2019-06-12

KIAS workshop on Topology and Correlation in Quantum Materials May 31, 2019

Quantized circular photogalvanic effect in multifold fermions

Takahiro Morimoto

University of Tokyo, Department of Applied Physics

Plan of this talk

• Introduction

- Geometry and topology in k space
- Quantized circular photogalvanic effect in Weyl semimetals
 - Generalization to chiral multifold fermions
 - Material realization in RhSi

de Juan, Grushin, Morimoto, Moore, Nat. Commun. (2017) Flicker et al., PRB (2018) Rees et al. arxivarXiv:1902.03230

- Shift current as a geometric nonlinear response
 - Berry phase formula from Floquet theory
 - I-V characteristics and application to LLs

Morimoto, Nagaosa, Sci. Adv. (2016) Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

Electromagnetic responses in condensed matter

Current response and band geometry

Anomalous velocity and anomalous Hall effect

Plan of this talk

• Introduction

- Geometry and topology in k space

- Quantized circular photogalvanic effect in Weyl semimetals
 - Generalization to chiral multifold fermions
 - Material realization in RhSi

de Juan, Grushin, Morimoto, Moore, Nat. Commun. (2017) Flicker et al., PRB (2018) Rees et al. arxivarXiv:1902.03230

- Shift current as a geometric nonlinear response
 - Berry phase formula from Floquet theory
 - I-V characteristics and application to LLs

Morimoto, Nagaosa, Sci. Adv. (2016) Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

Weyl semimetal: Monopole in k space

Chiral anomaly

Search for quantized response in Weyl semimetals

- Chiral magnetic effect • anti-Weyl Weyl В $- J \propto (\mu_{I} - \mu_{R})B$ u_+ . - Zero in the equilibrium μ Fukushima et al, PRD (2018)
- Gyrotropic magnetic effect
 - ac effect
 - $J(\omega) \propto (\varepsilon_L \varepsilon_R) B(\omega)$
 - Zhong, Moore, Souza, PRL (2016) - not quantized, material dependent

Accessing monopole charge has been difficult in linear responses.

• Quantized circular photogalvanic effect in Weyl semimetals

Fernando de Juan

Joel Moore

Adolfo

Grushin

Nat. Commun. (2017)

Multifold fermion RhSi Felix Flicker et al., Phys. Rev. B (2018) Dylan Rees, et al., arXiv:1902.03230

de Juan, Grushin, Morimoto, Moore

Derivation by Fermi's golden rule

Difference of transition rate
 ~ Berry curvature

$$\begin{split} (|v_{x,12}+iv_{y,12}|^2 - |v_{x,12}-iv_{y,12}|^2) \frac{E^2}{\omega^2} \delta(\Delta E - \hbar \omega) \\ & \bigodot \\ = \frac{2 \mathrm{Im}[v_{x,12}v_{y,21}]}{\omega^2} E^2 \delta(\Delta E - \hbar \omega) = \underline{\Omega_z} E^2 \delta(\Delta E - \hbar \omega) \end{split}$$

• Current = transition rate x group velocity = Berry flux $J_z \propto \int dk v_z \Omega_z \delta(\Delta E - \hbar \omega) = \int \Omega_z dS_z$ $\operatorname{tr} \beta = \sigma_{xyz} + \sigma_{yzx} + \sigma_{zxy} \propto \int dS \cdot \Omega = 2\pi C_i$

Order estimate

$$\mathbf{J}^{-} = 4\pi \alpha \frac{e}{h} \tau I = 22.17 \frac{\tau}{\mathrm{ps}} \frac{\mathrm{I}}{\mathrm{W/cm^2}} \frac{\mathrm{A}}{\mathrm{cm^2}}. \quad \stackrel{\blacktriangleright}{\rightarrow} 2\mathrm{nA/(W/cm^2)}$$
for t=1ps,
10 mm x 1 mm^2

- Corrections from higher energy bands ~(w/∆E)²
 Negligible in low frequency
- Saturation with relaxation time

Candidate materials

- Mirror free Weyl semimetals
 - Otherwise Weyl and anti-Weyl points appear at the same energy
 - TaAs has mirror planes and doesn't support quantized CPGE

