtop Φtv

Φ

V

FIG. 1. The potential for a typical theory with a false vacuum.

At finite temperature, bubble nucleation proceeds via both quantum tunneling and ther-
mal fluctuations. When the temperature T is high enough that the latter process dominates,
Γ can still be written in the form of Eq. (1.2), but with B = E/T , where E is the energy of
a critical bubble.

In this paper we will be concerned with vacuum tunneling in situations where gravita-
tional effects are important. We will assume that V (φ) > 0 everywhere, so that both the
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                                                --- details of U near minimum unimportant
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Strategy: Treat horizon volume as a finite volume 
system at a temperature
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The extension of our methods to the more general case will be discussed in Sec. VI. Although

we have not yet been able to extend the technical details of our derivation, we will see that

some of the qualitative features, including the resolution of some interpretational issues, are

readily generalized.

It is possible to describe a portion of de Sitter spacetime, the causal diamond or static

patch, by the time-independent metric1

ds2 = −
(

1 − r2

Λ2

)

dt2 +

(

1 − r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (1.3 )

Here θ and φ are the usual angular variables on the two-sphere and t ranges over all real

values, but r is restricted to the range 0 ≤ r < Λ, with the hypersurface r = Λ being the

horizon. With this fixed static background geometry, the field theory on the static patch is a

finite volume system with a well-defined time-independent Hamiltonian. However, because

the space is curved, the Hamiltonian density contains position-dependent factors that would

be absent in flat spacetime.

In addition, the existence of a horizon leads to a characteristic temperature [8]

TdS =
1

2 πΛ
. (1.4 )

To be a bit more precise, if the field on de Sitter space is in the Bunch-Davies state [9 ]

corresponding to the false vacuum, then within the static patch one will appear to have a

thermal mixed state with T = TdS. However, the converse need not be true — the existence

of such a thermal state on the static patch does not necessarily imply anything about the

system beyond the horizon.

In this paper we will consider vacuum decay within the framework of this system. In

other words, we will treat the scalar field on the static patch as a thermal system with

T = TdS. The flat spacetime, finite temperature WKB formalism is then readily adapted

to the problem. This leads to an algorithm for calculating the rate of vacuum transitions

that reproduces the CDL result, but with some critical changes in interpretation and a new

prediction for the evolution after tunneling.

A number of previous authors have studied this problem by applying WKB methods to

the calculation of the wave functional of the false vacuum [10–13 ]. Our approach differs from

1 Our conventions are such that ds2 < 0 for timelike intervals.
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of Fig. 3a will persist for all values of β. The absence of such a bounce would correspond

to a situation in which the expression in Eq. (2 .14 ) had no minimum, but instead was

monotonically decreasing as E varied from Efv to Esaddle.

III. THERMAL TUNNELING ON THE STATIC PATCH

We now turn to the field theory on the static patch of de Sitter spacetime. In terms of

the coordinates and metric of Eq. (1.3), the action for our scalar field theory takes the form

S =
∫

d4x
√
− det g

[
−1

2
gµν ∂µφ ∂νφ − V (φ)

]
, (3.1)

where the spatial integral is restricted to the region r < Λ. If we write the three-dimensional

spatial metric as hij = gij, and define

−gtt = 1 − r2

Λ2
= A(r) , (3.2 )

we can rewrite this action as

S =
∫

dt
∫

d3x
√

det h

⎡

⎣ 1

2
√

A(r)

(
dφ

dt

)2

− 1

2

√
A(r)hij ∂iφ ∂jφ −

√
A(r)V (φ)

⎤

⎦

=
∫

dt L . (3.3)

Putting aside for the moment the origins of this expression in a curved spacetime, we can

choose to view the Lagrangian L as describing a field theory, on a curved three-dimensional

space, whose interactions happen to have an extra position-dependence arising from the

various factors of
√

A. The energy functional for this theory is

E =
∫

d3x
√

det h

⎡

⎣ 1

2
√

A(r)

(
dφ

dt

)2

+
1

2

√
A(r)hij ∂iφ ∂jφ +

√
A(r) V (φ)

⎤

⎦ (3.4 )

We can now immediately carry over the results of the previous section. In particular, to

study vacuum transitions at T = TdS = 1/(2 πΛ), we look for periodic solutions to the

