# Some results on vacuum decay 

Erick Weinberg, Columbia

A.Masoumi, S. Paban, EW— PRD 97, 0450 I7
A.Masoumi, S. Paban, EW— PRD 94, 025023
H.Lee, EW — PRD 90, I24002
A. Brown, EW — PRD 76, 064003
I) Review of basics
2) Decay to AdS - a looming threat False to true may be forbidden
3) de Sitter transitions - history (and future?)

True to false always allowed

False vacuum ---- classically stable, decays by quantum tunneling -- bubble nucleation, expansion, and coalescence


Tunnel through barrier in $U[\phi(x)]=\int d^{3} x\left[\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right]$



Want: a) $\Gamma=$ bubble nucleation rate per unit volume
b) configuration of bubble after nucleation

## Decay by tunneling

1 d.o.f. : Rate $\sim A e^{-B}$,

$$
B=2 \int_{x_{1}}^{x_{2}} d x \sqrt{2 m(V-E)}
$$

Many d.o.f.: Consider all paths, calculate $\mathrm{B}[$ path] Minimizing path dominates
$\Rightarrow$ Solve $\delta B=0$
$\Rightarrow$ Solve $\delta S_{\text {Euc }}=0$
$\Rightarrow$ Solve Euclidean equations of motion $\Rightarrow$ bounce solution

$$
\begin{aligned}
& x\left(\tau_{\text {init }}\right)=x_{1} \quad x\left(\tau_{\text {fin }}\right)=x_{2} \\
& \dot{x}\left(\tau_{\text {init }}\right)=\dot{x}\left(\tau_{\text {fin }}\right)=0
\end{aligned}
$$

Append " $\tau$-reversed" solution

$$
\begin{aligned}
& S_{E}=\int d^{3} x d \tau\left[\frac{1}{2}\left(\frac{\partial \phi}{\partial \tau}\right)^{2}+\frac{1}{2}(\nabla \phi)^{2}+V(\phi)\right] \\
& \frac{\partial^{2} \phi}{\partial \tau^{2}}+\nabla^{2} \phi=\frac{d V}{d \phi} \\
& \sqrt{\text { init }}=-\infty \\
& \phi\left(\mathbf{x}, \tau_{\text {init }}\right)=\phi_{\mathrm{fv}} \\
& \left.\frac{\partial \phi}{\partial \tau}\right|_{\mathbf{x}, \tau_{\text {fin }}}=0 \quad \longrightarrow \quad \text { emergence from barrier } \\
& \tau_{\text {fin }}=0 \\
& \phi(|\mathbf{x}|=\infty, \tau)=\phi_{\mathrm{fv}} \quad \longrightarrow \quad \text { finite energy configurations } \\
& 0 \leq \tau<\infty: \quad \phi(|\mathbf{x}|, \tau)=\phi(|\mathbf{x}|,-\tau) \\
& B=S_{E}(\text { bounce })-S_{E}(\mathrm{fv})
\end{aligned}
$$



Formal $\mathrm{O}(4)$ symmetry: Look for $\mathrm{O}(4)$-symmetric bounces
$\mathrm{O}(4)$-symmetric bounces

$$
\begin{aligned}
& \phi(\mathbf{x}, \tau)=\phi\left(\sqrt{\mathbf{x}^{2}+\tau^{2}}\right)=\phi(s) \\
& \frac{d^{2} \phi}{d s^{2}}+\frac{3}{s} \frac{d \phi}{d s}=\frac{d V}{d \phi} \quad \dot{\phi}(0)=0 \quad \phi(\infty)=\phi_{\mathrm{fv}}
\end{aligned}
$$



