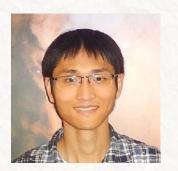
UNIVERSAL OPERATOR GROWTH AND EMERGENT HYDRODYNAMICS IN QUANTUM SYSTEMS

Ehud Altman – Berkeley

Xiangyu Cao,

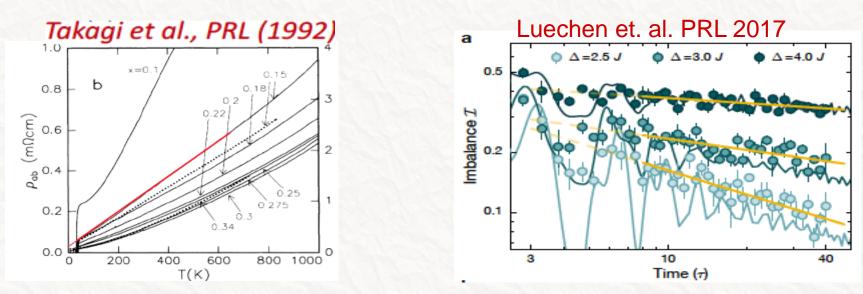
Daniel Parker, Thomas Scaffidi



How to compute dynamical properties of strongly coupled quantum matter ?

Unconventional transport: (Strange metals)

Relaxation following a quench in cold atomic systems:



Often boils down to computing time dependent correlations:

 $C(t) = \langle \mathcal{O}(t)\mathcal{O} \rangle$

Quantum Mechanics

Hydrodynamics

Microscopic description of the system. **Example:** Chaotic Ising Model

$$H = \sum_{i} X_{i} + 1.05 Z_{i} Z_{i+1} + 0.59 Z_{i}$$

Correlation functions:

 $C(t) = \langle \mathcal{O}(t,x)\mathcal{O}(0) \rangle$

Hard Solution: Hamiltonian dynamics

 $\mathcal{O}(t) = e^{-iHt} \mathcal{O}e^{iHt}.$

Exact and reversible dynamics.

Macroscopic description of quantum systems as classical PDEs.

Example: Diffusion of energy

$$\frac{\partial}{\partial t}\varepsilon(t,x)=D\nabla^2\varepsilon(t,x)+\nabla f,$$

with *D* diffusion, *f* thermal noise. **Easy Solution:** Green's function $G(i\omega, k) = \frac{1}{i\omega + Dq^2}$ Approximate & irreversible dynamics.

Quantum evolution is hard to compute

Operators evolve in a huge Hilbert space:

$$-i\frac{dA}{dt} = [H, \hat{A}] \qquad \longleftrightarrow \qquad -i\frac{d|A}{dt} = \mathcal{L}|A)$$
$$(A|B) = \operatorname{tr}(AB) \qquad |A(t)) = e^{-i\mathcal{L}t}|A)$$

Spin-1/2 models:

$$H = \sum_{\langle ij \rangle} h_{\alpha\beta} \, \sigma_i^\alpha \sigma_j^\beta$$

Basis of "Pauli strings:

$$\sigma^{\alpha_1} \otimes \sigma^{\alpha_2} \otimes \ldots \otimes \sigma^{\alpha_N} \equiv |\alpha)$$
$$\alpha_i = 0, 1, 2, 3$$

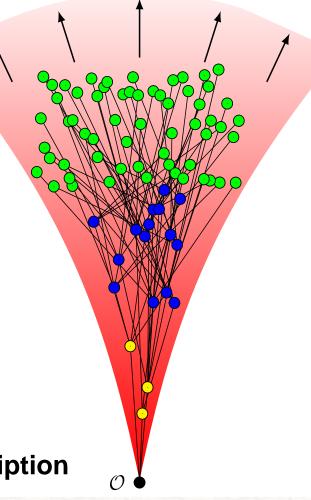
Quantum evolution is hard to compute

$$C(t) = (\mathcal{O}|e^{i\mathcal{L}t}|\mathcal{O})$$

$$\mathcal{O}(t) = e^{i\mathcal{L}t}\mathcal{O} = \mathcal{O} + (it)\mathcal{L}\mathcal{O} + (it)^2\mathcal{L}^2\mathcal{O} + \cdots$$

