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How to compute dynamical properties of strongly
coupled quantum matter ?

Unconventional transport:

Relaxation following a
(Strange metals)

guench in cold atomic systems:

1?‘.::nfc-:':a'g',r,-' et al., PRL (1992) a Lluechen et. al. PRL 2017
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Often boils down to computing time dependent correlations:

C(t) = (01)0)



[Quantum I\/Iechanics]

Microscopic description of the system.
Example: Chaotic Ising Model

H=)> Xi+1.05ZZ;+059Z

Correlation functions:
C(t) = (O(t, x)0(0))
Hard Solution: Hamiltonian dynamics

O(t) = e O™

Exact and reversible dynamics.

[Hydrodynamicsj

Macroscopic description of quantum
systems as classical PDEs.

Example: Diffusion of energy

%s(t,x) = DV?%¢(t, x) + VF,

with D diffusion, f thermal noise.

Easy Solution: Green's function w

1

Gliw. k) = 5 Dg

Approximate & irreversible dynamics.



Quantum evolution is hard to compute

Operators evolve in a huge Hilbert space:

dA S _,dl4)

e[ Al ) T L]A)
(A|B) = tr(AB) A(t)) = e[ 4)
Spin-1/2 models: e Z haﬂ 0‘?0‘?
(27)
Basis of “Pauli strings: 'R R...Qa™N =

Oéi:(),]_,Q,S



Quantum evolution Is hard to compute
C(t) = (0]e™**0)
O(t) = e*tO = O + (it)LO + (it)2L20 + --

The basic idea

Operators flow from simple to complex
eventually becoming too complex to compute.

Sufficiently complex operators should admit a
universal statistical description.

Our goal is to formulate this universal description



Outline

Background: Krylov sub-space and operator complexity
A hypothesis for universal operator growth

Evidence for the hypothesis:
() Numerical (Spin chains)
(i) Analytical (SYK models)

Application: generalized notion of chaos and the bound

Application: computation of transport coefficients



Out of time order correlations (OTOC):
a measure for operator growth

Yo (%)
NS N, ' '
Example: W/
A() = 0(?)

Q0.

B = iy2v241

b/

i (68) = vi + (Vi—1 + Yi+1)68 + A (vi—17iVit1) 68

If A<<1 then: F(t) ~ € o

OTOC commonly used as a proxy of many-body quantum chaos.

<V



Connection to classical chaos

([@(6). 512) a1 = ((20)) ~ e
6z(0) * <

Measures sensitivity to initial conditions in a classical system



Classical “operator” complexity growth

Classical Distribution @f(m, p,t)

operators ~_ functions on ¢ ={H, [}
phase space

/r«‘*:-




Classical “operator” complexity growth

Classical Distribution Of(x,p,t)

operators ~_  functions on ¢ ={H, [}
phase space

Lyapunov exponents quantify the rate at which increasingly
fine structures on phase space are being generated.



A problem with this measure of operator growth:

OTOCs do not necessarily grow exponentially in generic systems
(i.e. not large N or semiclassical)

h limits the resolution of At strong coupling the operator
structures on phase space. n immediately becomes dense
t
>
70 X
—1
A NG T o F(t) = ([A(t), B]2> ~ VT

Another way to characterize operator complexity ?



Krylov basis: folding the graph on a line

Generate orthonormal basis from successive application of £

L 78 L
0) — [01) — [O2) — |03) - ~
OO DR\ O e
b TR
(e el B e NN NS

OS5 NOATH50 Bl

\ z/‘z

“Recursion Coefficients”

* Problem mapped to single-particle
hopping on a semi-infinite chain !
« Krylov index ~ operator complexity

D.C. Mattis. 1981; Viewanath & Mdiller, The Recursion Method 2008



“Operator wavefunction” in Krylov space

b

on(t) = (On|O®)) LIPSl SR
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The autocorrelation function: CIOAN @ O—"20(H)

“Krylov-complexity”: (n(t)) = lon(®)|?n
n=—0



How do the recursion coefficients grow with n ?

SR O | RS o

o —0—0-—0—0—0 .
n=0 1 2 3 4 %
30
Asymptotic Growth Rate System Type 25 —
e lam
b, ~ O(1) constant Free models _:U * wﬂa\»\“
- =15 < A
b, ~ O(\/n) square-root Integrable models W
by ~ 777 m Chaotic models G - Free
b, > O(n)  superlinear Disallowed 0 . . v
i 21

D.C. Mattis. 1981; Viewanath & Muller, The Recursion Method, 2008




The hypothesis for generic models:
linear growth of the reursion coefficients
Dan Parker, Xiangyu Cao, Thomas Scaffidi, EA arXiv:1812.08657

b, =an+ B8, n — o0

Logarithmic correction in 1d models:

amn

oy + (Theorem by Araki 1969 excludes faster

log(n) growth. Thanks to Alex Advoshkin )

Faster asymptotic growth is not possible. We term ¢, the
“growth rate” of the operator for reasons that will become clear.



Relation to spectral function

(I)(W) = [OO dtC(t)e_th — /_OO dt tr [O(t)@] o —iwt

b, =an+ 0O(1) — P(w) ~ ey Ao

an ]
= O(1) < ®(w) ~ e~ "2a logl
AN (1) (w) ~e

R

- > W

Orin1d: bn

The operator “growth rate” «, is directly related
to the high frequency limit of the spectral function



The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model

(a)

(b)
14 -

e ftyy = 0.5
hay = 0.1
by = 0.0
hy =0

1

Weakly interacting

Noninteracting

I
20

I
30

Analytical: SYK model in the limit of large g (infinite T)

b, = J2<1_q>/2\/qn(n —1)+0O(1/q)

T



Phenomenology of the semi-infinite chain

b b b b b
- 0 ‘00— 00 . "

n=0 1 2 3 4 5

Exactly solvable “universal” model:

—~

bn:a\/n(n—len)%oszrﬁ

[(n(t)) — nsinh(at)Q ~ 77620415}

S

A general property of models with
linear growth of recursion coeffs.