## Conservation of energy

Set $U_{\mathrm{fv}}=0$

$$
\begin{aligned}
& E\left(x_{4}=-\infty\right)=0 \quad E\left(x_{4}=0\right)=\int_{0}^{\infty} d r r^{2}\left(\frac{1}{2} \phi^{\prime 2}+U\right) \\
& \begin{aligned}
\text { At } x_{4}=0, \quad \frac{d \phi}{d r}=\frac{d \phi}{d s}, \quad \phi^{\prime \prime}+\frac{3}{r} \phi^{\prime}-\frac{d U}{d \phi}=0
\end{aligned} \\
& \begin{aligned}
\frac{d}{d r}\left[r^{3}\left(-\frac{1}{2} \phi^{\prime 2}+U\right)\right] & =r^{3}\left(-\phi^{\prime} \phi^{\prime \prime}+\phi^{\prime} \frac{d U}{d \phi}\right)+3 r^{2}\left(-\frac{1}{2} \phi^{\prime 2}+U\right) \\
& =3 r^{2} \phi^{\prime 2}+3 r^{2}\left(-\frac{1}{2} \phi^{\prime 2}+U\right) \\
& =3 r^{2}\left(\frac{1}{2} \phi^{\prime 2}+U\right)
\end{aligned} \\
& E=\int_{0}^{\infty} d r r^{2}\left(\frac{1}{2} \phi^{\prime 2}+U\right)=\left.\frac{r^{3}}{3}\left(-\frac{1}{2} \phi^{\prime 2}+U\right)\right|_{0} ^{\infty}=0
\end{aligned}
$$

## Thin-wall approximation

Suppose: $\quad \epsilon \equiv U_{\mathrm{tv}}-U_{\mathrm{fv}} \ll U_{\mathrm{top}}-U_{\mathrm{fv}}$

$$
\begin{gathered}
\phi(\xi)= \begin{cases}\phi_{\mathrm{tv}}, & 0<\xi<R-\Delta \\
\phi_{\mathrm{wall}}(\xi), & R-\Delta<\xi<R+\Delta \\
\phi_{\mathrm{fv}}, & R+\Delta<\xi, \infty\end{cases} \\
S_{E}(R)=\frac{1}{2} \pi^{2} R^{4} \epsilon+\pi^{2} R^{3} \sigma \quad \sigma=\int_{\phi_{\mathrm{fv}}}^{\phi_{\mathrm{tv}}} d \phi \sqrt{2[U(\phi)-U(\mathrm{fv})]} \\
R=\frac{3 \sigma}{\epsilon} \quad B=S_{E}=\frac{\pi^{2}}{2} R^{3} \sigma=\frac{27 \pi^{2}}{2} \frac{\sigma^{4}}{\epsilon^{3}} \gg 1
\end{gathered}
$$



## Pre-exponential factor

$$
\begin{aligned}
\left\langle\phi_{\mathrm{fv}}\right| e^{-H T}\left|\phi_{\mathrm{fv}}\right\rangle & =\int\left[d \phi(\mathbf{x}, \tau) e^{-S_{E}[\phi]}\right. \\
& =\sum_{n} e^{-E_{n} T}\left\langle\phi_{\mathrm{fv}} \mid \eta\right\rangle\left\langle n \mid \phi_{\mathrm{fv}}\right\rangle \\
E_{\mathrm{fv}}=-\lim _{T \rightarrow \infty} & \frac{1}{T} \ln \left\langle\phi_{\mathrm{fv}}\right| e^{-H T}\left|\phi_{\mathrm{fv}}\right\rangle
\end{aligned}
$$

Callan-Coleman

$$
\begin{aligned}
I_{0} & =\left[\operatorname{det} S^{\prime \prime}\left(\phi_{\mathrm{fv}}\right)\right]^{-1 / 2} e^{-S_{E}\left(\phi_{\mathrm{fv}}\right)} \\
I_{1} & =\frac{i}{2} \Omega T\left|\frac{\left.\operatorname{det}^{\prime} S^{\prime \prime}\left(\phi_{\mathrm{bounce}}\right)\right]}{\operatorname{det} S^{\prime \prime}\left(\phi_{\mathrm{fv}}\right)}\right|^{-1 / 2} J e^{-\left[S_{E}\left(\phi_{\mathrm{bounce}}\right)-S_{E}\left(\phi_{\mathrm{fv}}\right)\right]} I_{0} \\
& \equiv i \Omega T K e^{-B} I_{0}
\end{aligned}
$$