The basic idea

- Operators flow from simple to complex eventually becoming too complex to compute.
- Sufficiently complex operators should admit a *universal statistical description.*
- Our goal is to formulate this universal description



Outline

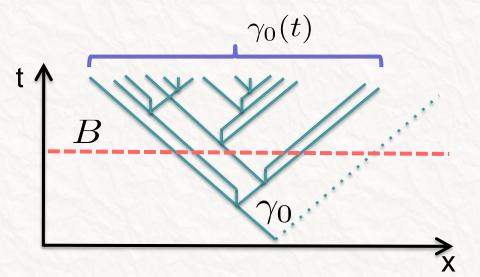
- Background: Krylov sub-space and operator complexity
- A hypothesis for universal operator growth
- Evidence for the hypothesis:
 (i) Numerical (Spin chains)
 (ii) Analytical (SYK models)
- Application: generalized notion of chaos and the bound
- Application: computation of transport coefficients

Out of time order correlations (OTOC): a measure for operator growth

 $F(t) \equiv \langle [A(t), B]^2 \rangle$

Example:

$$A(t) = \gamma_0(t)$$
$$B = \sum_j i\gamma_{2j}\gamma_{2j+1}$$



$$\gamma_i(\delta t) = \gamma_i + (\gamma_{i-1} + \gamma_{i+1})\delta t + \lambda (\gamma_{i-1}\gamma_i\gamma_{i+1})\delta t$$

If $\lambda <<1$ then: $F(t) \sim \epsilon e^{\lambda t}$

OTOC commonly used as a proxy of many-body quantum chaos.

Connection to classical chaos

$$\langle [\hat{x}(t), \hat{p}]^2 \rangle \longrightarrow \langle \{x(t), p\}^2 \rangle = \left\langle \left(\frac{dx(t)}{dx(0)}\right)^2 \right\rangle \sim e^{\lambda_L t}$$

$$\delta x(0) \downarrow$$

Measures sensitivity to initial conditions in a classical system

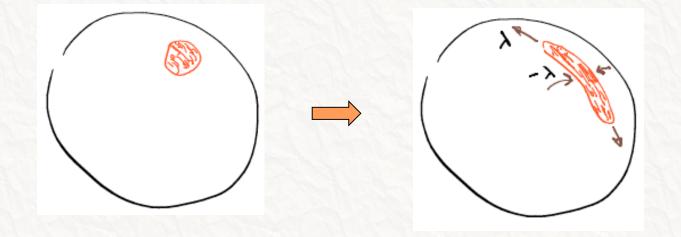
Classical "operator" complexity growth

Classical operators

Distribution functions on phase space

=

 $\frac{\partial f(x, p, t)}{\partial t} = \{\mathcal{H}, f\}$



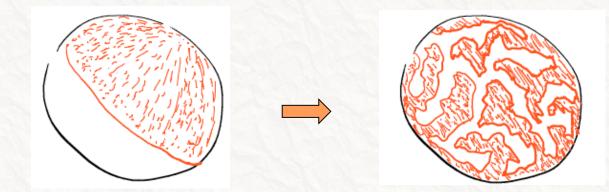
Classical "operator" complexity growth

Classical operators

Distribution functions on phase space

=

 $\frac{\partial f(x, p, t)}{\partial t} = \{\mathcal{H}, f\}$



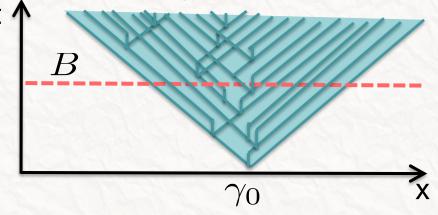
Lyapunov exponents quantify the rate at which increasingly fine structures on phase space are being generated.

