Non-Lorentzian M5-branes from Holography

Neil Lambert

Challenges and Advances in Theoretical Physics
KIAS, Seoul Korea, May 232019
1904.07547 with A. Lipstein and P. Richmond 1904.05071 with R. Mouland 1808.02948 with M. Owen

Outline

\diamond Introduction and Motivation
\diamond Timelike Fibration of AdS_{7}
\diamond M5-branes in AdS_{7}
\diamond The Boundary Theory
\diamond Conclusions/Comments

Introduction and Motivation

The M5-Branes remains everyone's favourite Mystery:

- Mother of all field theories?
- Dual to M-theory on $\mathrm{AdS}_{7} \times S^{4}$
- M5 on $\mathcal{M}_{5} \times S^{1} \sim 5 \mathrm{D}$ SYM on $\mathcal{M}_{5}, g_{Y M}^{2}=4 \pi^{2} R_{S^{1}}$
- M5 compactified on $\mathbb{T}^{2}=4 D$ SYM

It epitomizes our ignorance of strongly coupled QFT.

We don't expect a Lagrangian but we'd like some kind of working definition without appealing to String/M-theory.

Maybe a family of Lagrangians can be 'patched' together

We might hope to learn some lessons from M2-Branes. For example weak coupling arises from an orbifold.
[Kim,Lee] wrote a beautiful paper where the M5 on $\mathbb{R}^{1,5}$ is conformally mapped to $\mathbb{R} \times S^{5}$ and S^{5} is realised as an S^{1} Hopf fibration over $\mathbb{C P}^{2}$

- 5D SYM on $\mathbb{R} \times \mathbb{C P}^{2}$ with a Chern-Simons term
- Level k induces a \mathbb{Z}_{k} orbifold of S^{1}.
- Dimensional parameter $g_{Y M}^{2}$ is the radius of $\mathbb{C P}^{2}, k$ is the coupling.

Here we exploit AdS_{7} as a Hopf fibration over $\tilde{\mathbb{C P}}^{3}$.

Talk to [Kim, Mukhi, Tomassiello] about unpublished work

Timelike Fibration of AdS_{7}

[Pope,Sadrzadeh,Scuro] showed that AdS_{7} can be written as a Hopf fibration

$$
\begin{gathered}
d s_{A d S_{7}}^{2}=-\frac{1}{4}\left(d x^{+}+e^{\phi}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)\right)^{2}+d \tilde{s}_{\tilde{C P}^{3}}^{2} \\
d s_{\tilde{C P}}{ }^{3}=\frac{R_{+}^{2}}{4} d \phi^{2}+\frac{1}{4} e^{\phi} d x^{i} d x^{i}+\frac{e^{2 \phi}}{4}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)^{2}
\end{gathered}
$$

where $x^{+} \cong x^{+}+4 \pi R_{+}$and $\Omega_{i j}$ is an anti-self-dual 2-form:

$$
\left(\Omega^{2}\right)_{i j}=-R_{+}^{2} \delta_{i j}
$$

We want to place M5-branes at constant ϕ :

$$
d s_{\phi}^{2}=\frac{e^{\phi}}{4}\left[-e^{-\phi} d x^{+} d x^{+}-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}\right]
$$

For finite ϕ, x^{+}is timelike and isometric so we can reduce on it to obtain a deformed euclidean 5D SYM c.f. [Hull,NL].

Note that ϕ is related to the more usual AdS radius ρ by

$$
e^{\phi / 2}=\frac{e^{\rho}}{\cos \left(x^{+} / 2 R_{+}\right)}
$$

but at fixed ρ

$$
\begin{aligned}
d s_{\rho}^{2}= & \frac{e^{2 \rho}}{4 \cos ^{2}\left(x^{+} / 2 R_{+}\right)}\left[-\cos \left(x^{+} / R_{+}\right) e^{-2 \rho} d x^{+} d x^{+}\right. \\
& \left.-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}\right]
\end{aligned}
$$

we now longer have an isometry along x^{+}.

Ultimately we want to go the boundary (UV):

$$
d s_{\infty}^{2}=-2 d x^{+}\left(d x^{-}-\frac{1}{2} \Omega_{i j} x^{i} d x^{j}\right)+d x^{i} d x^{i}
$$

Looks like a null Omega-deformation of 6D Minkowski space.