4 zero modes, I negative mode

$$
\begin{gathered}
\frac{d}{d s}\left(\ddot{\phi}+\frac{3}{s} \dot{\phi}-\frac{\partial V}{\phi}\right)=0 \\
\left(-\frac{d^{2}}{d s^{2}}-\frac{3}{s} \frac{d}{d s}+\frac{d^{2} V}{d \phi^{2}}\right) \dot{\phi}=-\frac{3}{s^{2}} \dot{\phi} \approx-\frac{3}{R^{2}} \dot{\phi} \\
I_{n}=\frac{1}{n!}\left(i \Omega T K e^{-B}\right)^{n} I_{0} \\
I=I_{0} \sum_{n=0}^{\infty} \frac{1}{n!}\left(i \Omega T K e^{-B}\right)^{n}=I_{0} \exp \left[i \Omega T K e^{-B}\right] \\
E_{\mathrm{fv}}=-\lim _{T \rightarrow \infty}\left(\frac{\ln I_{0}}{T}\right)-i \Omega K e^{-B}
\end{gathered}
$$

Complex energy unstable state

$$
\Gamma=\frac{2 \operatorname{Im} E_{\mathrm{fv}}}{\Omega}=2 K e^{-B}
$$

One, and only one, negative mode essential
Coleman: Additional negative modes $\sim$ bounce of lower action

## Including gravity -- Coleman-De Luccia

Add Euclidean Einstein-Hilbert term to action, solve Euclidean matter + metric equations

Assume $\mathrm{O}(4)$ symmetry: $\quad d s^{2}=d \xi^{2}+\rho(\xi)^{2} d \Omega_{3}^{2}$

$$
\begin{aligned}
& S=2 \pi^{2} \int_{\xi_{\min }}^{\xi_{\max }} d \xi\left\{\rho^{3}\left[\frac{1}{2} \phi^{\prime 2}+U(\phi)\right]+\frac{3}{\kappa}\left(\rho^{2} \rho^{\prime \prime}+\rho \rho^{\prime 2}-\rho\right)\right\}-\left.\frac{6 \pi^{2}}{\kappa} \rho^{2} \rho^{\prime}\right|_{\xi=\xi_{\min }} ^{\xi=\xi_{\max }} \\
& S=2 \pi^{2} \int_{\xi_{\min }}^{\xi_{\max }} d \xi\left\{\rho^{3}\left[\frac{1}{2} \phi^{\prime 2}+U(\phi)\right]-\frac{3}{\kappa}\left(\rho \rho^{\prime 2}+\rho\right)\right\}
\end{aligned}
$$

$$
\begin{gathered}
\phi^{\prime \prime}+\frac{3 \rho^{\prime}}{\rho} \phi^{\prime}=\frac{d U}{d \phi} \\
{\rho^{\prime}}^{2}=1+\frac{\kappa}{3} \rho^{2}\left[\frac{1}{2} \phi^{\prime 2}-U(\phi)\right]
\end{gathered}
$$

## Boundary Conditions

$\phi^{\prime}=0$ if $\rho=0$
Minkowski or AdS false vacuum: $\rho$ has one zero $R^{4}$

$$
\rho(0)=0, \quad \phi^{\prime}(0)=0, \quad \phi(\infty)=\phi_{\mathrm{fv}}
$$

de Sitter false vacuum: $\rho$ has two zeros $S^{4}$

$$
\rho(0)=\rho\left(\xi_{\max }\right)=0, \quad \phi^{\prime}(0)=\phi^{\prime}\left(\xi_{\max }\right)=0
$$

## CDL Thin-wall approximation

Need $\rho$ approximately constant in wall Need $\epsilon$ small

$$
\begin{aligned}
& B_{\text {outside }}=0 \\
& B_{\text {wall }}=2 \pi^{2} \bar{\rho}^{3} \sigma \equiv 4 \pi^{2} \bar{\rho}^{3} \int d \xi\left[U(\phi)-U\left(\phi_{\mathrm{fv}}\right)\right] \\
& B_{\text {inside }}=\frac{12 \pi^{2}}{\kappa^{2}}\left\{\frac{1}{U\left(\phi_{\mathrm{tv}}\right)}\left[\left(1-\frac{\kappa}{3} \bar{\rho}^{2} U\left(\phi_{\mathrm{tv}}\right)\right)^{3 / 2}-1\right]-\left(\phi_{\mathrm{tv}} \rightarrow \phi_{\mathrm{fv}}\right)\right\} \\
& \quad \sigma=\int_{\phi_{\mathrm{fv}}}^{\phi_{\mathrm{tv}}} d \phi \sqrt{2[U(\phi)-U(\mathrm{fv})]}
\end{aligned}
$$