A problem with this measure of operator growth:

OTOCs do not necessarily grow exponentially in generic systems (i.e. not large N or semiclassical)

 \hbar limits the resolution of structures on phase space.

At strong coupling the operator immediately becomes dense



$$\lambda^{-1} < t_{\text{saturation}}$$

 $F(t) \equiv \langle [A(t), B]^2 \rangle \sim vt$

Another way to characterize operator complexity ?

Krylov basis: folding the graph on a line

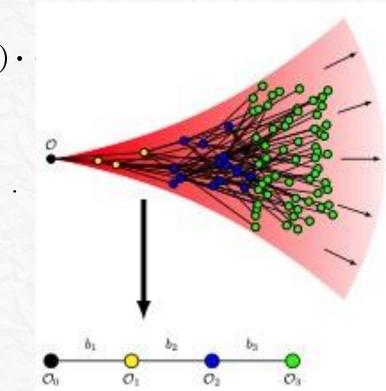
Generate orthonormal basis from successive application of $\mathcal L$

$$O) \xrightarrow{\mathcal{L}} |O_1) \xrightarrow{\mathcal{L}} |O_2) \xrightarrow{\mathcal{L}} |O_3) \cdot$$

 $(\mathcal{O}_n | \mathcal{L} | \mathcal{O}_m) = \begin{pmatrix} 0 & b_1 & 0 & 0 & \cdots \\ b_1 & 0 & b_2 & 0 & \cdots \\ 0 & b_2 & 0 & b_3 & \cdots \\ 0 & 0 & b_3 & 0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}.$

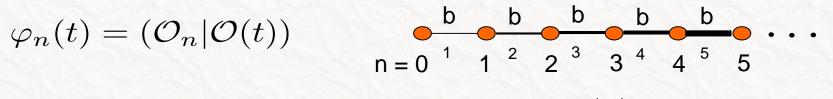
"Recursion Coefficients"

- Problem mapped to single-particle hopping on a semi-infinite chain !
- Krylov index ~ operator complexity

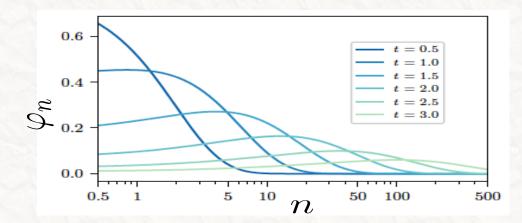


D.C. Mattis, 1981; Viswanath & Müller, The Recursion Method, 2008.

"Operator wavefunction" in Krylov space



 $\partial_t \varphi_n = -b_{n+1} \varphi_{n+1} + b_n \varphi_{n-1}, \quad \varphi_n(0) = \delta_{n0}$

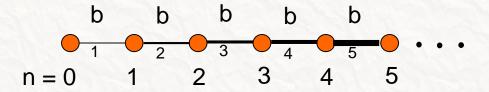


The autocorrelation function:

"Krylov-complexity":

$$C(t) = \operatorname{tr} \left[\mathcal{O}(t)\mathcal{O}\right] = \varphi_0(t)$$
$$\langle n(t) \rangle = \sum_{n=0}^{\infty} |\varphi_n(t)|^2 n$$

How do the recursion coefficients grow with n?



Asymptotic	Growth Rate	System Type	25 -	+ xxx		
$b_n \sim O(1)$ $b_n \sim O(\sqrt{n})$	constant square-root	Free models Integrable models	20 - 5 15 - 10 -	- Ising	Inter	rable
b _n ~ ???	777	Chaotic models	5-	Loor	Autorita	Free
$b_n \ge O(n)$	superlinear	Disallowed	۰,	x = x =	10	20
					n	

D.C. Mattis, 1981; Viswanath & Müller, The Recursion Method, 2008.