Euler-Lagrange equations of the Euclidean action

SE =
∫ πΛ

−πΛ
dτ

∫
d3x

√
det h

⎡

⎣ 1

2
√

A(r)

(
dφ

dτ

)2

+
1

2

√
A(r)hij ∂iφ ∂jφ +

√
A(r) V (φ)

⎤

⎦ . (3.5 )

Note that, for later convenience, we have chosen the integral over the periodic variable τ to

run from −β/2 = −πΛ to β/2 = πΛ rather than from 0 to β. We will use the convention
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that the hypersurface τ = −πΛ ∼ τ = πΛ is taken to give the (approximately false vacuum)

configuration before tunneling, with the hypersurface half a period away, at τ = 0 , giving

the configuration after tunneling, and thus the initial condition for the subsequent classical

evolution.

We now restore A to its role as a metric factor, but now as part of a Euclidean metric.

Thus, we define

g̃abdxadxb = A dτ 2 + hij dxidxj

=

(

1 − r2

Λ2

)

dτ 2 +

(

1 − r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (3 .6 )

With τ = −πΛ and τ = πΛ identified and r ranging between 0 and Λ, this is the round

metric for a four-sphere.3 More explicitly, with the identifications

y1 = r sin θ cos φ

y2 = r sin θ sin φ

y3 = r cos θ

y4 =
√

Λ2 − r2 cos(τ/Λ)

y5 =
√

Λ2 − r2 sin(τ/Λ) (3 .7 )

this is the metric on a four-sphere of radius Λ embedded in five-dimensional Euclidean space.

Our Euclidean action can now be written as

SE =
∫

d4x
√

det g̃
[
1

2
g̃ab ∂aφ ∂bφ + V (φ)

]
(3 .8 )

and the rate for vacuum decay is

Γ ∼ e−[SE(bounce)−SE(fv)] . (3 .9 )

Let us compare this with the CDL prescription. CDL instruct us to solve the Euclidean

equations for coupled matter and gravity. If V (φ) satisfies Eq. (1 .1 ), then to leading order

one can ignore the effects of the variation of φ on the metric, which becomes that of a

3 Any other choice of the temperature would have led to aEuclidean manifold with aconical singularity at
r = Λ. At least within the framework of our fixed-background approximation, we see no inconsistency in
such a situation; it just happens not to be the one that is relevant for the thermal state encountered in
vacuum tunneling.

1 3

that the hypersurface τ = −πΛ ∼ τ = πΛ is taken to give the (approximately false vacuum)

configuration before tunneling, with the hypersurface half a period away, at τ = 0 , giving

the configuration after tunneling, and thus the initial condition for the subsequent classical

evolution.

We now restore A to its role as a metric factor, but now as part of a Euclidean metric.

Thus, we define

g̃abdxadxb = A dτ 2 + hij dxidxj

=

(

1 − r2

Λ2

)

dτ 2 +

(

1 − r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (3 .6 )

With τ = −πΛ and τ = πΛ identified and r ranging between 0 and Λ, this is the round

metric for a four-sphere.3 More explicitly, with the identifications

y1 = r sin θ cos φ

y2 = r sin θ sin φ

y3 = r cos θ

y4 =
√

Λ2 − r2 cos(τ/Λ)

y5 =
√

Λ2 − r2 sin(τ/Λ) (3 .7 )

this is the metric on a four-sphere of radius Λ embedded in five-dimensional Euclidean space.

Our Euclidean action can now be written as

SE =
∫

d4x
√

det g̃
[
1

2
g̃ab ∂aφ ∂bφ + V (φ)

]
(3 .8 )

and the rate for vacuum decay is

Γ ∼ e−[SE(bounce)−SE(fv)] . (3 .9 )

Let us compare this with the CDL prescription. CDL instruct us to solve the Euclidean

equations for coupled matter and gravity. If V (φ) satisfies Eq. (1 .1 ), then to leading order

one can ignore the effects of the variation of φ on the metric, which becomes that of a

3 Any other choice of the temperature would have led to aEuclidean manifold with aconical singularity at
r = Λ. At least within the framework of our fixed-background approximation, we see no inconsistency in
such a situation; it just happens not to be the one that is relevant for the thermal state encountered in
vacuum tunneling.

1 3

Define: 

that the hypersurface τ = −πΛ ∼ τ = πΛ is taken to give the (approximately false vacuum)

configuration before tunneling, with the hypersurface half a period away, at τ = 0 , giving

the configuration after tunneling, and thus the initial condition for the subsequent classical

evolution.