## Minkowski or AdS vacuum to AdS vacuum

Increasing surface tension requires larger bounce.
No CDL thin-wall bounce at all unless

$$
\begin{aligned}
& \sigma=\int_{\phi_{\mathrm{fv}}}^{\phi_{\mathrm{tv}}} d \phi \sqrt{2[U(\phi)-U(\mathrm{fv})]} \\
& \sigma<\frac{2}{\sqrt{3 \kappa}}\left(\sqrt{\left|U_{\mathrm{tv}}\right|}-\sqrt{\left|U_{\mathrm{fv}}\right|}\right)
\end{aligned}
$$

Otherwise. no bounce $\rightarrow$ decay is quenched.

## Why?

Euclidean approach: Must balance positive wall action against negative volume contribution. Can't be done in AdS if bounce is too large.

Lorentzian approach: Conservation of energy

$$
\begin{gathered}
d s^{2}=-B(r) d t^{2}+A(r) d r^{2}+r^{2} d \Omega_{2}^{2} \\
A(r)=\left[1-\frac{2 G_{N} \mathcal{M}(r)}{r}\right]^{-1} \quad \mathcal{M}(r)=4 \pi \int_{0}^{r} d s s^{2} \tilde{\rho}(s)
\end{gathered}
$$

Require: At $x_{4}=0, \mathcal{M}_{\text {bounce }}(r=\infty)=0$
If not, no bounce, no tunneling

## Beyond the thin-wall approximation



Fix U, vary $\beta=\sqrt{\kappa v^{2}}=\frac{\sqrt{8 \pi} v}{M_{\mathrm{Pl}}}$


$\beta=0,5.747$, and 5.763
$\beta=0,2.70,3.33$, and 3.38


Curves $=$ fit to $\tanh$
Stronger gravity:
Kink moves to right
Kink shape almost constant
$\beta=0,0.588,0.714$, and 0.739

$$
\epsilon / U_{\text {top }}=20
$$

| $\beta$ | $B$ | $\xi_{\text {wall }}$ | $\rho_{\text {wall }}$ | $\ell_{\text {AdS }}$ | $\Delta \xi_{\text {wall }}$ | $\Delta \rho_{\text {wall }}$ | $\eta$ | $\sigma_{\text {wall }}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 54.2 | 4.32 | 4.318 | $\infty$ | 2.39 | 2.39 | 0.05013 | 0.0216 |
| 0.100 | 54.36 | 4.31 | 4.323 | 38.7 | 2.397 | 2.398 | 0.05014 | 0.0216 |
| 1.000 | 67.02 | 4.42 | 4.03 | 3.87 | 2.472 | 2.563 | 0.05053 | 0.0224 |
| 2.500 | 309.7 | 5.17 | 11.5 | 1.549 | 2.857 | 4.269 | 0.04094 | 0.0264 |
| 2.564 | 355.2 | 5.24 | 12.36 | 1.51 | 2.881 | 4.483 | 0.03955 | 0.0266 |
| 2.703 | 500.0 | 5.41 | 14.81 | 1.43 | 2.934 | 5.082 | 0.03 |  |
| 3.226 | 8678 | 6.88 | 63.9 | 1.201 | 3.165 | 16.77 | 0.01193 | 0.0272 |
| 3.367 | $1.1 \times 10^{6}$ | 9.54 | 725.2 | 1.15 | 3.236 | 173.1 | $9.9 \times 10^{-4}$ | 0.0295 |
| 3.378 | $4.1 \times 10^{7}$ | 11.6 | 4427 | 1.146 | 3.242 | 1048 | $1.3 \times 10^{-4}$ | 0.0302 |
| 3.380 | $1.7 \times 10^{8}$ | 12.4 | 9084 | 1.146 | 3.243 | 2148 | $6.0 \times 10^{-5}$ | 0.0303 |