The hypothesis for generic models: linear growth of the reursion coefficients Dan Parker, Xiangyu Cao, Thomas Scaffidi, EA arXiv:1812.08657

$$b_n = \alpha n + \beta, \quad n \to \infty$$

Logarithmic correction in 1d models:

$$b_n = \frac{\alpha n}{\log(n)} + \beta$$
 (Theorem by Araki 1969 excludes faster growth. Thanks to Alex Advoshkin)

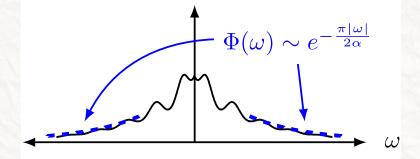
Faster asymptotic growth is not possible. We term α , the "growth rate" of the operator for reasons that will become clear.

Relation to spectral function

$$\Phi(\omega) = \int_{-\infty}^{\infty} dt C(t) e^{-i\omega t} = \int_{-\infty}^{\infty} dt \operatorname{tr} \left[\mathcal{O}(t) \mathcal{O} \right] e^{-i\omega t}$$

 $b_n = \alpha n + O(1) \iff \Phi(\omega) \sim e^{-\pi \frac{|\omega|}{2\alpha}}$

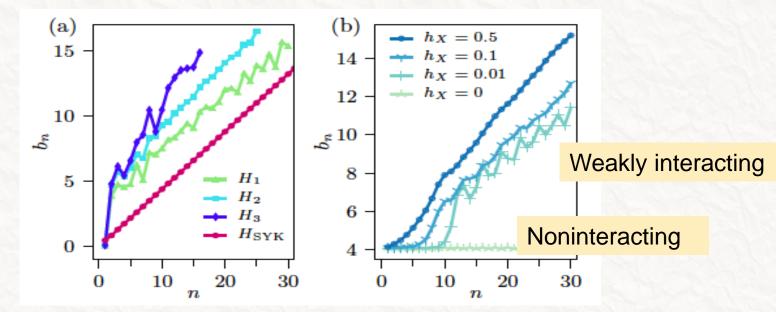
Or in 1d: $b_n = \frac{\alpha n}{\log(n)} + O(1) \iff \Phi(\omega) \sim e^{-\pi \frac{|\omega|}{2\alpha} \log |\omega|}$



The operator "growth rate" α , is directly related to the high frequency limit of the spectral function

The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model



<u>Analytical:</u> SYK model in the limit of large q (infinite T)

$$b_n = J \, 2^{(1-q)/2} \sqrt{q \, n(n-1)} + O(1/q) \qquad n \ge 2$$

Phenomenology of the semi-infinite chain

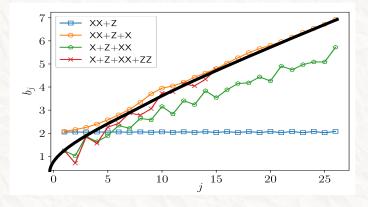
Exactly solvable "universal" model:

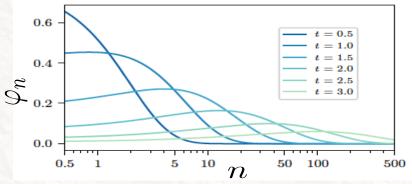
$$\widetilde{b}_n = \alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n + \beta$$

$$\langle n(t) \rangle = \eta \sinh(\alpha t)^2 \sim \eta e^{2\alpha t}$$

A general property of models with linear growth of recursion coeffs.

Operators grow as fast as they can. What is the relation to quantum chaos ?





* in 1d:
$$\langle n(t) \rangle \sim e^{\sqrt{4\alpha t}}$$

Suggestive result from SYK model at infinite T

Both the recursion coefficients and the Lyapunov exponent can be computed exactly. (numerically for finite q and analytically in the large q limit)

q	2	3	4	7	10	∞
$lpha/\mathcal{J}$	0	0.461	0.623	0.800	0.863	1
$\lambda_L/(2\mathcal{J})$	0	0.454	0.620	0.799	0.863	1
		- /	2			

$$\mathcal{J} = J \, 2^{(1-q)/2} \sqrt{q}$$

Taken from: Roberts, Stanford and Streicher JHEP 2018

We will now establish a precise connection.

