Some results on vacuum decay

Erick Weinberg, Columbia

A.Masoumi, S. Paban, EW— PRD 97, 045017
A.Masoumi, S. Paban, EW— PRD 94, 025023
H.Lee, EW — PRD 90, 124002
A. Brown, EW — PRD 76, 064003

I) Review of basics

2) Decay to AdS — a looming threat False to true may be forbidden

3) de Sitter transitions — history (and future?) True to false always allowed

Want: a) Γ = bubble nucleation rate per unit volume
b) configuration of bubble after nucleation

Decay by tunneling

1 d.o.f. : Rate ~
$$Ae^{-B}$$
 $B = 2\int_{x_1}^{x_2} dx \sqrt{2m(V-E)}$

Many d.o.f.: Consider all paths, calculate B[path] Minimizing path dominates \Rightarrow Solve $\delta B = 0$

 \Rightarrow Solve $\delta S_{\text{Euc}} = 0$

 \Rightarrow Solve Euclidean equations of motion \Rightarrow bounce solution

 $x(\tau_{\text{init}}) = x_1$ $x(\tau_{\text{fin}}) = x_2$ $\dot{x}(\tau_{\text{init}}) = \dot{x}(\tau_{\text{fin}}) = 0$ Append " τ -reversed" solution

Field theory

$$S_{E} = \int d^{3}x d\tau \left[\frac{1}{2} \left(\frac{\partial \phi}{\partial \tau} \right)^{2} + \frac{1}{2} (\nabla \phi)^{2} + V(\phi) \right]$$

$$\frac{\partial^{2} \phi}{\partial \tau^{2}} + \nabla^{2} \phi = \frac{dV}{d\phi}$$

$$\tau_{\text{init}} = -\infty$$

$$\phi(\mathbf{x}, \tau_{\text{init}}) = \phi_{\text{fv}}$$

$$\frac{\partial \phi}{\partial \tau} \Big|_{\mathbf{x}, \tau_{\text{fin}}} = 0 \qquad \text{emergence from barrier}$$

$$\tau_{\text{fin}} = 0$$

$$\phi(|\mathbf{x}| = \infty, \tau) = \phi_{\text{fv}} \qquad \text{finite energy configurations}$$

$$0 \le \tau < \infty : \qquad \phi(|\mathbf{x}|, \tau) = \phi(|\mathbf{x}|, -\tau)$$

$$B = S_{E}(\text{bounce}) - S_{E}(\text{fv})$$

Formal O(4) symmetry: Look for O(4)-symmetric bounces O(4)-symmetric bounces

$$\begin{split} \phi(\mathbf{x},\tau) &= \phi(\sqrt{\mathbf{x}^2 + \tau^2}) = \phi(s) \\ \frac{d^2\phi}{ds^2} + \frac{3}{s}\frac{d\phi}{ds} = \frac{dV}{d\phi} \qquad \dot{\phi}(0) = 0 \qquad \phi(\infty) = \phi_{\rm fv} \end{split}$$

Conservation of energy

Set $U_{\rm fv} = 0$

$$E(x_4 = -\infty) = 0 \qquad \qquad E(x_4 = 0) = \int_0^\infty dr \, r^2 \left(\frac{1}{2}\phi'^2 + U\right)$$

At
$$x_4 = 0$$
, $\frac{d\phi}{dr} = \frac{d\phi}{ds}$, $\phi'' + \frac{3}{r}\phi' - \frac{dU}{d\phi} = 0$

$$\begin{aligned} \frac{d}{dr} \left[r^3 \left(-\frac{1}{2} \phi'^2 + U \right) \right] &= r^3 \left(-\phi' \phi'' + \phi' \frac{dU}{d\phi} \right) + 3r^2 \left(-\frac{1}{2} \phi'^2 + U \right) \\ &= 3r^2 \phi'^2 + 3r^2 \left(-\frac{1}{2} \phi'^2 + U \right) \\ &= 3r^2 \left(\frac{1}{2} \phi'^2 + U \right) \\ E &= \int_0^\infty dr \, r^2 \left(\frac{1}{2} \phi'^2 + U \right) = \frac{r^3}{3} \left(-\frac{1}{2} \phi'^2 + U \right) \Big|_0^\infty = 0 \end{aligned}$$

