UNIVERSAL OPERATOR GROWTH AND EMERGENT

 HYDRODYNAMICS IN QUANTUM SYSTEMSEhud Altman - Berkeley

Xiangyu Cao,

ere: ¿Ư:UUAM

Daniel Parker,

How to compute dynamical properties of strongly coupled quantum matter ?

Unconventional transport: (Strange metals)

Relaxation following a quench in cold atomic systems:

Often boils down to computing time dependent correlations:

$$
C(t)=\langle\mathcal{O}(t) \mathcal{O}\rangle
$$

Quantum Mechanics

Hydrodynamics

Microscopic description of the system.
Example: Chaotic Ising Model

$$
H=\sum_{i} X_{i}+1.05 Z_{i} Z_{i+1}+0.59 Z_{i}
$$

Correlation functions:

$$
C(t)=\langle\mathcal{O}(t, x) \mathcal{O}(0)\rangle
$$

Hard Solution: Hamiltonian dynamics

$$
\mathcal{O}(t)=e^{-i H t} \mathcal{O} e^{i H t}
$$

Exact and reversible dynamics.

Macroscopic description of quantum systems as classical PDEs.

Example: Diffusion of energy

$$
\frac{\partial}{\partial t} \varepsilon(t, x)=D \nabla^{2} \varepsilon(t, x)+\nabla f
$$

with D diffusion, f thermal noise.
Easy Solution: Green's function

$$
G(i \omega, k)=\frac{1}{i \omega+D q^{2}}
$$

Approximate \& irreversible dynamics.

Quantum evolution is hard to compute

Operators evolve in a huge Hilbert space:

$$
\begin{array}{ll}
-i \frac{d \hat{A}}{d t}=[H, \hat{A}] & \left.\left.-i \frac{d \mid A)}{d t}=\mathcal{L} \right\rvert\, A\right) \\
(A \mid B)=\operatorname{tr}(A B) & \left.\mid A(t))=e^{-i \mathcal{L} t} \mid A\right)
\end{array}
$$

Spin-1/2 models:

$$
H=\sum_{\langle i j\rangle} h_{\alpha \beta} \sigma_{i}^{\alpha} \sigma_{j}^{\beta}
$$

Basis of "Pauli strings:

$$
\begin{gathered}
\left.\sigma^{\alpha_{1}} \otimes \sigma^{\alpha_{2}} \otimes \ldots \otimes \sigma^{\alpha_{N}} \equiv \mid \alpha\right) \\
\alpha_{i}=0,1,2,3
\end{gathered}
$$

Quantum evolution is hard to compute

$$
\begin{aligned}
& C(t)=\left(\mathcal{O}\left|e^{i \mathcal{L} t}\right| \mathcal{O}\right) \\
& \mathcal{O}(t)=e^{i \mathcal{L} t} \mathcal{O}=\mathcal{O}+(i t) \mathcal{L} \mathcal{O}+(i t)^{2} \mathcal{L}^{2} \mathcal{O}+\cdot
\end{aligned}
$$

The basic idea

- Operators flow from simple to complex eventually becoming too complex to compute.
- Sufficiently complex operators should admit a universal statistical description.
- Our goal is to formulate this universal description

Outline

- Background: Krylov sub-space and operator complexity
- A hypothesis for universal operator growth
- Evidence for the hypothesis:
(i) Numerical (Spin chains)
(ii) Analytical (SYK models)
- Application: generalized notion of chaos and the bound
- Application: computation of transport coefficients

Out of time order correlations (OTOC): a measure for operator growth

$$
F(t) \equiv\left\langle[A(t), B]^{2}\right\rangle
$$

Example:
$A(t)=\gamma_{0}(t)$
$B=\sum_{j} i \gamma_{2 j} \gamma_{2 j+1}$

$\gamma_{i}(\delta t)=\gamma_{i}+\left(\gamma_{i-1}+\gamma_{i+1}\right) \delta t+\lambda\left(\gamma_{i-1} \gamma_{i} \gamma_{i+1}\right) \delta t$

If $\lambda \ll 1$ then:

$$
F(t) \sim \epsilon e^{\lambda t}
$$

OTOC commonly used as a proxy of many-body quantum chaos.

Connection to classical chaos

$$
\left\langle[\hat{x}(t), \hat{p}]^{2}\right\rangle \longleftrightarrow\left\langle\{x(t), p\}^{2}\right\rangle=\left\langle\left(\frac{d x(t)}{d x(0)}\right)^{2}\right\rangle \sim e^{\lambda_{L} t}
$$

Measures sensitivity to initial conditions in a classical system

Classical "operator" complexity growth

Classical "operator" complexity growth

Classical
operators

Distribution
$=$ functions on phase space

$$
\frac{\partial f(x, p, t)}{\partial t}=\{\mathcal{H}, f\}
$$

Lyapunov exponents quantify the rate at which increasingly fine structures on phase space are being generated.