Define precise notion of complexity: Q-complexity

Positive semi-definite super-operator:

$$\mathcal{Q} = \sum_{a} q_a |q_a) (q_a|, \, q_a \ge 0$$

Additional requirements :

 $(q_b|\mathcal{L}|q_a) = 0$ if $|q_a - q_b| > b$

$$(q_a | \mathcal{O}) = 0$$
 if $q_a < d$

(i.e. *L* affects a bounded change of complexity and the initial operator complexity is small)

Q-complexity:
$$(\mathcal{Q})_t := (\mathcal{O}(t)|\mathcal{Q}|\mathcal{O}(t))$$

Q-complexity - Examples

$$\mathcal{Q} = \sum_{a} q_a |q_a| (q_a|, q_a \ge 0 \qquad (\mathcal{Q})_t := (\mathcal{O}(t)|\mathcal{Q}|\mathcal{O}(t))$$

1. <u>"Krylov" complexity</u>

$$\mathcal{Q} = \sum_{n=0}^{\infty} n \left| \mathcal{O}_n \right| (\mathcal{O}_n)$$

2. <u>Operator size</u> q-eigenvectors are Pauli strings

 $\mathcal{Q}|IXYZI\cdots)=3|IXYZI\cdots)$

3. OTOC
$$\mathcal{Q} := \sum_{i} \mathcal{Q}_{i}, \quad (A|\mathcal{Q}_{i}|B) := ([V_{i}, A] \mid [V_{i}, B])$$

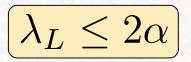
A generalized bound of chaos

<u>Theorem*:</u> the growth of any Q-complexity is bounded by the growth of the Krylov complexity

 $(\mathcal{Q})_t \le C(n)_t$

For proof see our paper arXiv:1812.08657

Implication: a generalized bound on chaos



Direct connection between the Lyapunov exponent and a property of an observable correlation function!

*Extension of the notion and of the bound to finite T is still a conjecture

Finite temperature

Freedom in defining the scalar product

To recover physical correlations: $(A|B) = tr[\rho A^{\dagger}B] \equiv \langle A^{\dagger}B \rangle_{\beta}$

We will a use a different scalar product:

$$(A|B)_{H} := \operatorname{tr}[\sqrt{\rho}A^{\dagger}\sqrt{\rho}B] = \operatorname{tr}[\rho A^{\dagger}B(i\beta/2)]$$
$$C_{H}(t) = \langle A^{\dagger}(t-i\beta/2)B\rangle_{\beta} = C(t-i\beta/2)$$

$$\Phi_H(\omega) = \frac{\Phi(\omega)}{\sinh(\beta\omega/2)}$$

Finite T Chaos bound

Low T limit

High frequency spectral function dominated by thermal suppression:

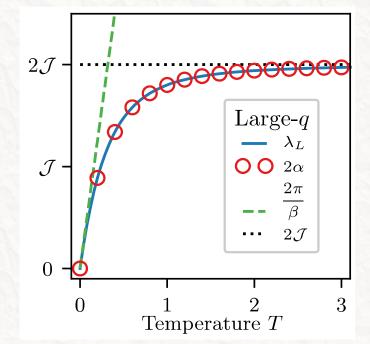
$$\Phi_H(\omega) = \frac{\Phi(\omega)}{\sinh(\beta\omega/2)} \to e^{-\omega/\Lambda - \omega/2T} \sim e^{-\omega/2T}$$

$$\Rightarrow \quad \lambda_L \le 2\alpha = 2\pi T$$

Recover the bound of Maldacena, Shenker & Stanford 2016

From low to high T in the large q SYK model

Tighter bound on chaos! SYK model saturates the tighter bound.