We now restore A to its role as a metric factor, but now as part of a Euclidean metric.

Thus, we define

g̃abdxadxb = A dτ 2 + hij dxidxj

=

(

1 − r2

Λ2

)

dτ 2 +

(

1 − r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (3 .6 )

With τ = −πΛ and τ = πΛ identified and r ranging between 0 and Λ, this is the round

metric for a four-sphere.3 More explicitly, with the identifications

y1 = r sin θ cos φ

y2 = r sin θ sin φ

y3 = r cos θ

y4 =
√

Λ2 − r2 cos(τ/Λ)

y5 =
√

Λ2 − r2 sin(τ/Λ) (3 .7 )

this is the metric on a four-sphere of radius Λ embedded in five-dimensional Euclidean space.

Our Euclidean action can now be written as

SE =
∫

d4x
√

det g̃
[
1

2
g̃ab ∂aφ ∂bφ + V (φ)

]
(3 .8 )

and the rate for vacuum decay is

Γ ∼ e−[SE(bounce)−SE(fv)] . (3 .9 )

Let us compare this with the CDL prescription. CDL instruct us to solve the Euclidean

equations for coupled matter and gravity. If V (φ) satisfies Eq. (1 .1 ), then to leading order

one can ignore the effects of the variation of φ on the metric, which becomes that of a

3 Any other choice of the temperature would have led to aEuclidean manifold with aconical singularity at
r = Λ. At least within the framework of our fixed-background approximation, we see no inconsistency in
such a situation; it just happens not to be the one that is relevant for the thermal state encountered in
vacuum tunneling.

1 3

g̃   is the round metric
on a four-sphere :

Coleman-De Luccia 
prescription for rate� ⇠ e�[SE(bounce)�SE(fv)]



⇥ = ���

⇥ = ��

� = 0

r = 0 r = �

Initial configuration

Initial configuration

Final configuration

⇥ = ���

⇥ = ��

� = 0

r = 0 r = �

Initial configuration

Initial configuration

Final configuration

that the hypersurface τ = −πΛ ∼ τ = πΛ is taken to give the (approximately false vacuum)

configuration before tunneling, with the hypersurface half a period away, at τ = 0 , giving

the configuration after tunneling, and thus the initial condition for the subsequent classical

evolution.

We now restore A to its role as a metric factor, but now as part of a Euclidean metric.

Thus, we define

g̃abdxadxb = A dτ 2 + hij dxidxj

=

(

1 − r2

Λ2

)

dτ 2 +

(

1 − r2

Λ2

)−1

dr2 + r2
(
dθ2 + sin2 θ dφ2

)
. (3 .6 )

With τ = −πΛ and τ = πΛ identified and r ranging between 0 and Λ, this is the round

metric for a four-sphere.3 More explicitly, with the identifications

y1 = r sin θ cos φ

y2 = r sin θ sin φ

y3 = r cos θ

y4 =
√

Λ2 − r2 cos(τ/Λ)

y5 =
√

Λ2 − r2 sin(τ/Λ) (3 .7 )

this is the metric on a four-sphere of radius Λ embedded in five-dimensional Euclidean space.

Our Euclidean action can now be written as

SE =
∫

d4x
√

det g̃
[
1

2
g̃ab ∂aφ ∂bφ + V (φ)

]
(3 .8 )

and the rate for vacuum decay is

Γ ∼ e−[SE(bounce)−SE(fv)] . (3 .9 )

Let us compare this with the CDL prescription. CDL instruct us to solve the Euclidean

equations for coupled matter and gravity. If V (φ) satisfies Eq. (1 .1 ), then to leading order

one can ignore the effects of the variation of φ on the metric, which becomes that of a

3 Any other choice of the temperature would have led to aEuclidean manifold with aconical singularity at
r = Λ. At least within the framework of our fixed-background approximation, we see no inconsistency in
such a situation; it just happens not to be the one that is relevant for the thermal state encountered in
vacuum tunneling.