## Analytic understanding

$$
E=\frac{1}{2} \phi^{\prime 2}-U(\phi) \quad E^{\prime}=-3 \frac{\rho^{\prime}}{\rho} \phi^{\prime 2} .
$$

Region I, $0<\xi<\xi_{1} \quad \phi \approx \phi_{\mathrm{tv}}, \quad \rho \approx \ell \sinh (\xi / \ell), E \approx \epsilon$
Region III, $\xi_{3}<\xi<\infty \quad \phi \approx \phi_{\mathrm{fv}}, \rho \approx \rho\left(\xi_{3}\right)+\left(\xi-\xi_{3}\right), E \approx 0$
Region Ila, $\xi_{1}<\xi<\xi_{2} \quad \frac{\rho^{\prime 2}}{\rho^{2}}=\frac{1}{\rho^{2}}+\frac{\kappa}{3} E$
Region III, $\xi_{2}<\xi<\xi_{3} \quad \frac{\rho^{\prime 2}}{\rho^{2}}=\frac{1}{\rho^{2}}+\frac{\gamma}{\delta}(\xi$

Region Ila:

$$
\begin{gathered}
\sqrt{E(\xi)}=\sqrt{\epsilon}-\sqrt{\frac{3 \kappa}{4}} \int_{\xi_{1}}^{\xi} d \xi \phi^{\prime 2} \\
\rho(\xi)=\rho\left(\xi_{1}\right) \exp \left[\int_{\xi_{1}}^{\xi} d \xi \sqrt{\frac{\kappa}{3}} \sqrt{E}\right] \\
\phi^{\prime \prime}+\sqrt{3 \kappa} \sqrt{\frac{1}{2} \phi^{\prime 2}-U(\phi)} \phi^{\prime}=\frac{\partial U}{\partial \phi}
\end{gathered}
$$

No dependence on $\rho$
Approx. constant kink shape.
Increasing gravity: longer stay in Region I

$$
\begin{aligned}
& \rho\left(\xi_{1}\right) \text { is larger } \\
& \text { later transition Ila to llb }
\end{aligned}
$$

Critical solution when Ilb disappears:

$$
\int_{\xi_{1}}^{\infty} d \xi \phi^{\prime 2}=\sqrt{\frac{4 \epsilon}{3 \kappa}}
$$



Fix potential, increase gravity $\rightarrow$ tunneling always quenched

$$
U_{\text {top }} / \epsilon \gg 1 \quad[\mathrm{CDL}-\mathrm{TWA}], \quad \beta_{\text {cr }} \sim\left(U_{\text {top }} / \epsilon\right)^{-1 / 2}
$$

$$
U_{\text {top }} / \epsilon \ll 1, \quad \beta_{\text {cr }} \sim\left(U_{\text {top }} / \epsilon\right)^{-\alpha} \quad(\alpha \text { model-dependent })
$$

A new thin-wall regime?

For CDL thin-wall

$$
\sigma<\frac{2}{\sqrt{3 \kappa}}\left(\sqrt{\left|U_{\mathrm{tv}}\right|}-\sqrt{\left|U_{\mathrm{fv}}\right|}\right)
$$

For new thin-wall ??

$$
\begin{gathered}
\sigma=? \quad \bar{\rho}=? \\
\tilde{\sigma}<\frac{2}{\sqrt{3 \kappa}}\left(\sqrt{\left|U_{\mathrm{tv}}\right|}-\sqrt{\left|U_{\mathrm{fv}}\right|}\right)
\end{gathered}
$$