A problem with this measure of operator growth:

OTOCs do not necessarily grow exponentially in generic systems (i.e. not large N or semiclassical)
\hbar limits the resolution of structures on phase space.

$\lambda^{-1}<t_{\text {saturation }}$

At strong coupling the operator immediately becomes dense

$$
F(t) \equiv\left\langle[A(t), B]^{2}\right\rangle \sim v t
$$

Another way to characterize operator complexity ?

Krylov basis: folding the graph on a line

Generate orthonormal basis from successive application of \mathcal{L}
$\left.|O\rangle \xrightarrow{\mathcal{L}} \mid O_{1}\right) \xrightarrow{\mathcal{L}}\left|O_{2}\right| \xrightarrow{\mathcal{L}}\left|O_{3}\right| \cdot$
$\left(\mathcal{O}_{n}|\mathcal{L}| \mathcal{O}_{m}\right)=\left(\begin{array}{ccccc}0 & b_{1} & 0 & 0 & \cdots \\ b_{1} & 0 & b_{2} & 0 & \cdots \\ 0 & b_{2} & 0 & b_{3} & \cdots \\ 0 & 0 & b_{3} & 0 & \ddots \\ \vdots & \vdots & \vdots & \ddots & \ddots\end{array}\right)$.
"Recursion Coefficients"

- Problem mapped to single-particle hopping on a semi-infinite chain!
- Krylov index ~ operator complexity

"Operator wavefunction" in Krylov space

$$
\begin{aligned}
& \varphi_{n}(t)=\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{t} \varphi_{n}=-b_{n+1} \varphi_{n+1}+b_{n} \varphi_{n-1}, \quad \varphi_{n}(0)=\delta_{n 0}
\end{aligned}
$$

The autocorrelation function:

$$
C(t)=\operatorname{tr}[\mathcal{O}(t) \mathcal{O}]=\varphi_{0}(t)
$$

"Krylov-complexity":

$$
\langle n(t)\rangle=\sum_{n=0}^{\infty}\left|\varphi_{n}(t)\right|^{2} n
$$

How do the recursion coefficients grow with n ?

Asymptotic	Growth Rate	System Type
$b_{n} \sim O(1)$	constant	Free models
$b_{n} \sim O(\sqrt{n})$	square-root	Integrable models
$b_{n} \sim ? ? ?$	$? ? ?$	Chaotic models
$b_{n} \geq O(n)$	superlinear	Disallowed

The hypothesis for generic models: linear growth of the reursion coefficients

Dan Parker, Xiangyu Cao, Thomas Scaffidi, EA arXiv:1812.08657

$$
b_{n}=\alpha n+\beta, \quad n \rightarrow \infty
$$

Logarithmic correction in 1d models:

$$
b_{n}=\frac{\alpha n}{\log (n)}+\beta
$$

(Theorem by Araki 1969 excludes faster growth. Thanks to Alex Advoshkin)

Faster asymptotic growth is not possible. We term α, the "growth rate" of the operator for reasons that will become clear.

Relation to spectral function

$$
\begin{aligned}
& \Phi(\omega)=\int_{-\infty}^{\infty} d t C(t) e^{-i \omega t}=\int_{-\infty}^{\infty} d t \operatorname{tr}[\mathcal{O}(t) \mathcal{O}] e^{-i \omega t} \\
& b_{n}=\alpha n+O(1) \Longleftrightarrow \Phi(\omega) \sim e^{-\pi \frac{|\omega|}{2 \alpha}}
\end{aligned}
$$

Or in 1d: $\quad b_{n}=\frac{\alpha n}{\log (n)}+O(1) \Longleftrightarrow \Phi(\omega) \sim e^{-\pi \frac{|\omega|}{2 \alpha} \log |\omega|}$

The operator "growth rate" α, is directly related to the high frequency limit of the spectral function

The evidence

Numerical: Many distinct nonintegrable spin chains, SYK model

Analytical: SYK model in the limit of large q (infinite T)

$$
b_{n}=J 2^{(1-q) / 2} \sqrt{q n(n-1)}+O(1 / q) \quad n \geq 2
$$

Phenomenology of the semi-infinite chain

Exactly solvable "universal" model:

$$
\widetilde{b}_{n}=\alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n+\beta
$$

$$
\langle n(t)\rangle=\eta \sinh (\alpha t)^{2} \sim \eta e^{2 \alpha t}
$$

A general property of models with linear growth of recursion coeffs.