In fact this metric is conformal to 6D Minkowski space:

$$
d s_{\text {Minkowski }}^{2}=\frac{1}{\cos ^{2}\left(x^{+} / 2 R_{+}\right)} d s_{\infty}^{2}
$$

but with $x^{+} \in\left(-\pi R_{+}, \pi R_{+}\right)$

Recall that for AdS $_{7}$ we had $x^{+} \sim x^{+}+4 \pi R_{+}$. So we can
extend to periodic physics in $x^{+} \in\left[-2 \pi R_{+}, 2 \pi R_{+}\right]$by imposing reflecting boundary conditions.

M5-branes in AdS_{7}

We follow the prescription of [Linander,Ohlsson]: reduce the abelian equations on x^{+}, find a suitable action and generalise it to be non-abelian and supersymmetric.

For example the condition $d H=0$ along with $\partial_{+}=0$ implies that in 5D

$$
d F=0
$$

where $F_{\mu \nu}=H_{\mu \nu+}$. This means that we can introduce a one-form A_{μ} for $F_{\mu \nu}, \mu, \nu \neq x^{+}$.

$$
\begin{gathered}
S_{\phi}=\frac{1}{g_{Y M}^{2}} \operatorname{tr} \int d^{4} x d x^{-}\left\{-\frac{1}{2} \nabla_{i} X^{I} \nabla_{i} X^{I}-\frac{1}{2} e^{-\phi} D_{-} X^{I} D_{-} X^{I}\right. \\
-\frac{1}{4} e^{-\phi}\left[X^{I}, X^{J}\right]^{2}+\frac{1}{2} F_{i-} F_{i-}+\frac{1}{4} e^{\phi}\left(\mathcal{F}_{i j}^{2}+\epsilon_{i j k l} \Omega_{m i} x^{m} F_{j k} F_{-l}\right) \\
-\frac{i}{2} \bar{\Psi} \Gamma_{+} D_{-} \Psi+\frac{i}{2} \bar{\Psi} \Gamma_{i} \nabla_{i} \Psi+\frac{i}{4} e^{-\phi} \bar{\Psi} \Gamma_{-} D_{-} \Psi \\
\left.-\frac{1}{2} \bar{\Psi} \Gamma_{+} \Gamma^{I}\left[X^{I}, \Psi\right]+\frac{1}{4} e^{-\phi} \bar{\Psi} \Gamma_{-} \Gamma^{I}\left[X^{I}, \Psi\right]\right\}
\end{gathered}
$$

where

$$
\begin{aligned}
& \nabla_{i}=D_{i}-\frac{1}{2} \Omega_{i j} x^{j} D_{-} \\
& \mathcal{F}_{i j}=F_{i j}-\Omega_{k[i} x^{k} F_{j]-}
\end{aligned}
$$

This is an Omega-deformed version of euclidean 5D SYM and has 8 supersymmetries.

$$
\begin{aligned}
\delta X^{I}= & i \bar{\epsilon}_{-}^{(0)} \Gamma^{I} \Psi, \\
\delta A_{i}= & i \bar{\epsilon}_{-}^{(0)} \Gamma_{i} \Gamma_{+} \Psi+\frac{i}{2} \Omega_{i j} x^{j} \epsilon_{-}^{(0)} \Gamma_{-+} \Psi, \\
\delta A_{-}= & i \bar{\epsilon}_{-}^{(0)} \Gamma_{-+} \Psi, \\
\delta \Psi= & -\Gamma_{+} \Gamma^{I} D_{-} X^{I} \epsilon_{-}^{(0)}+\Gamma_{i} \Gamma^{I} \nabla_{i} X^{I} \epsilon_{-}^{(0)} \\
& -\Gamma_{i} \Gamma_{+-} F_{-i} \epsilon_{-}^{(0)}-\frac{i}{2} \Gamma_{+} \Gamma^{I J}\left[X^{I}, X^{J}\right] \epsilon_{-}^{(0)}-\frac{e^{\phi}}{2} \Gamma_{i j} \Gamma_{+} \mathcal{F}_{i j} \epsilon_{-}^{(0)}
\end{aligned}
$$

where $\Gamma_{05} \epsilon_{-}^{(0)}=-\epsilon_{-}^{(0)}$ which is indeed a constant Killing spinor of the metric $d s_{\phi}^{2}$.