Thin-wall approximation

Suppose: $\epsilon \equiv U_{\rm tv} - U_{\rm fv} \ll U_{\rm top} - U_{\rm fv}$

$$\phi(\xi) = \begin{cases} \phi_{\rm tv} , & 0 < \xi < R - \Delta \\ \phi_{\rm wall}(\xi) , & R - \Delta < \xi < R + \Delta \\ \phi_{\rm fv} , & R + \Delta < \xi, \infty \end{cases}$$

$$S_E(R) = \frac{1}{2}\pi^2 R^4 \epsilon + \pi^2 R^3 \sigma \quad \sigma = \int_{\phi_{\rm fv}}^{\phi_{\rm tv}} d\phi \sqrt{2[U(\phi) - U({\rm fv})]}$$

$$R = \frac{3\sigma}{\epsilon} \qquad \qquad B = S_E = \frac{\pi^2}{2} R^3 \sigma = \frac{27\pi^2}{2} \frac{\sigma^4}{\epsilon^3} \gg 1$$

ϵ is irrelevant

R = ?

Pre-exponential factor

$$\begin{aligned} \langle \phi_{\rm fv} | e^{-HT} | \phi_{\rm fv} \rangle &= \int [d\phi(\mathbf{x}, \tau) e^{-S_E[\phi]} \\ &= \sum_n e^{-E_n T} \langle \phi_{\rm fv} | n \rangle \langle n | \phi_{\rm fv} \rangle \\ E_{\rm fv} &= -\lim_{T \to \infty} \frac{1}{T} \ln \langle \phi_{\rm fv} | e^{-HT} | \phi_{\rm fv} \rangle \end{aligned}$$

Callan-Coleman

$$I_{0} = \left[\det S''(\phi_{\mathrm{fv}})\right]^{-1/2} e^{-S_{E}(\phi_{\mathrm{fv}})}$$

$$I_{1} = \frac{i}{2} \Omega T \left| \frac{\det' S''(\phi_{\mathrm{bounce}})}{\det S''(\phi_{\mathrm{fv}})} \right|^{-1/2} J e^{-[S_{E}(\phi_{\mathrm{bounce}}) - S_{E}(\phi_{\mathrm{fv}})]} I_{0}$$

$$\equiv i \Omega T K e^{-B} I_{0}$$

4 zero modes, I negative mode $\frac{d}{ds} \left(\ddot{\phi} + \frac{3}{s} \dot{\phi} - \frac{\partial V}{\phi} \right) = 0$ $\left(-\frac{d^2}{ds^2} - \frac{3}{s} \frac{d}{ds} + \frac{d^2 V}{d\phi^2} \right) \dot{\phi} = -\frac{3}{s^2} \dot{\phi} \approx -\frac{3}{R^2} \dot{\phi}$ $I_n = \frac{1}{n!} \left(i\Omega T K e^{-B} \right)^n I_0$

$$I = I_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left(i\Omega T K e^{-B} \right)^n = I_0 \exp\left[i\Omega T K e^{-B} \right]$$

$$E_{\rm fv} = -\lim_{T \to \infty} \left(\frac{\ln I_0}{T} \right) - i\Omega K e^{-B}$$

Complex energy rightarrow unstable state

$$\Gamma = \frac{2 \mathrm{Im} \, E_{\mathrm{fv}}}{\Omega} = 2 K e^{-B}$$

One, and only one, negative mode essential

Coleman: Additional negative modes rightarrow bounce of lower action

Including gravity -- Coleman-De Luccia

Add Euclidean Einstein-Hilbert term to action, solve Euclidean matter + metric equations

Assume O(4) symmetry: $ds^2 = d\xi^2 + \rho(\xi)^2 d\Omega_3^2$

$$S = 2\pi^2 \int_{\xi_{min}}^{\xi_{max}} d\xi \left\{ \rho^3 \left[\frac{1}{2} \phi'^2 + U(\phi) \right] + \frac{3}{\kappa} (\rho^2 \rho'' + \rho \rho'^2 - \rho) \right\} - \frac{6\pi^2}{\kappa} \rho^2 \rho' \Big|_{\xi = \xi_{min}}^{\xi = \xi_{max}}$$

$$S = 2\pi^2 \int_{\xi_{min}}^{\infty} d\xi \left\{ \rho^3 \left[\frac{1}{2} \phi'^2 + U(\phi) \right] - \frac{5}{\kappa} (\rho \rho'^2 + \rho) \right\}$$

$$\phi'' + \frac{3\rho'}{\rho}\phi' = \frac{dU}{d\phi}$$
$$\rho'^2 = 1 + \frac{\kappa}{3}\rho^2 \left[\frac{1}{2}\phi'^2 - U(\phi)\right]$$