Quantized CPGE is not limited to conventional Weyl semimetals

Multifold fermions

- Bulk gapless excitations with more than twofold degeneracy at gapless points
 - Higher spin versions of Weyl semimetals

Pauli matrix σ is replaced by spin 1 operator S

CPGE is also quantized in multifold fermions

When the lowest band 1 is filled:

$$\beta(\omega) = 4\pi^{2}\beta_{0} \left(\int d\vec{S}_{12} \cdot \vec{R}_{12} + \int d\vec{S}_{13} \cdot \vec{R}_{13} \right)$$

= $4\pi^{2}\beta_{0} \left(-i \int d\vec{S}_{12} \cdot \vec{\Omega}_{1} + \left[-\int d\vec{S}_{12} + \int d\vec{S}_{13} \right] \cdot \vec{R}_{13} \right)$
= $i\beta_{0}C_{1}$
Cancel out

where $\vec{R}_{nm} = \vec{v}_{nm} \times \vec{v}_{mn}/(E_n - E_m)^2$, S_{nm}: surface of optical transition

$$\Omega_n^c = i \sum_{m \neq n} R_{nm}^c \quad \text{and} \quad \beta_0 \, = \, \frac{\pi e^3}{h^2} \, ,$$

CPGE is quantized into the Chern number of the occupied bands.

Realization of multifold fermion in RhSi

• Space group condition for multifold fermions

node	C_n	D_n	No SO	SO
Threefold (spin-1)	-2, 0, 2	1, 2, 1	195 - 199, 207 - 214	199,214
Sixfold (doubled spin-1)	$(-2, 0, 2) \times 2$	$(1, 2, 1) \times 2$		198,212,213
Fourfold (spin- $3/2$)	-3, -1, 1, 3	$\frac{3}{2}, \frac{7}{2}, \frac{7}{2}, \frac{3}{2}$	~~	195 - 199, $207 - 214$
Fourfold (doubled spin- $1/2$)	$(-1, 1) \times 2$	$(1,1) \times 2$	19, 92, 96, 198, 212, 213	18, 19, 90, 92, 94, 96 $198, 212, 213$

• RhSi: Space group 198, Chiral group

Multifold fermions in RhSi

Flicker, de Juan, Bradlyn, Morimoto, Vergniory, Grushin, Phys. Rev. B 98, 155145 (2018)

Theory of quantized CPGE in RhSi

Flicker, de Juan, Bradlyn, Morimoto, Vergniory, Grushin, Phys. Rev. B 98, 155145 (2018)

THz measurement of quantized CPGE in RhSi

Rees, Manna, Lu, Morimoto, Borrmann, Felser, Moore, Torchinsky, Orenstein, arXiv:1902.03230

THz measurement of quantized CPGE in RhSi

Rees, Manna, Lu, Morimoto, Borrmann, Felser, Moore, Torchinsky, Orenstein, arXiv:1902.03230

Summary (Part I)

Quantized CPGE in multifold fermions

•Quantized CPGE has been experimentally confirmed in RhSi with THz measurement .

[Theory] de Juan e al., Nat. Commun. (2017) Felix Flicker et al., Phys. Rev. B (2018) [Experiment] Dylan Rees, Joe Orenstein et al., arXiv:1902.03230

Collaborators

Quantized CPGE in Weyls

Fernando de Juan

Adolfo Grushin

Joel Moore

Quantized CPGE in multifold fermions

Barry Bradlyn

Maia Vergniory

THz measurement of RhSi

Darius Torchinsky

Plan of this talk

- Introduction
 - Geometry and topology in k space
- Quantized circular photogalvanic effect in Weyl semimetals
 - Generalization to chiral multifold fermions
 - Material realization in RhSi

de Juan, Grushin, Morimoto, Moore, Nat. Commun. (2017) Flicker et al., PRB (2018) Rees et al. arxivarXiv:1902.03230

- Shift current as a geometric nonlinear response
 - Berry phase formula from Floquet theory
 - I-V characteristics and application to LLs