## For new thin-wall:

$$
\begin{aligned}
& \rho(\xi)=\rho_{1} e^{G(\xi)} \quad G(\xi)=\sqrt{\frac{\kappa}{3}} \int_{\varepsilon_{1}}^{\xi} d \xi \sqrt{\frac{1}{2} \phi^{\prime 2}-U(\phi)} \\
& \left.\tilde{\sigma}=\sqrt{\frac{12}{\kappa}} \int_{0}^{\ln \left(\rho_{2} / \rho_{1}\right)} d G e^{3 G} \left\lvert\, \frac{U\left(\phi_{b}\right)}{\sqrt{\frac{1}{2} \phi_{b}^{\prime 2}-U\left(\phi_{b}\right)}}+\sqrt{-U_{\mathrm{fv}}}\right.\right\rfloor
\end{aligned}
$$

No Assumptions :

$$
\int_{0}^{\infty} d \xi \phi_{b}^{\prime 2}<\frac{2}{\sqrt{3 k}}\left(\sqrt{\left|U_{\mathrm{tv}}\right|}-\sqrt{\left|U_{\mathrm{fv}}\right|}\right)
$$

## Tunneling from de Sitter



Issues/questions:
Bounce has finite four-volume
--- details of $U$ near minimum unimportant
Can tunnel up as well as down K.Lee, EW

Path through configuration space? Configuration after tunneling?


## Initial state?

## Configuration after tunneling?



Answer - CDL bounce Question - ?!???

Strategy:Treat horizon volume as a finite volume system at a temperature

$$
T_{\mathrm{dS}}=\frac{H}{2 \pi}=\frac{1}{2 \pi \Lambda}
$$

Periodic bounce solution

Fixed background approximation:

$$
U\left(\phi_{\mathrm{top}}\right)-U\left(\phi_{\mathrm{tv}}\right) \ll U\left(\phi_{\mathrm{tv}}\right)
$$

To leading order, variations in $\Phi$ don't affect metric; can treat spacetime as de Sitter spacetime with fixed and uniform temperature.

## Static de Sitter coordinates

$$
\begin{aligned}
& d s^{2}=-\underbrace{\left(1-\frac{r^{2}}{\Lambda^{2}}\right)}_{A(r)} d t^{2}+\underbrace{\left(1-\frac{r^{2}}{\Lambda^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)}_{h_{i j}} \\
& r=\Lambda \xrightarrow[\text { Horizon of } \mathrm{r}=0]{ } \quad \text {, }
\end{aligned}
$$



Causal diamond

## Field theory on thermal static patch

$$
\begin{aligned}
& S=\int_{r \leq \Lambda} d^{4} x \sqrt{-\operatorname{det} g}\left[-\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi-V(\phi)\right] \\
& S=\int d t \int_{r \leq \Lambda} d^{3} x \sqrt{\operatorname{det} h}\left[\frac{1}{2 \sqrt{A(r)}}\left(\frac{d \phi}{d t}\right)^{2}-\frac{1}{2} \sqrt{A(r)} h^{i j} \partial_{i} \phi \partial_{j} \phi-\sqrt{A(r)} V(\phi)\right] \\
& E=\int_{r \leq \Lambda} d^{3} x \sqrt{\operatorname{det} h}\left[\frac{1}{2 \sqrt{A(r)}}\left(\frac{d \phi}{d t}\right)^{2}+\frac{1}{2} \sqrt{A(r)} h^{i j} \partial_{i} \phi \partial_{j} \phi+\sqrt{A(r)} V(\phi)\right] \\
& S_{E}=\int_{-\pi \Lambda}^{\pi \Lambda} d \tau \int_{r \leq \Lambda} d^{3} x \sqrt{\operatorname{det} h}\left[\frac{1}{2 \sqrt{A(r)}}\left(\frac{d \phi}{d \tau}\right)^{2}+\frac{1}{2} \sqrt{A(r)} h^{i j} \partial_{i} \phi \partial_{j} \phi+\sqrt{A(r)} V(\phi)\right]
\end{aligned}
$$



$$
S_{E}=\int_{-\pi \Lambda}^{\pi \Lambda} d \tau \int_{r \leq \Lambda} d^{3} x \sqrt{\operatorname{det} h}\left[\frac{1}{2 \sqrt{A(r)}}\left(\frac{d \phi}{d \tau}\right)^{2}+\frac{1}{2} \sqrt{A(r)} h^{i j} \partial_{i} \phi \partial_{j} \phi+\sqrt{A(r)} V(\phi)\right]
$$