Boundary Conditions

 $\phi' = 0$ if $\rho = 0$

Minkowski or AdS false vacuum: ho has one zero R^4 ho(0) = 0, $\phi'(0) = 0$, $\phi(\infty) = \phi_{\rm fv}$

de Sitter false vacuum: ho has two zeros S^4

 $\rho(0) = \rho(\xi_{\max}) = 0, \qquad \phi'(0) = \phi'(\xi_{\max}) = 0$

CDL Thin-wall approximation Need ρ approximately constant in wall Need ϵ small

$$B_{\text{outside}} = 0$$

$$B_{wall} = 2\pi^2 \bar{\rho}^3 \sigma \equiv 4\pi^2 \bar{\rho}^3 \int d\xi \left[U(\phi) - U(\phi_{\text{fv}}) \right]$$

$$B_{\text{inside}} = \frac{12\pi^2}{\kappa^2} \left\{ \frac{1}{U(\phi_{\text{tv}})} \left[\left(1 - \frac{\kappa}{3} \bar{\rho}^2 U(\phi_{\text{tv}}) \right)^{3/2} - 1 \right] - (\phi_{\text{tv}} \to \phi_{\text{fv}}) \right\}$$

$$\sigma = \int_{\phi_{\rm fv}}^{\phi_{\rm tv}} d\phi \sqrt{2[U(\phi) - U({\rm fv})]}$$

Minkowski or AdS vacuum to AdS vacuum

Increasing surface tension requires larger bounce. No CDL thin-wall bounce at all unless

$$\sigma = \int_{\phi_{\rm fv}}^{\phi_{\rm tv}} d\phi \sqrt{2[U(\phi) - U({\rm fv})]}$$
$$\sigma < \frac{2}{\sqrt{3\kappa}} \left(\sqrt{|U_{\rm tv}|} - \sqrt{|U_{\rm fv}|}\right)$$

Otherwise. no bounce becay is quenched.

Why?

Euclidean approach: Must balance positive wall action against negative volume contribution. Can't be done in AdS if bounce is too large.

Lorentzian approach: Conservation of energy

$$ds^2 = -B(r)dt^2 + A(r)dr^2 + r^2 d\Omega_2^2$$
$$A(r) = \left[1 - \frac{2G_N \mathcal{M}(r)}{r}\right]^{-1} \qquad \qquad \mathcal{M}(r) = 4\pi \int_0^r ds \, s^2 \tilde{\rho}(s)$$

Require: At $x_4 = 0$, $\mathcal{M}_{\text{bounce}}(r = \infty) = 0$

If not, no bounce, no tunneling

Beyond the thin-wall approximation

Fix U, vary
$$\beta = \sqrt{\kappa v^2} = \frac{\sqrt{8\pi} v}{M_{\text{Pl}}}$$

 $\epsilon/U_{\rm top} = 20$

β	В	$\xi_{ m wall}$	$ ho_{ m wall}$	$\ell_{\rm AdS}$	$\Delta \xi_{ m wall}$	$\Delta ho_{ m wall}$	η	$\sigma_{ m wall}$	b
0	54.2	4.32	4.318	00	2.39	2.39	0.05013	0.0216	0.70
0.100	54.36	4.31	4.323	38.7	2.397	2.398	0.05014	0.0216	0.70
1.000	67.02	4.42	4.03	3.87	2.472	2.563	0.05053	0.0224	0.68
2.500	309.7	5.17	11.5	1.549	2.857	4.269	0.04094	0.0264	0.56
2.564	355.2	5.24	12.36	1.51	2.881	4.483	0.03955	0.0266	0.56
2.703	500.0	5.41	14.81	1.43	2.934	5.082	0.03598	0.0272	0.54
3.226	8678	6.88	63.9	1.201	3.165	16.77	0.01193	0.0295	0.48
3.367	1.1×10^{6}	9.54	725.2	1.15	3.236	173.1	9.9×10^{-4}	0.0302	0.46
3.378	4.1×10^{7}	11.6	4427	1.146	3.242	1048	1.3×10^{-4}	0.0303	0.46
3.380	1.7×10^{8}	12.4	9084	1.146	3.243	2148	$6.0 imes 10^{-5}$	0.0303	0.46