1 3

y5

y4

Initial Final 
� = 0⇥ = ±��

r = �
r = 0



⇥̈ = ��⇥

3

�
⇤̇2 + V

⇥
⇒ Types C and D impossible if  

V>0     

tf

ff tt

f t

C

BA

D

CDL thin-wall bounces:



B[⇤̄] = 2⇥2⇤̄3S1 +
4⇥2

�
�2

f

⌥

 1 ⇥
⇤

1 � ⇤̄2

�2
f

⌅3/2
�

⌦� 4⇥2

�
�2

t

⇧
1 �

�
1 � ⇤̄2

�2
t

⇥3/2
⌃

For type A/B:

1
⇤̄2

=
1

�2
f

+
�

�

3S1
� ⇥S1

4

⇥2⇥B

⇥�̄
= 0 ⇒

⇒
�

3S1
>

⇥S1

4 Solution only for upper sign      Type A⇒

�

3S1
<

⇥S1

4 ⇒
Solution only for lower sign      Type B⇒

Wall tension

Vf � Vt

For type B,     decreases as    decreases.✏⇢̄



CDL prefactor? Negative modes?

  
   
        For type A

        For type B

        No tunneling for type B?  — Implausible

@2SE

@⇢̄2
< 0

@2SE

@⇢̄2
> 0

Negative mode

No negative mode?



Negative modes of full �2SE

��2

⇢max

“Standard”, slowly varying    

Rapidly oscillating   —   in wall 
                                   around 

Small type A

Large type A  (         after wall)

Type B (         in wall)

⇢max

⇢max

Bounces



Slowly varying Wall oscillating ρmax oscillating

Small type A Yes No Planckian

Large type A Usually Possible Yes

Type B No — Yes

TABLE I: Summary of the results of Sec. V. {negmode-table

VI. NEGATIVE MODES ABOUT MULTI-BOUNCE CONFIGURATONS
{multibounceSec

In discussions of tunneling in flat spacetime, one usually focuses on the single-bounce

solution and its associated determinant factor and normal modes. In the usual dilute gas

approximation, the deviation of the determinant from its value in the pure false vacuum

can be approximated as being local to the bounce, so that for multi-bounce quasi-stationary

points the determinant term, including its single factor of i, is simply repeated for each

additional bounce. Summing over all numbers of bounces leads to an exponential, with the

factor of i promoted to the exponent.

The situation is more subtle with gravitational effects included. For large type A bounces

(and of course for all type B bounces), there may not even be room on the Euclidean sphere

to have several well-separated bounces. On the other hand, if the scalar field mass scale µ

is far below the Planck mass, there is no problem at all with configurations containing large

numbers of component bounces. However, one wonders what becomes of the ρmax negative

moves, which are not localized about the bounce, when there are multiple bounces.

To start, consider an O(4)-symmetric solution with two bounces centered at antipodal

points7, which we may take to be ξ = 0 and ξ = ξmax. There is potentially a negative-Q

region about the “equator” at ξ = ξmax/2. By symmetry, φ̇ = 0 here, so the expression for

Q in Eq. (4.6) contains a factor of 0/0. Using l’Hôpital’s rule to evaluate this indeterminate

form, one finds that

lim
ξ→ξmax/2

Q = 1−
3U ′2

2κU2
(6.1)

If the bounces have radii much less than the horizon length, U ′ will be exponentially small,

Q will be positive, and the infinite set of oscillating negative modes will be absent. On the

7 This is the simplest example of an oscillating bounce solution [].
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FIG. 9: Schematic illustration of a many-bounce configuration. {manybubblesfig

other hand, with larger bounces one can easily find parameters that would make Q negative

at ξmax/2, thus leading to a family of oscillating negative modes.

Having seen that two-bounce solutions may or may not have negative Q-regions, let

us turn to the more generic multibounce case, with many component small bounces. A

schematic view of such a solution is shown in Fig. 9. Here the small circles represent the

individual bounces, with φ close to its true vacuum value near their centers. As one moves

away from one of these circles φ rapidly approaches φfv. Thus, in most of the space |φ−φfv|

is exponentially small. The magnitude of this exponential tail decreases as the distance to

the nearest bounce increases. Roughly speaking, this tail decreases in magnitude until one

reaches the dotted lines in the figure, which schematically represent the boundaries that

separate the “domains” of the individual bounces.

Although we have no overall O(4) symmetry to guide us, we can look to our analysis of

the single bounce case for guidance. We begin by remarking that the fields in the interior

of each domain are, to a good approximation, the same as those in a region of comparable

size about the bounce in a one-bounce solution. Since the negative modes in the one-bounce
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Open Questions

Meaning of type B bounces?
Tunneling of entire horizon volume?
Analogous to tunneling in symmetric double well?