Chaos bounds in the low T limit – 1d models

 $\omega_* \sim \Lambda e^{\Lambda/2T}$

$$\Phi_H(\omega) \sim e^{-\frac{\omega}{\Lambda} \log\left(\frac{\omega}{\Lambda}\right) - \omega/2T}$$

Crossover frequency:

 $b_{n} \uparrow \frac{\Lambda n}{(\pi T)n + c} \frac{\Lambda n}{\log n} + c'$ $(\pi T)n + c \qquad n \gg (\Lambda/4T)e^{\Lambda/2T}$

$$\langle n(t) \rangle \sim e^{2\pi T t}$$

for $t < \Lambda/T^2$

So, even for 1d systems we recover:

 $\lambda_L \le 2\alpha = 2\pi T$

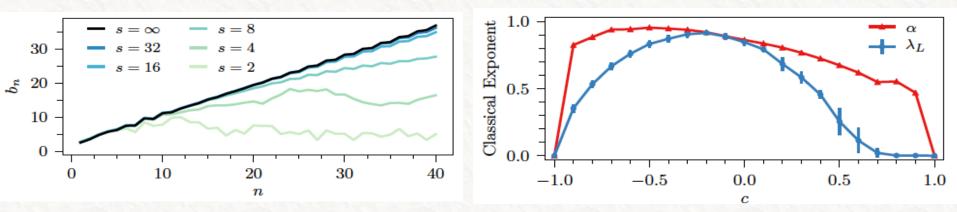
Application to classical chaos

The framework carries over for classical dynamics with:

Liouvillian $\longrightarrow \mathcal{L} = i\{\mathcal{H}, \cdot\}$

Operators \longrightarrow Functions on the classical phase space

Compare α to λ_L Peres- Feingold model:



 $H_{\rm FP} = (1+c) \left[S_1^z + S_2^z \right] + 4s^{-1}(1-c)S_1^x S_2^x$

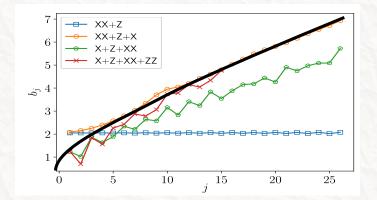
The two exponents coincide where the model is most chaotic. Otherwise α appears as an upper bound on λ_L

Application: computing operator decay

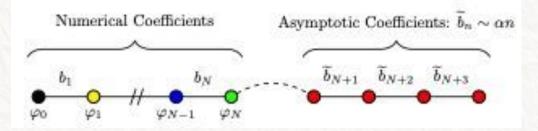
The basic idea:

1. Compute the first m recursion coefficients numerically.

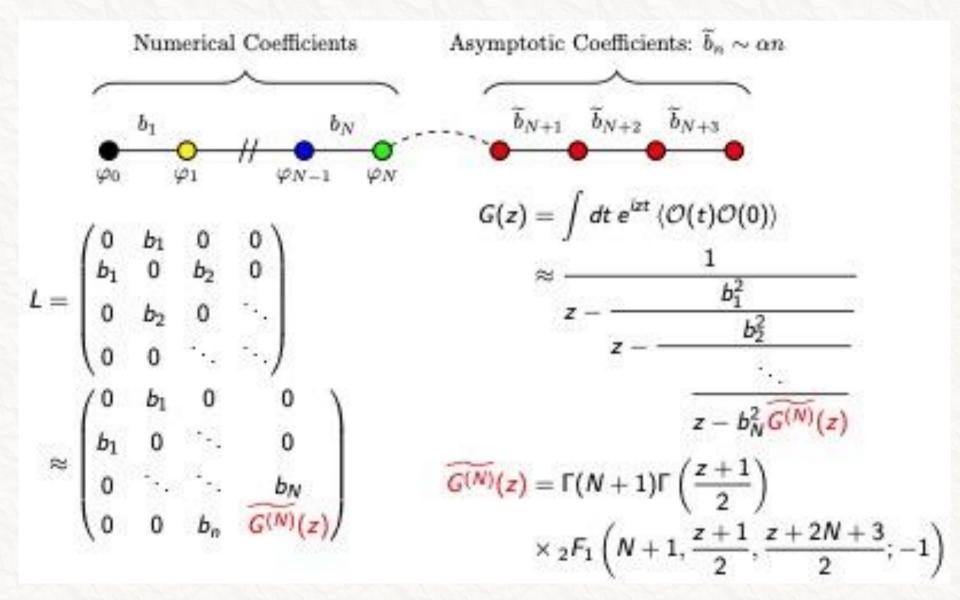
 Complete with the fitted "universal" model at larger values of n



$$\widetilde{b}_n = \alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n + \beta$$