Operators grow as fast as they can.

* in 1d: $\langle n(t)\rangle \sim e^{\sqrt{4 \alpha t}}$

What is the relation to quantum chaos?

Suggestive result from SYK model at infinite T

Both the recursion coefficients and the Lyapunov exponent can be computed exactly.
(numerically for finite q and analytically in the large q limit)

Taken from: Roberts, Stanford and Streicher JHEP 2018
We will now establish a precise connection.

Define precise notion of complexity: Q-complexity

Positive semi-definite super-operator:

$$
\left.\mathcal{Q}=\sum_{a} q_{a} \mid q_{a}\right)\left(q_{a} \mid, q_{a} \geq 0\right.
$$

Additional requirements :

$$
\begin{aligned}
& \left(q_{b}|\mathcal{L}| q_{a}\right)=0 \text { if }\left|q_{a}-q_{b}\right|>b \\
& \left(q_{a} \mid \mathcal{O}\right)=0 \text { if } q_{a}<d
\end{aligned}
$$

(i.e. L affects a bounded change of complexity and the initial operator complexity is small)

$$
\text { Q-complexity: } \quad(\mathcal{Q})_{t}:=(\mathcal{O}(t)|\mathcal{Q}| \mathcal{O}(t))
$$

Q-complexity - Examples

$$
\left.\mathcal{Q}=\sum_{a} q_{a} \mid q_{a}\right)\left(q_{a} \mid, q_{a} \geq 0 \quad(\mathcal{Q})_{t}:=(\mathcal{O}(t)|\mathcal{Q}| \mathcal{O}(t))\right.
$$

1. "Krylov" complexity

$$
\left.\mathcal{Q}=\sum_{n=0}^{\infty} n \mid \mathcal{O}_{n}\right)\left(\mathcal{O}_{n} \mid\right.
$$

2. Operator size q-eigenvectors are Pauli strings $\quad \mathcal{Q} \mid I X Y Z I \cdots)=3 \mid I X Y Z I \cdots)$
3. $\underline{\mathrm{OTOC}} \mathcal{Q}:=\sum_{i} \mathcal{Q}_{i}, \quad\left(A\left|\mathcal{Q}_{i}\right| B\right):=\left(\left[V_{i}, A\right] \mid\left[V_{i}, B\right]\right)$

A generalized bound of chaos

Theorem*: the growth of any Q-complexity is bounded by the growth of the Krylov complexity

$$
(\mathcal{Q})_{t} \leq C(n)_{t}
$$

For proof see our paper arXiv:1812.08657
Implication: a generalized bound on chaos

$$
\lambda_{L} \leq 2 \alpha
$$

Direct connection between the Lyapunov exponent and a property of an observable correlation function!
*Extension of the notion and of the bound to finite T is still a conjecture

Finite temperature

Freedom in defining the scalar product
To recover physical correlations: $\quad(A \mid B)=\operatorname{tr}\left[\rho A^{\dagger} B\right] \equiv\left\langle A^{\dagger} B\right\rangle_{\beta}$
We will a use a different scalar product:

$$
\begin{aligned}
& (A \mid B)_{H}:=\operatorname{tr}\left[\sqrt{\rho} A^{\dagger} \sqrt{\rho} B\right]=\operatorname{tr}\left[\rho A^{\dagger} B(i \beta / 2)\right] \\
& C_{H}(t)=\left\langle A^{\dagger}(t-i \beta / 2) B\right\rangle_{\beta}=C(t-i \beta / 2) \\
& \Phi_{H}(\omega)=\frac{\Phi(\omega)}{\sinh (\beta \omega / 2)}
\end{aligned}
$$

Finite T Chaos bound

Low T limit

High frequency spectral function dominated by thermal suppression:

$$
\Phi_{H}(\omega)=\frac{\Phi(\omega)}{\sinh (\beta \omega / 2)} \rightarrow e^{-\omega / \Lambda-\omega / 2 T} \sim e^{-\omega / 2 T}
$$

$$
\lambda_{L} \leq 2 \alpha=2 \pi T
$$

Recover the bound of
Maldacena, Shenker \& Stanford 2016

From low to high T in the large q SYK model

Tighter bound on chaos!
SYK model saturates the tighter bound.