Analytic understanding

$$E = \frac{1}{2}\phi'^2 - U(\phi) \qquad E' = -3\frac{\rho'}{\rho}\phi'^2 \\ \frac{\rho'^2}{\rho^2} = \frac{1}{\rho^2} + \frac{\kappa}{3}E$$

Region I, $0 < \xi < \xi_1$ $\phi \approx \phi_{tv}$, $\rho \approx \ell \sinh(\xi/\ell)$, $E \approx \epsilon$ Region III, $\xi_3 < \xi < \infty$ $\phi \approx \phi_{\text{fv}}$, $\rho \approx \rho(\xi_3) + (\xi - \xi_3)$, $E \approx 0$

Region IIa, $\xi_1 < \xi < \xi_2$ $\frac{\rho'^2}{\rho^2} = \frac{1}{\rho^2} + \frac{\kappa}{3}E$

Region IIb, $\xi_2 < \xi < \xi_3$ $\frac{\rho'^2}{\rho^2} = \frac{1}{\rho^2} + \frac{\chi}{\chi} E$

Region IIa:
$$\sqrt{E(\xi)} = \sqrt{\epsilon} - \sqrt{\frac{3\kappa}{4}} \int_{\xi_1}^{\xi} d\xi \ \phi'^2$$

 $\rho(\xi) = \rho(\xi_1) \exp\left[\int_{\xi_1}^{\xi} d\xi \sqrt{\frac{\kappa}{3}} \sqrt{E}\right]$
 $\phi'' + \sqrt{3\kappa} \sqrt{\frac{1}{2}} \phi'^2 - U(\phi) \ \phi' = \frac{\partial U}{\partial \phi}$

No dependence on ρ Approx. constant kink shape.

Increasing gravity: longer stay in Region I $\rho(\xi_1)$ is larger later transition IIa to IIb

Critical solution when IIb disappears:

$$\int_{\xi_1}^{\infty} d\xi \, \phi'^2 = \sqrt{\frac{4\epsilon}{3\kappa}}$$

For CDL thin-wall

$$\sigma < \frac{2}{\sqrt{3\kappa}} \left(\sqrt{|U_{\rm tv}|} - \sqrt{|U_{\rm fv}|} \right)$$

For new thin-wall ??

 $\sigma =? \quad \bar{\rho} =?$

$$\tilde{\sigma} < \frac{2}{\sqrt{3\kappa}} \left(\sqrt{|U_{\rm tv}|} - \sqrt{|U_{\rm fv}|} \right)$$

For new thin-wall:

$$\rho(\xi) = \rho_1 e^{G(\xi)} \qquad G(\xi) = \sqrt{\frac{\kappa}{3}} \int_{\xi_1}^{\xi} d\xi \sqrt{\frac{1}{2}} \phi'^2 - U(\phi)$$

$$\tilde{\sigma} = \sqrt{\frac{12}{\kappa}} \int_{0}^{\ln(\rho_{2}/\rho_{1})} dG \, e^{3G} \left[\frac{U(\phi_{b})}{\sqrt{\frac{1}{2}{\phi'}_{b}^{2} - U(\phi_{b})}} + \sqrt{-U_{\rm fv}} \right]$$

No Assumptions :

$$\int_0^\infty d\xi \,\phi_b^{\prime 2} < \frac{2}{\sqrt{3\kappa}} \left(\sqrt{|U_{\rm tv}|} - \sqrt{|U_{\rm fv}|} \right)$$

Tunneling from de Sitter

Issues/questions:

Bounce has finite four-volume

--- details of U near minimum unimportant

Can tunnel up as well as down K.Lee, EW

Path through configuration space? Configuration after tunneling?

Initial state? Configuration after tunneling?

Answer — CDL bounce Question — ?????

Strategy: Treat horizon volume as a finite volume system at a temperature

$$T_{\rm dS} = \frac{H}{2\pi} = \frac{1}{2\pi\Lambda}$$

Periodic bounce solution

Brown, EW

Fixed background approximation:

$$U(\phi_{\rm top}) - U(\phi_{\rm tv}) \ll U(\phi_{\rm tv})$$

To leading order, variations in Φ don't affect metric; can treat spacetime as de Sitter spacetime with fixed and uniform temperature.