3. Stich the small to large n wavefunctions to get an approximation of the decay of C(t).



Diffusion in the Chaotic Ising Model

Chaotic Ising Model

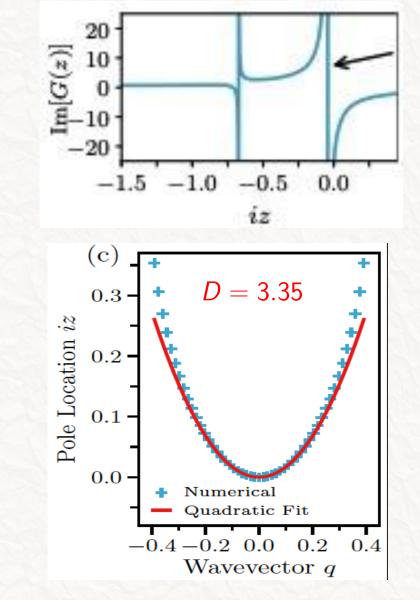
$$H = \sum_{j} X_{j} + 1.05 Z_{j} Z_{j+1} + 0.5 Z_{j}$$

Initial operator at wavevector k:

$$\mathcal{O}_{k} = \sum_{j} e^{ikj} \left(X_{j} + 1.05 Z_{j} Z_{j+1} + 0.5 Z_{j} \right)$$

We see the dispersion relation for diffusion

 $rac{d}{dt}\epsilon(t,x)=D
abla^2\epsilon(t,x).$



Summary

• Hypothesis for universal operator dynamics supported by extensive evidence. Linear growth of Lanczos coefficients

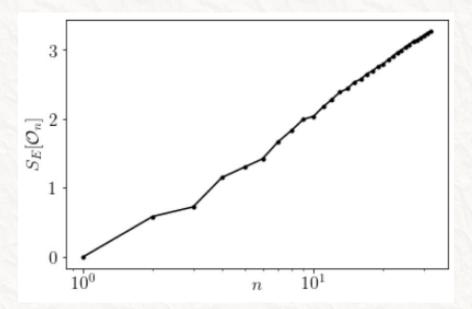
$$b_n = \alpha n + \beta + o(1), \quad n \to \infty$$

- Implies exponential growth in operator complexity: $(n)_t \sim e^{2\alpha t} \qquad \qquad \lambda_L \leq 2\alpha$
- The hypothesis enables a new numerical scheme to compute dynamical correlations and transport coefficients.

Extensions and outlook

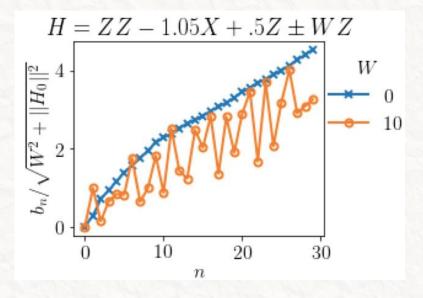
- Does K-complexity provide a more fundamental notion of chaos? Measureable in a two point function (high frequency limit)!
- MPO calculation of the Krylov vectors and recursion coefficients

Operator entanglement appears to grow only logarithmically with n. Why ?



Extensions and outlook

- Behavior of Lanczos coefficients in integrable models?
- Growth of Lanczos coefficcients in MBL?
 Systematic derivation of disorder averaged LIOMs
 - Non trivial violation of the hypothesis
 - Systematic derivation of disorder averaged LIOMs



Extensions and outlook

- Finite size saturation
 - In a finite system, the exponential growth of K-complexity is saturated at a logarithmically long time.
 - Relation to Ehrenfest/Thouless time?

 $t^* \sim \ln L$

Kos, Ljubotina, Prosen (2018); Chan, De Luca, Chalker (2018)