Define:

$$
\begin{aligned}
& \tilde{g}_{a b} d x^{a} d x^{b}=A d \tau^{2}+h_{i j} d x^{i} d x^{j} \\
&=\left(1-\frac{r^{2}}{\Lambda^{2}}\right) d \tau^{2}+\left(1-\frac{r^{2}}{\Lambda^{2}}\right)^{-1} d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) \\
& S_{E}=\int d^{4} x \sqrt{\operatorname{det} \tilde{g}}\left[\frac{1}{2} \tilde{g}^{a b} \partial_{a} \phi \partial_{b} \phi+V(\phi)\right]
\end{aligned}
$$

$\tilde{g}$ is the round metric

$$
\begin{aligned}
y^{1} & =r \sin \theta \cos \phi \\
y^{2} & =r \sin \theta \sin \phi \\
y^{3} & =r \cos \theta \\
y^{4} & =\sqrt{\Lambda^{2}-r^{2}} \cos (\tau / \Lambda) \\
y^{5} & =\sqrt{\Lambda^{2}-r^{2}} \sin (\tau / \Lambda)
\end{aligned}
$$

$$
\Gamma \sim e^{-\left[S_{E}(\text { bounce })-S_{E}(\mathrm{fv})\right]}>\begin{aligned}
& \text { Coleman-De Luccia } \\
& \text { prescription for rate }
\end{aligned}
$$



## CDL thin-wall bounces:


$\ddot{\rho}=-\frac{\kappa \rho}{3}\left(\dot{\phi}^{2}+V\right) \Rightarrow$
Types $C$ and D impossible if
$\mathrm{V}>0$

For type $A / B$ :

$$
\begin{aligned}
& B[\bar{\rho}]=2 \pi^{2} \bar{\rho}^{3} S_{1}+\frac{4 \pi^{2}}{\kappa} \Lambda_{f}^{2}\left[1 \mp\left(1-\frac{\bar{\rho}^{2}}{\Lambda_{f}^{2}}\right)^{3 / 2}\right]-\frac{4 \pi^{2}}{\kappa} \Lambda_{t}^{2}\left[1-\left(1-\frac{\bar{\rho}^{2}}{\Lambda_{t}^{2}}\right)^{3 / 2}\right] \\
& \frac{\partial B}{\partial \bar{\rho}}=0 \Rightarrow \frac{1}{\bar{\rho}^{2}}=\frac{1}{\Lambda_{f}^{2}}+\left(\frac{\epsilon}{3 S_{1}}-\frac{\kappa S_{1}}{4}\right)^{2} V_{f}-V_{t}
\end{aligned}
$$

$\frac{\epsilon}{3 S_{1}}>\frac{\kappa S_{1}}{4} \Rightarrow$ Solution only for upper sign $\Rightarrow$ Type A
$\frac{\epsilon}{3 S_{1}}<\frac{\kappa S_{1}}{4} \Rightarrow$ Solution only for lower sign $\Rightarrow$ Type $B$ For type $\mathrm{B}, \bar{\rho}$ decreases as $\epsilon$ decreases.

## CDL prefactor? Negative modes?

For type A

$$
\frac{\partial^{2} S_{E}}{\partial \bar{\rho}^{2}}<0 \quad \text { Negative mode }
$$

For type B

$$
\frac{\partial^{2} S_{E}}{\partial \bar{\rho}^{2}}>0 \quad \text { No negative mode? }
$$

No tunneling for type B? - Implausible

Negative modes of full $\frac{\delta^{2} S_{E}}{\delta \chi^{2}}$
"Standard", slowly varying
Rapidly oscillating $\quad \begin{aligned} & \text { in wall } \\ & \text { around } \rho_{\max }\end{aligned}$

## Bounces

Small type A

Large type A ( $\rho_{\max }$ after wall)


Type $\mathbf{B}$ ( $\rho_{\text {max }}$ in wall)

Negative modes present?