Static de Sitter coordinates

Field theory on thermal static patch

$$S = \int_{r \leq \Lambda} d^4 x \sqrt{-\det g} \left[-\frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right]$$

$$S = \int_{r \leq \Lambda} dt \int_{r \leq \Lambda} d^3 x \sqrt{\det h} \left[\frac{1}{2\sqrt{A(r)}} \left(\frac{d\phi}{dt} \right)^2 - \frac{1}{2} \sqrt{A(r)} h^{ij} \partial_i \phi \partial_j \phi - \sqrt{A(r)} V(\phi) \right]$$

$$E = \int_{r \leq \Lambda} d^3 x \sqrt{\det h} \left[\frac{1}{2\sqrt{A(r)}} \left(\frac{d\phi}{dt} \right)^2 + \frac{1}{2} \sqrt{A(r)} h^{ij} \partial_i \phi \partial_j \phi + \sqrt{A(r)} V(\phi) \right]$$

$$S_E = \int_{-\pi\Lambda}^{\pi\Lambda} d\tau \int_{r \leq \Lambda} d^3x \sqrt{\det h} \left[\frac{1}{2\sqrt{A(r)}} \left(\frac{d\phi}{d\tau} \right)^2 + \frac{1}{2} \sqrt{A(r)} h^{ij} \partial_i \phi \partial_j \phi + \sqrt{A(r)} V(\phi) \right]$$

$$S_E = \int_{-\pi\Lambda}^{\pi\Lambda} d\tau \int_{r \leq \Lambda} d^3x \sqrt{\det h} \left[\frac{1}{2\sqrt{A(r)}} \left(\frac{d\phi}{d\tau} \right)^2 + \frac{1}{2} \sqrt{A(r)} h^{ij} \partial_i \phi \partial_j \phi + \sqrt{A(r)} V(\phi) \right]$$

Define:

$$\tilde{g}_{ab}dx^a dx^b = A d\tau^2 + h_{ij} dx^i dx^j$$

$$= \left(1 - \frac{r^2}{\Lambda^2}\right) d\tau^2 + \left(1 - \frac{r^2}{\Lambda^2}\right)^{-1} dr^2 + r^2 \left(d\theta^2 + \sin^2\theta \, d\phi^2\right)$$

$$S_E = \int d^4x \sqrt{\det \tilde{g}} \left[\frac{1}{2} \tilde{g}^{ab} \,\partial_a \phi \,\partial_b \phi + V(\phi) \right]$$

 \tilde{g} is the round metric on a four-sphere :

$$y^{1} = r \sin \theta \cos \phi$$

$$y^{2} = r \sin \theta \sin \phi$$

$$y^{3} = r \cos \theta$$

$$y^{4} = \sqrt{\Lambda^{2} - r^{2}} \cos(\tau/\Lambda)$$

$$y^{5} = \sqrt{\Lambda^{2} - r^{2}} \sin(\tau/\Lambda)$$

$$\Gamma \sim e^{-[S_E(\text{bounce}) - S_E(\text{fv})]}$$

Coleman-De Luccia prescription for rate

$$y^{1} = r \sin \theta \cos \phi$$

$$y^{2} = r \sin \theta \sin \phi$$

$$y^{3} = r \cos \theta$$

$$y^{4} = \sqrt{\Lambda^{2} - r^{2}} \cos(\tau/\Lambda)$$

$$y^{5} = \sqrt{\Lambda^{2} - r^{2}} \sin(\tau/\Lambda)$$

CDL thin-wall bounces:

For type A/B:

$$B[\bar{\rho}] = 2\pi^2 \bar{\rho}^3 S_1 + \frac{4\pi^2}{\kappa} \Lambda_f^2 \left[1 \mp \left(1 - \frac{\bar{\rho}^2}{\Lambda_f^2} \right)^{3/2} \right] - \frac{4\pi^2}{\kappa} \Lambda_t^2 \left[1 - \left(1 - \frac{\bar{\rho}^2}{\Lambda_t^2} \right)^{3/2} \right]$$
$$\frac{\partial B}{\partial \bar{\rho}} = 0 \quad \Longrightarrow \quad \frac{1}{\bar{\rho}^2} = \frac{1}{\Lambda_f^2} + \left(\frac{\epsilon}{3S_1} - \frac{\kappa S_1}{4} \right)^2$$

 $\frac{\epsilon}{3S_1} > \frac{\kappa S_1}{4} \implies \text{Solution only for upper sign} \implies \text{Type A}$

 $\frac{\epsilon}{3S_1} < \frac{\kappa S_1}{4} \implies \text{Solution only for lower sign} \implies \text{Type B}$ For type B, $\bar{\rho}$ decreases as ϵ decreases.