Meaning of oscillating negative modes?
Connection between completed phase transition
     and “normal” negative mode structure?
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Tunneling at finite temperature
Equation (2.16) tells us that the passage through the barrier must take a Euclidean

“time” ∆τ = β/2. We also know that continuation of the solution past the endpoint gives

a τ -reversed solution back toward the starting point. With this continuation, we have a

solution that is periodic in τ with period β. Thus, the prescription for calculating the rate

of thermally assisted tunneling is based on finding a solution of the Euclidean equations

with period β that has the additional property that on at least two τ -slices (which are

conveniently taken to be τ = 0 and τ = β/2) the dqj/dτ all vanish. The tunneling exponent

is then obtained by integrating the Euclidean action for this solution over one full period,

so that

Γtunn ∼ e−[SE(bounce)−SE(fv)] . (2.17 )

However, there is a second possible mode for the transition. Instead of being thermally

excited part of the way up the barrier and then tunneling, the particle can be thermally

excited all the way to the top of the barrier. Up to pre-exponential factors, the rate for this

process is proportional to the Boltzmann factor,

Γtherm ∼ e−β(Eto p−Efv) . (2.18 )

When there is more than one degree of freedom, there are many possible paths over the

potential energy barrier. The lowest of these will dominate, with the rate governed by the

energy Esa ddle of the saddle point on this path.2 This saddle point is a stationary point

of the potential energy and is thus a time-independent solution of the ordinary equations

of motion or, equivalently, a τ -independent solution of the Euclidean equations of motion.

Viewing it this way, we can write

β (Esa ddle − Efv) = SE(saddle) − SE(fv) , (2.19 )

where the actions are understood to be calculated over a τ interval equal to β.

Since a τ -independent solution can be viewed as being periodic with any period, the

prescription to seek a Euclidean solution with period β actually covers both transition modes,

with the dominant mode being determined by the value of the Euclidean action. Figure 3

illustrates the two types of solutions in the field theory setting, for the case where β is

2 Note that all that is required here is that the path be alocal minimum among paths across the barrier.
There may be higher saddle points that are alsorelevant because they lead todifferent final states.
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I. INTRODUCTION

There has recently been renewed interest in the problem of vacuum tunneling in de Sitter
spacetime. Although this interest has been sparked in large part by developments in string
theory, the tunneling problem itself can be addressed within the context of quantum field
theory. The essence of the problem is captured by considering a theory with a single scalar
field described by the Lagrangian

L =
1

2
(∂µφ)

2
− V (φ) (1.1)

where the scalar field potential has two unequal minima, as illustrated in Fig. 1. The
lower minimum corresponds to the stable “true vacuum” state, while the higher minimum
corresponds to a metastable “false vacuum”.

At zero temperature, and in the absence of gravitational effects, the false vacuum decays
via a quantum mechanical tunneling process that leads to the nucleation of bubbles of true
vacuum. The semiclassical calculation of the bubble nucleation rate per unit volume, Γ, is
well understood [1,2]. It can be written in the form

Γ = Ae−B
(1.2)

where B is obtained from the action of the “bounce” solution to the Euclideanized field
equations. This bounce solution has a region of approximate true vacuum (essentially, a
four-dimensional bubble) separated by a wall region from a false vacuum exterior.

Φfv Φtop Φtv

Φ

V

FIG. 1. The potential for a typical theory with a false vacuum.

At finite temperature, bubble nucleation proceeds via both quantum tunneling and ther-
mal fluctuations. When the temperature T is high enough that the latter process dominates,
Γ can still be written in the form of Eq. (1.2), but with B = E/T , where E is the energy of
a critical bubble.