Chaos bounds in the low T limit - 1d models

$$
\Phi_{H}(\omega) \sim e^{-\frac{\omega}{\Lambda} \log \left(\frac{\omega}{\Lambda}\right)-\omega / 2 T}
$$

Crossover frequency: $\quad \omega_{*} \sim \Lambda e^{\Lambda / 2 T}$

$$
\begin{aligned}
& \langle n(t)\rangle \sim e^{2 \pi T t} \\
& \text { for } t<\Lambda / T^{2}
\end{aligned}
$$

So, even for 1d systems we recover:

$$
\lambda_{L} \leq 2 \alpha=2 \pi T
$$

Application to classical chaos

The framework carries over for classical dynamics with:
Liouvillian $\longrightarrow \mathcal{L}=i\{\mathcal{H}, \cdot\}$
Operators \longrightarrow Functions on the classical phase space
Compare α to λ_{L} Peres- Feingold model:

$$
H_{\mathrm{FP}}=(1+c)\left[S_{1}^{z}+S_{2}^{z}\right]+4 s^{-1}(1-c) S_{1}^{x} S_{2}^{x}
$$

The two exponents coincide where the model is most chaotic. Otherwise α appears as an upper bound on λ_{L}

Application: computing operator decay

The basic idea:

1. Compute the first m recursion coefficients numerically.

2. Complete with the fitted "universal" model at larger values of n

$$
\widetilde{b}_{n}=\alpha \sqrt{n(n-1+\eta)} \xrightarrow{n \gg 1} \alpha n+\beta
$$

Numerical Coefficients
Asymptotic Coefficients: $\bar{b}_{m} \sim \alpha n$

3. Stich the small to large n wavefunctions to get an approximation of the decay of $\mathrm{C}(\mathrm{t})$.

Numerical Coefficients
Asymptotic Coefficients: $\widetilde{b}_{n} \sim \alpha n$

$$
\overbrace{}^{\bar{b}_{N+1}}
$$

$$
\begin{aligned}
L & =\left(\begin{array}{cccc}
0 & b_{1} & 0 & 0 \\
b_{1} & 0 & b_{2} & 0 \\
0 & b_{2} & 0 & \ddots \\
0 & 0 & \ddots & \ddots
\end{array}\right) \\
& \approx\left(\begin{array}{cccc}
0 & b_{1} & 0 & 0 \\
b_{1} & 0 & \ddots & 0 \\
0 & \ddots & \ddots & b_{N} \\
0 & 0 & b_{n} & G^{(N)}(z)
\end{array}\right)
\end{aligned}
$$

$$
G(z)=\int d t e^{i z t}\langle\mathcal{O}(t) \mathcal{O}(0)\rangle
$$

$$
\approx \frac{1}{z-\frac{b_{1}^{2}}{z-\frac{b_{2}^{2}}{\frac{\ddots}{z-b_{N}^{2} \tilde{G^{(N)}(z)}}}}}
$$

$$
\begin{aligned}
\widehat{G^{(N)}(z)} & =\Gamma(N+1) \Gamma\left(\frac{z+1}{2}\right) \\
& \times{ }_{2} F_{1}\left(N+1, \frac{z+1}{2}, \frac{z+2 N+3}{2} ;-1\right)
\end{aligned}
$$

Diffusion in the Chaotic Ising Model

Chaotic Ising Model

$$
H=\sum_{j} X_{j}+1.05 Z_{j} Z_{j+1}+0.5 Z_{j}
$$

Initial operator at wavevector k :

$$
\mathcal{O}_{k}=\sum_{j} e^{i k j}\left(X_{j}+1.05 Z_{j} Z_{j+1}+0.5 Z_{j}\right)
$$

We see the dispersion relation for diffusion

$$
\frac{d}{d t} \epsilon(t, x)=D \nabla^{2} \epsilon(t, x)
$$

Summary

- Hypothesis for universal operator dynamics supported by extensive evidence. Linear growth of Lanczos coefficients

$$
b_{n}=\alpha n+\beta+o(1), \quad n \rightarrow \infty
$$

- Implies exponential growth in operator complexity:

$$
(n)_{t} \sim e^{2 \alpha t} \quad \lambda_{L} \leq 2 \alpha
$$

- The hypothesis enables a new numerical scheme to compute dynamical correlations and transport coefficients.

Extensions and outlook

- Does K-complexity provide a more fundamental notion of chaos? Measureable in a two point function (high frequency limit)!
- MPO calculation of the Krylov vectors and recursion coefficients

Operator entanglement appears to grow only logarithmically with n. Why ?

Extensions and outlook

- Behavior of Lanczos coefficients in integrable models?
- Growth of Lanczos coefficcients in MBL? Systematic derivation of disorder averaged LIOMs
- Non trivial violation of the hypothesis
- Systematic derivation of disorder averaged LIOMs

Extensions and outlook

- Finite size saturation
- In a finite system, the exponential growth of K-complexity is saturated at a logarithmically long time.
- Relation to Ehrenfest/Thouless time?
$t^{*} \sim \ln L$
Kos, Ljubotina, Prosen (2018);
Chan, De Luca, Chalker (2018)

