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Introduction and Motivation
The M5-Branes remains everyone’s favourite Mystery:

• Mother of all field theories?

• Dual to M-theory on AdS7 × S4

• M5 onM5 × S1 ∼ 5D SYM onM5, g2
YM = 4π2RS1

• M5 compactified on T2 = 4D SYM

It epitomizes our ignorance of strongly coupled QFT.

We don’t expect a Lagrangian but we’d like some kind of

working definition without appealing to String/M-theory.

Maybe a family of Lagrangians can be ‘patched’ together



We might hope to learn some lessons from M2-Branes. For

example weak coupling arises from an orbifold.

[Kim,Lee] wrote a beautiful paper where the M5 on R1,5 is

conformally mapped to R× S5 and S5 is realised as an S1 Hopf

fibration over CP2

• 5D SYM on R× CP2 with a Chern-Simons term

• Level k induces a Zk orbifold of S1.

• Dimensional parameter g2
YM is the radius of CP2, k is the

coupling.

Here we exploit AdS7 as a Hopf fibration over C̃P3
.

Talk to [Kim, Mukhi, Tomassiello] about unpublished work



Timelike Fibration of AdS7

[Pope,Sadrzadeh,Scuro] showed that AdS7 can be written as a

Hopf fibration
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where x+ ∼= x+ + 4πR+ and Ωij is an anti-self-dual 2-form:

(Ω2)ij = −R2
+δij



We want to place M5-branes at constant φ:
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For finite φ, x+ is timelike and isometric so we can reduce on it

to obtain a deformed euclidean 5D SYM c.f. [Hull,NL].

Note that φ is related to the more usual AdS radius ρ by
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we now longer have an isometry along x+.



Ultimately we want to go the boundary (UV):
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Looks like a null Omega-deformation of 6D Minkowski space.

In fact this metric is conformal to 6D Minkowski space:

ds2
Minkowski =

1
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ds2
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but with x+ ∈ (−πR+, πR+)

Recall that for AdS7 we had x+ ∼ x+ + 4πR+. So we can

extend to periodic physics in x+ ∈ [−2πR+, 2πR+] by imposing

reflecting boundary conditions.



M5-branes in AdS7

We follow the prescription of [Linander,Ohlsson]: reduce the

abelian equations on x+, find a suitable action and generalise it

to be non-abelian and supersymmetric.

For example the condition dH = 0 along with ∂+ = 0 implies

that in 5D

dF = 0

where Fµν = Hµν+. This means that we can introduce a

one-form Aµ for Fµν , µ, ν 6= x+.
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This is an Omega-deformed version of euclidean 5D SYM and

has 8 supersymmetries.
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of the metric ds2
φ.



The Boundary Theory

Next we want to construct the action for M5-branes reduced on

x+ in the limit φ→∞

There is an almost scaling symmetry:

XI → λ−2XI , A− → λ−2A− , Ai → λ−1Ai ,

x− → λ2x− , xi → λxi Ψ+ → λ−3Ψ+ , Ψ− → λ−2Ψ−

but we must shift φ→ φ− 2 lnλ. We want to construct the fixed

point theory



In this limit there are divergent terms in Sφ:

eφ
(
F2
ij + εijklΩmix

mFjkF−l
)

= eφ
(
F−ijF

−
ij + εijklFijFkl

)
The first term is positive definite and the second a total

derivative

How to take the limit of such scalings were considered in

general by [NL, Mouland] (and a related construction in

supergravity by [Bershoeff,Rosseel, Zojer]):

We subtract eφF−2
ij and impose a Lagrange multiplier that sets

it to zero:

eφF−ijF−ij → F−ijGij

We then discard the divergent terms in the action and

supersymmetry, take φ→∞, and modify the supersymmetry.



Alternatively in our case we could also follow the route of

[Linander,Ohlsson] but for null reductions of the M5-brane.

Recall that Fij = Hij+ but here the Lagrange multiplier arises

from

Gij = Hij−

but no Bianchi identity for G = ?G.

Either way we arrive at
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This is an Omega-deformation of the maximally

supersymmetric non-Lorentzian theory of [NL, Owen] (obtained

at Ωij = 0).

The on-shell condition imposed by Gij sets Fij = −(?F)ij .

For ∂− = A− = 0 (or Ωij = 0) this is just Fij = −(?F )ij

Dynamics is restricted to motion on instanton moduli space

Generalizes the DLCQ description of M5-branes [Aharony,

Berkooz, Kachru, Seiberg, Silverstein]



The general procedure of [NL, Mouland] preserves the original

8 supersymmetries.

But the boundary action has the Liftshitz scale symmetry

x− → λ2x− , xi → λxi , XI → λ−2XI

A− → λ−2A− , Ai → λ−1Ai , Gij → λ−4Gij

Ψ+ → λ−3Ψ+ , Ψ− → λ−2Ψ−

and an additional 16 superconformal supersymmetries:
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where Dµε = Γµη are the x+-independent conformal Killing

spinors of the boundary metric.
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Conclusions/Comments

We have constructed non-Abelian theories in 5 dimensions for

M5-branes embedded in AdS7, reduced on a compact time

direction.

Going to the boundary induces a classical RG flow leading to a

novel boundary theory

• Lifshitz scale invariance, 8 supersymmetries and 16

superconformal supersymmetries

• Dynamics localizes on Omega-deformed quantum

mechanics of instanton moduli space



There is no Chern-Simons term and so no natural integer k that

leads to a Zk orbifold

• reduction to type IIA is always strongly coupled

• can introduce an Zk action by hand to make the string

theory weakly coupled but this doesn’t seem natural.

The Bosonic symmetries are also interesting: SU(1, 3)

symmetry of C̃P3
.

New class of field theories where the Manton approximation is

exact on-shell.

The M5-brane continues to surprise with the richness of

lagrangian field theories it begets.
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