In this paper we will be concerned with vacuum tunneling in situations where gravita-
tional effects are important. We will assume that V (φ) > 0 everywhere, so that both the

1



A further useful equation, obtained by differentiating Eq. (2.8) and then using Eq. (2.7),
is

ρ′′ = −
κ

3

[

φ′2 + U(φ)
]

ρ . (2.9)

The boundary conditions for these equations depend on the topology of the solution. To
avoid a singularity, φ′ must vanish at any zero of ρ. In all bounce solutions there is at least
one such zero, which can be taken to lie at ξ = 0. Bounces describing decays from a de
Sitter vacuum have a second zero (and thus an S4 topology), but for decays from an anti-de
Sitter or Minkowski vacuum, such as we are concerned with in this work, any acceptable
bounce must have an R4 topology and thus only a single zero of ρ. We thus have ξmin = 0
and ξmax = ∞ and the boundary conditions

φ′(0) = 0, φ(∞) = φfv, ρ(0) = 0 . (2.10)

The field equations can be used to obtain simpler expressions for the action of the bounce
solution. First, as pointed out by CDL, substitution of Eq. (2.8) into Eq. (2.6) gives

S = 4π2

∫ ∞

0

dξ

[

ρ3U(φ)−
3

κ
ρ

]

. (2.11)

Note that this integral will be divergent for both the bounce and for the initial false vacuum.
An alternative expression is obtained by substituting Eqs. (2.8) and (2.9) for ρ′2 and ρ′′ into
Eq. (2.5). This gives

S = −2π2

∫ ∞

0

dξ ρ3U(φ) + boundary terms . (2.12)

For decay from a Minkowski vacuum the boundary terms of the bounce and of the false
vacuum cancel in the calculation of B. Since U(φ) is identically zero in the false vacuum,
we then have

B = −2π2

∫ ∞

0

dξ ρ3U(φ) . (2.13)

B. Thin-Wall Approximation

Coleman and De Luccia computed the bounce action in the thin-wall approximation. In
this limit we can easily distinguish three regions in the profile of the field φ: a region of pure
true vacuum (inside the bounce), a region of pure false vacuum (outside the bounce) and
a well defined thin wall at ρ = ρ̄ separating the two regions. This approximation requires
that the energy difference between the two vacua,

ϵ = U(φfv)− U(φtv) , (2.14)

be small compared to the other mass scales in the potential.
The existence of these distinct regions suggests splitting the integration region in the

actions into three parts, whose contributions to the tunneling exponent are

Boutside = 0 , (2.15)

Bwall = 2π2ρ̄3σ ≡ 4π2ρ̄3
∫

dξ [U(φ)− U(φfv)] , (2.16)

Binside =
12π2

κ2

{

1

U(φtv)

[

(

1−
κ

3
ρ̄2U(φtv)

)3/2

− 1

]

− (φtv → φfv)

}

. (2.17)
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Minkowski or AdS vacuum to AdS  vacuum

These expressions only depend on the location ρ̄ of the wall, the values of the potential at
the vacua, and the surface tension σ of the wall. The location of the wall is determined by
requiring that it be a stationary point of the action.

For transitions from Minkowski to anti-de Sitter the wall is located at

ρ̄ =
ρ̄0

1− (ρ̄0/2ℓ)2
, (2.18)

where ρ̄0 = 3σ/ϵ is the location of the wall in the absence of gravity, and

ℓ = (κϵ/3)−1/2 (2.19)

is the anti-de Sitter radius. The tunneling exponent is

B =
B0

[1− (ρ̄0/2ℓ)2]2
, (2.20)

where the subscript zero indicates the value of the action in the absence of gravitational
effects. If we define a critical value

κcr =
4ϵ

3σ2
, (2.21)

the above results can written as
ρ̄ =

ρ̄0
(1− κ/κcr)

, (2.22)

and

B =
B0

(1− κ/κcr)
2 . (2.23)

Gravity quenches vacuum decay when ρ̄0 ≥ 2ℓ or, equivalently, when κ ≥ κcr.
For comparison with later results, we note that the thin-wall approximation for a theory

with a quartic potential with almost degenerate vacua at φ = 0 and φ = v predicts that the
field profile in the wall is

φ =
v

2

{

tanh
[µ

2
(ξ − ξ̄)

]

+ 1
}

, (2.24)

where µ2 = U ′′(φfv).

C. Energy considerations

Quantum tunneling in Minkowski space must conserve energy. With gravitational effects
ignored, this implies that the energy of the spherically symmetric and instantaneously static
configuration at the time of bubble nucleation must vanish; i.e.,

0 = 4π

∫

dr r2
(

1

2
φ′2 + U

)

. (2.25)

This constraint is modified a bit when gravity is taken into account. Recall that a static
spherically symmetric metric can be written in the form

ds2 = −B(r)dt2 + A(r)dr2 + r2dΩ2
2 . (2.26)
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