CDL prefactor? Negative modes?

No tunneling for type B? — Implausible

Negative modes of full

"Standard", slowly varying

Bounces

Small type A

Large type A (ρ_{\max} after wall)

Type B (ρ_{max} in wall)

Negative modes present?

	Slowly varying	Wall oscillating	$ \rho_{\rm max} $ oscillating
Small type A	Yes	No	Planckian
Large type A	Usually	Possible	Yes
Type B	No		Yes

Multibounce configurations?

No oscillating zero modes

Multibounce contributions:

$$I = I_0 \sum_{n=0}^{\infty} \frac{1}{n!} \left(i^? \mathcal{V}_4 K e^{-B} \right)^n$$

Dominated by $n_* \approx \mathcal{V}_4 K e^{-B} \approx \mathcal{V}_4 \Gamma$

$$\begin{array}{c} \frac{\Gamma}{H^4} \gg 1 \quad \rightleftharpoons \quad \text{no oscillating negative modes} \\ \frac{\Gamma}{H^4} \ll 1 \quad \oiint \quad \text{oscillating mode issues} \\ \frac{\Gamma}{H^4} \gg 1 \quad \oiint \quad \text{phase transition completes normally} \\ \frac{\Gamma}{H^4} \ll 1 \quad \oiint \quad \text{no percolation -- eternal inflation} \end{array}$$

$$\begin{array}{c} \text{Guth, EVV} \\ \text{Flat space limit:} \quad \mu \ll M_{\text{Pl}} \\ R \ll H^{-1} \quad \swarrow \quad \text{Bounce} \approx \text{flat space bounce} \\ \text{Time scale} \ll H^{-1} \quad \text{Transition} \approx \text{flat space transition} \end{array}$$

Open Questions

Meaning of type B bounces? Tunneling of entire horizon volume? Analogous to tunneling in symmetric double well?

Meaning of oscillating negative modes? Connection between completed phase transition and "normal" negative mode structure?

O(4)-symmetric bounces --- one field

$$\phi(\mathbf{x},\tau) = \phi(\sqrt{\mathbf{x}^{2} + \tau^{2}}) = \phi(s)$$

$$\frac{d^{2}\phi}{ds^{2}} + \frac{3}{s}\frac{d\phi}{ds} = \frac{dV}{d\phi} \qquad \dot{\phi}(0) = 0 \qquad \phi(\infty) = \phi_{\mathrm{fv}}$$

$$\phi(\infty) \qquad \phi(0) \qquad \phi(0) \qquad \phi(0) \qquad \phi(\infty) = \phi_{\mathrm{fv}}$$

$$S = 4\pi^2 \int_0^\infty d\xi \left[\rho^3 U(\phi) - \frac{3}{\kappa} \rho \right]$$
 Divergent

$$S = -2\pi^2 \int_0^\infty d\xi \ \rho^3 U(\phi) + \text{boundary terms}$$
 Divergent

Minkowski false vacuum:

$$B = -2\pi^2 \int_0^\infty d\xi \ \rho^3 U(\phi)$$

Minkowski or AdS vacuum to AdS vacuum

$$\bar{\rho} = \frac{\rho_0}{1 - (\bar{\rho}_0/2\ell)^2} \qquad B = \frac{B_0}{[1 - (\bar{\rho}_0/2\ell)^2]^2} \qquad \ell = (\kappa\epsilon/3)^{-1/2}$$

$$\bar{\rho} = \frac{\bar{\rho}_0}{(1 - \kappa/\kappa_{\rm cr})} \qquad B = \frac{B_0}{(1 - \kappa/\kappa_{\rm cr})^2} \qquad \kappa_{\rm cr} = \frac{4\epsilon}{3\sigma^2}$$

If
$$ar{
ho}_0\geq 2\ell$$
, $\epsilon\leq rac{3}{4}\sigma^2\kappa$, no bounce \longrightarrow decay is quenched.