Operators grow as fast as they can.

What is the relation to quantum chaos ?
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Suggestive result from SYK model at infinite T

Both the recursion coefficients and the
Lyapunov exponent can be computed exactly.
(numerically for finite g and analytically in the large g limit)

q 2 3 4 7 10 oo
a/J 0 0.461 0.623 0.800 0.863 1
AL/(27) 0 0.454 0.620 0.799 0.863 1

i — J2(1—q)/2\/§
Taken from: Roberts, Stanford and Streicher JHEP 2018

We will now establish a precise connection.



Define precise notion of complexity: Q-complexity

Positive semi-definite super-operator: o= Z 9al92)(qal, go = 0
a

Additional requirements : Cop |l N O el g (=

RN = SN S

(i.e. L affects a bounded change of complexity
and the initial operator complexity is small )

[Q-Complexity: (Q); := (O(1)|Q|O(t)) }




Q-complexity - Examples

0= )@l au >0 (Q): = (O(1)[QlO(1)) |

1. “Krylov” complexity Q= Z n|0,)(O

2. QOperator size
g-eigenvectors are Pauli strings QUXYZI---)=3|IXYZI---)

SN GIOE = ZQz, (A1Q:|B) := ([Vi, Al | [Vi, BY)



A generalized bound of chaos

Theorem*: the growth of any Q-complexity is
bounded by the growth of the Krylov complexity

(Q)t < C(n):
For proof see our paper arXiv:1812.08657

Implication: a generalized bound on chaos [)\L < 20&1

Direct connection between the Lyapunov exponent and a
property of an observable correlation function!

*Extension of the notion and of the bound to finite T is still a conjecture



Finite temperature

Freedom in defining the scalar product
To recover physical correlations:  (A|B) = tr[pAfB] = (ATB),4
We will a use a different scalar product:
(A|B) gz := te[y/pA'\/pB] = tr[pAT B(i8/2)]
Cr(t) = (AT(t - i8/2)B)s = C(t —i8/2)

P (w)

Lt QURS sinh(Bw/2)




Finite T Chaos bound

Low T limit

High frequency spectral function dominated by thermal suppression:

. P(w) o, ) NN DT O
S ;
)\L S Ve = 2l

Recover the bound of
Maldacena, Shenker & Stanford 2016

From low to high T in the
large d SYK model

Tighter bound on chaos!

SYK model saturates the tighter bound.

Temperature T’



Chaos bounds in the low T Iimit — 1d models

bn A An W
logn Virind i
e ((t)) ~ e
fardt, < UNLS

n

So, even for 1d systems we recover: AL < 200 = 27T



Application to classical chaos

The framework carries over for classical dynamics with:
Biolvlian = e~ PR AL
Operators — > Functions on the classical phase space
Compare ato 4, Peres- Feingold model:
Hegp = (1+¢) [S? +S3] +4s51(1 — ¢)STSE

1.0

Classical Exponent
=
W]

T T T Y T O

0.0

The two exponents coincide where the model is most chaotic.
Otherwise « appears as an upper bound on 4,



Application: computing operator decay

The basic idea:

71 —=— xx+z
61 o Ximox
51 T X+ZHXX+ZZ
1. Compute the first m recursion 4]
coefficients numerically. ]
N
0 5 10 . 15 20 25
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3. Stich the small to large n wavefunctions
to get an approximation of the decay of C(t).
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Numerical Coefficients Asymptotic Coefficients: b, ~ an
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Diffusion in the Chaotic Ising Model

Chaotic Ising Model
H=> Xj+1.05ZZj1+0.5Z
J
Initial operator at wavevector k:
Ok =) €% (X;+1.05ZZi1 +0.5Z)
J

We see the dispersion relation for diffusion

%e(t, x) = DV?¢(t, x).
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Summary

Hypothesis for universal operator dynamics supported by
extensive evidence. Linear growth of Lanczos coefficients

b, = an+ 0+ o(l), n — oo

Implies exponential growth in operator complexity:
(n); ~ e AL < 2a

The hypothesis enables a new numerical scheme to compute
dynamical correlations and transport coefficients.



Extensions and outlook

« Does K-complexity provide a more fundamental notion of chaos?
Measureable in a two point function (high frequency limit)!

« MPO calculation of the Krylov vectors and recursion coefficients

Operator entanglement
appears to grow only
logarithmically with n.
Why ? S

10" n 10!



Extensions and outlook

« Behavior of Lanczos coefficients in integrable models?

« Growth of Lanczos coefficcients in MBL?
Systematic derivation of disorder averaged LIOMs

— Non trivial violation of the
hypothesis

— Systematic derivation of disorder
averaged LIOMs

(J“‘,v‘x \‘I'l —— ‘lill:' H')
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Extensions and outlook

 Finite size saturation

(Lieb-Robinson) t ~ L

— In a finite system, the exponential
growth of K-complexity is saturated
at a logarithmically long time.

— Relation to Ehrenfest/Thouless

time? K-complexity t~1InL

time

t" ~InL 2at

Kos, Ljubotina, Prosen (2018);
Chan, De Luca, Chalker (2018) space