The Boundary Theory

Next we want to construct the action for M5-branes reduced on x^{+}in the limit $\phi \rightarrow \infty$

There is an almost scaling symmetry:

$$
\begin{aligned}
X^{I} & \rightarrow \lambda^{-2} X^{I}, \\
x^{-} & \rightarrow \lambda_{-} x^{-}, \\
x^{i} \rightarrow \lambda \lambda^{-2} A_{-}, & A_{i} \rightarrow \lambda^{-1} A_{i}, \\
& \rightarrow \lambda^{-3} \Psi_{+}, \quad \Psi_{-} \rightarrow \lambda^{-2} \Psi_{-}
\end{aligned}
$$

but we must shift $\phi \rightarrow \phi-2 \ln \lambda$. We want to construct the fixed point theory

In this limit there are divergent terms in S_{ϕ} :

$$
e^{\phi}\left(\mathcal{F}_{i j}^{2}+\epsilon_{i j k l} \Omega_{m i} x^{m} F_{j k} F_{-l}\right)=e^{\phi}\left(\mathcal{F}_{i j}^{-} \mathcal{F}_{i j}^{-}+\epsilon_{i j k l} F_{i j} F_{k l}\right)
$$

The first term is positive definite and the second a total derivative

How to take the limit of such scalings were considered in general by [NL, Mouland] (and a related construction in supergravity by [Bershoeff,Rosseel, Zojer]):

We subtract $e^{\phi} \mathcal{F}^{-}{ }_{i j}$ and impose a Lagrange multiplier that sets it to zero:

$$
e^{\phi} \mathcal{F}^{-}{ }_{i j} \mathcal{F}^{-}{ }_{i j} \rightarrow \mathcal{F}^{-}{ }_{i j} G_{i j}
$$

We then discard the divergent terms in the action and supersymmetry, take $\phi \rightarrow \infty$, and modify the supersymmetry.

Alternatively in our case we could also follow the route of [Linander,Ohlsson] but for null reductions of the M5-brane.

Recall that $F_{i j}=H_{i j+}$ but here the Lagrange multiplier arises from

$$
G_{i j}=H_{i j-}
$$

but no Bianchi identity for $G=\star G$.

Either way we arrive at

$$
\begin{aligned}
S=\frac{1}{g_{Y M}^{2}} \operatorname{tr} \int d^{4} x d & x^{-}\left\{\frac{1}{2} F_{-i} F_{-i}+\frac{1}{2} \mathcal{F}_{i j} G_{i j}-\frac{1}{2} \nabla_{i} X^{I} \nabla_{i} X^{I}\right. \\
& \left.-\frac{i}{2} \bar{\Psi} \Gamma_{+} D_{-} \Psi+\frac{i}{2} \bar{\Psi} \Gamma_{i} \nabla_{i} \Psi-\frac{1}{2} \bar{\Psi} \Gamma_{+} \Gamma^{I}\left[X^{I}, \Psi\right]\right\}
\end{aligned}
$$

This is an Omega-deformation of the maximally supersymmetric non-Lorentzian theory of [NL, Owen] (obtained at $\Omega_{i j}=0$).

The on-shell condition imposed by $G_{i j}$ sets $\mathcal{F}_{i j}=-(\star \mathcal{F})_{i j}$.

For $\partial_{-}=A_{-}=0\left(\right.$ or $\left.\Omega_{i j}=0\right)$ this is just $F_{i j}=-(\star F)_{i j}$

Dynamics is restricted to motion on instanton moduli space

Generalizes the DLCQ description of M5-branes [Aharony, Berkooz, Kachru, Seiberg, Silverstein]

The general procedure of [NL, Mouland] preserves the original 8 supersymmetries.

But the boundary action has the Liftshitz scale symmetry

$$
\begin{array}{ll}
x^{-} \rightarrow \lambda^{2} x^{-}, & x^{i} \rightarrow \lambda x^{i}, \quad X^{I} \rightarrow \lambda^{-2} X^{I} \\
A_{-} \rightarrow \lambda^{-2} A_{-}, & A_{i} \rightarrow \lambda^{-1} A_{i}, \quad G_{i j} \rightarrow \lambda^{-4} G_{i j} \\
\Psi_{+} \rightarrow \lambda^{-3} \Psi_{+}, & \Psi_{-} \rightarrow \lambda^{-2} \Psi_{-}
\end{array}
$$

and an additional 16 superconformal supersymmetries:

$$
\begin{aligned}
\delta X^{I}= & i \bar{\epsilon} \Gamma^{I} \Psi, \\
\delta A_{i}= & i \bar{\epsilon} \Gamma_{i} \Gamma_{+} \Psi+\frac{i}{2} \Omega_{i j} x^{j} \bar{\epsilon} \Gamma_{-+} \Psi, \\
\delta A_{-}= & i \bar{\epsilon} \Gamma_{-+} \Psi, \\
\delta G_{i j}= & \frac{i}{2} \bar{\epsilon} \Gamma_{k} \Gamma_{i j} \Gamma_{-} \nabla_{k} \Psi-\frac{i}{2} \bar{\epsilon} \Gamma_{+} \Gamma_{-} \Gamma_{i j} D_{-} \Psi+\frac{1}{2} \bar{\epsilon} \Gamma_{+} \Gamma_{-} \Gamma_{i j} \Gamma^{I}\left[X^{I}, \Psi\right] \\
& -3 i \bar{\eta} \Gamma_{-} \Gamma_{i j} \Psi, \\
\delta \Psi= & -\frac{1}{4} \Gamma_{i j} \Gamma_{-} \mathcal{F}_{i j} \epsilon-\Gamma_{+} \Gamma^{I} D_{-} X^{I} \epsilon+\Gamma_{i} \Gamma^{I} \nabla_{i} X^{I} \epsilon-\Gamma_{i} \Gamma_{+-} F_{-i} \epsilon, \\
& -\frac{1}{4} \Gamma_{i j} \Gamma_{+} G_{i j} \epsilon-\frac{i}{2} \Gamma_{+} \Gamma^{I J}\left[X^{I}, X^{J}\right] \epsilon-4 X^{I} \Gamma^{I} \eta
\end{aligned}
$$

where $D_{\mu} \epsilon=\Gamma_{\mu} \eta$ are the x^{+}-independent conformal Killing spinors of the boundary metric.
type I: $\quad \epsilon_{+}=e^{\frac{x^{+}}{4}} \Omega \cdot \Gamma \epsilon_{+}^{(0)} \quad \epsilon_{-}=0$

$$
\eta_{+}=0
$$

$$
\eta_{-}=-\frac{1}{16} e^{\frac{x^{+}}{4}} \Omega \cdot \Gamma(\Omega \cdot \Gamma) \Gamma_{-} \epsilon_{+}^{(0)}
$$

type II: $\quad \epsilon_{+}=0$
$\epsilon_{-}=\epsilon_{-}^{(0)}$

$$
\eta_{+}=0
$$

$$
\eta_{-}=0
$$

type III : $\quad \epsilon_{+}=\epsilon_{+}^{(0)}$

$$
\eta_{+}=0
$$

$$
\begin{aligned}
\epsilon_{-} & =\frac{1}{2} x^{i} \Omega_{i j} \Gamma_{j} \Gamma_{-} \epsilon_{+}^{(0)} \\
\eta_{-} & =\frac{1}{16}(\Omega \cdot \Gamma) \Gamma_{-} \epsilon_{+}^{(0)}
\end{aligned}
$$

type IV : $\quad \epsilon_{+}=-\frac{1}{2} x^{i} \Gamma_{i} \Gamma_{+} \epsilon_{-}^{(0)}$
$\epsilon_{-}=-\frac{1}{4} \Omega_{i k} \Gamma_{k j} x^{i} x^{j} \epsilon_{-}^{(0)}+x^{-} \epsilon_{-}^{(0)}$
$\eta_{+}=-\frac{1}{2} \Gamma_{+} \epsilon_{-}^{(0)}$
$\eta_{-}=-\frac{1}{16}(\Omega \cdot \Gamma) x^{i} \Gamma_{i} \epsilon_{-}^{(0)}$

Conclusions/Comments

We have constructed non-Abelian theories in 5 dimensions for M5-branes embedded in AdS_{7}, reduced on a compact time direction.

Going to the boundary induces a classical RG flow leading to a novel boundary theory

- Lifshitz scale invariance, 8 supersymmetries and 16 superconformal supersymmetries
- Dynamics localizes on Omega-deformed quantum mechanics of instanton moduli space

There is no Chern-Simons term and so no natural integer k that leads to a \mathbb{Z}_{k} orbifold

- reduction to type IIA is always strongly coupled
- can introduce an \mathbb{Z}_{k} action by hand to make the string theory weakly coupled but this doesn't seem natural.

The Bosonic symmetries are also interesting: $S U(1,3)$ symmetry of $\tilde{\mathbb{C P}}^{3}$.

New class of field theories where the Manton approximation is exact on-shell.

The M5-brane continues to surprise with the richness of lagrangian field theories it begets.

Thank You

Thank You

and

Happy Birthday Kimyeong!