|  | Slowly varying | Wall oscillating | $\rho_{\max }$ oscillating |
| :---: | :---: | :---: | :---: |
| Small type A | Yes | No | Planckian |
| Large type A | Usually | Possible | Yes |
| Type B | No | - | Yes |

## Multibounce configurations?



No oscillating zero modes

Multibounce contributions:

$$
I=I_{0} \sum_{n=0} \frac{1}{n!}\left(i^{?} \mathcal{V}_{4} K e^{-B}\right)^{n}
$$

Dominated by $n_{*} \approx \mathcal{V}_{4} K e^{-B} \approx \mathcal{V}_{4} \Gamma$

Flat space: $\quad \mathcal{V}_{4}=\Omega T \rightarrow \infty \quad \neg$ finite bounce density de Sitter: $\quad \mathcal{V}_{4}=\frac{8 \pi^{2}}{3} H^{-4} \quad n_{*} \approx \frac{\Gamma}{H^{4}} \sim\left(\frac{M_{\mathrm{Pl}}}{\mu}\right)^{4} e^{-B}$

$$
\begin{aligned}
& \frac{\Gamma}{H^{4}} \gg 1 \leadsto \text { no oscillating negative modes } \\
& \frac{\Gamma}{H^{4}} \ll 1 \leadsto \text { oscillating mode issues } \\
& \frac{\Gamma}{H^{4}} \gg 1 \leadsto \text { phase transition completes normally } \\
& \frac{\Gamma}{H^{4}} \ll 1 \leadsto \text { no percolation -- eternal inflation Guth, EW }
\end{aligned}
$$

Flat space limit: $\quad \mu \ll M_{\mathrm{P} 1}$


Time scale $\ll H^{-1} \quad$ Transition $\approx$ flat space transition

## Open Questions

Meaning of type $B$ bounces?
Tunneling of entire horizon volume?
Analogous to tunneling in symmetric double well?
Meaning of oscillating negative modes?
Connection between completed phase transition and "normal" negative mode structure?

$\mathrm{O}(4)$-symmetric bounces --- one field

$$
\begin{aligned}
& \phi(\mathbf{x}, \tau)=\phi\left(\sqrt{\mathbf{x}^{2}+\tau^{2}}\right)=\phi(s) \\
& \frac{d^{2} \phi}{d s^{2}}+\frac{3}{s} \frac{d \phi}{d s}=\frac{d V}{d \phi} \quad \dot{\phi}(0)=0 \quad \phi(\infty)=\phi_{\mathrm{fv}}
\end{aligned}
$$



$$
\begin{aligned}
& S=4 \pi^{2} \int_{0}^{\infty} d \xi\left[\rho^{3} U(\phi)-\frac{3}{\kappa} \rho\right] \quad \text { Divergent } \\
& S=-2 \pi^{2} \int_{0}^{\infty} d \xi \rho^{3} U(\phi)+\text { boundary terms Divergent }
\end{aligned}
$$

Minkowski false vacuum:

$$
B=-2 \pi^{2} \int_{0}^{\infty} d \xi \rho^{3} U(\phi)
$$

## Minkowski or AdS vacuum to AdS vacuum

$$
\begin{array}{lll}
\bar{\rho}=\frac{\bar{\rho}_{0}}{1-\left(\bar{\rho}_{0} / 2 \ell\right)^{2}} & B=\frac{B_{0}}{\left[1-\left(\bar{\rho}_{0} / 2 \ell\right)^{2}\right]^{2}} & \ell=(\kappa \epsilon / 3 \\
\bar{\rho}=\frac{\bar{\rho}_{0}}{\left(1-\kappa / \kappa_{\text {cr }}\right)} & B=\frac{B_{0}}{\left(1-\kappa / \kappa_{\text {cr }}\right)^{2}} & \kappa_{\text {cr }}=\frac{4 \epsilon}{3 \sigma^{2}}
\end{array}
$$

If $\bar{\rho}_{0} \geq 2 \ell, \epsilon \leq \frac{3}{4} \sigma^{2} \kappa$, no bounce $\rightarrow$ decay is quenched.