Morimoto, Nagaosa, Sci. Adv. (2016) Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

• Geometrical formulas for shift current from Floquet theory

Morimoto, Nagaosa, Sci. Adv. (2016) Morimoto, Nakamura, Kawasaki, Nagaosa, PRL(2018)

Naoto Nagaosa

Second order nonlinear optical effects

 $\mathsf{J}(\omega{+}\omega') = \sigma(\omega{+}\omega';\,\omega,\omega') \;\mathsf{E}(\omega)\;\mathsf{E}(\omega')$

Vanishes under inversion symmetry (σ =0): J = σ E(ω) E(ω ') \rightarrow -J = σ (-E(ω)) (-E(ω '))

Photovoltaic effect

LETTER

Nature 2013

doi:10.1038/nature12622

Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials

llya Grinberg¹, D. Vincent West², Maria Torres³, Gaoyang Gou¹, David M. Stein², Liyan Wu², Guannan Chen³, Eric M. Gallo³, Andrew R. Akbashev³, Peter K. Davies², Jonathan E. Spanier³ & Andrew M. Rappe¹

Mechanism of photovoltaic effect

- Perovskite solar cell
 - Bulk crystal
 - Noncentrosymmetric

Shift current

- dc current proportional to E² Sipe, Shkrebtii, PRB (2000)
- Nonvanishing in noncentrosymmetric crystals

Rappe group, J. Phys. Chem. Lett., (2015)

Motivation

- Concise descriptions of second order nonlinear optical effects
- Not a complicated perturbation theory
- Connection to k-space geometry

Floquet theory describes nonlinear optical effects

Floquet formalism: an analog of Bloch theorem in the time direction

Compact expression of shift current

Semiclassical picture of shift current

- Photoexcitation creates electron-hole pairs that have polarization.
- Constant photoexcitation induces dc current.

Advantage of Floquet theory description

$$\begin{split} J &= \frac{\pi E^2}{\omega^2} \int d\mathbf{k} \delta(\epsilon_1(\mathbf{k}) - \epsilon_2(\mathbf{k}) + \omega) \frac{\Gamma}{\sqrt{\frac{E^2}{\omega^2} + \Gamma^2}} \\ &\times |v_{12}(\mathbf{k})|^2 [\nabla_{\mathbf{k}} \varphi_{12}(\mathbf{k}) + \mathbf{a}_1(\mathbf{k}) - \mathbf{a}_2(\mathbf{k})] \end{split}$$

- 1. Requires information of only 2 bands
 - c.f. perturbation theory including all bands

Von Baltz, Kraut, PRB (1981); Sipe, Shkrebtii, PRB (2000)

- 2. Floquet \rightarrow Saturation effect (nonperturbative in E)
- 3. Keldysh \rightarrow Interaction effect, relaxation effect

Applications of the Floquet description of shift current

1. Shift current of excitons

Morimoto, Nagaosa, PRB (2016) 2. Proposal of shift spin current

Kim, **Morimoto**, Nagaosa, PRB (2016)

THz spectroscopy of shift current in SbSI

Sotome, Nakamura, Fujioka, Ogino, Kaneko, Morimoto, Zhang, Kawasaki, Nagaosa, Tokura, Ogawa, PNAS (2019)

Application 1: I-V characteristics of shfit current photovoltaics

I-V characteristics from Floquet theory

- Flat band systems are suitable for application
 - Landau levels in graphene/ TI surface states Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

Energy harvesting in Landau levels

Application for photodetector

Shot noise of shift current

Noise formula from Floquet theory

$$S = \int dt (\langle v_{\rm loc}(t) v_{\rm loc}(0) \rangle - \langle v_{\rm loc} \rangle^2).$$

$$S = \frac{e^4}{\hbar^2 \omega^2} E^2 \tau \int [dk] |v_{11} - v_{22}| |v_{12}|^2 \delta(\omega_{21} - \omega)$$

Shot noise is also suppressed for flat band systems

Landau levels may offer an efficient photodetector that is frequency tuanble

Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

Geometry matters in nonlinear responses!

Summary

Quantized circular photogalvanic effect in Weyl semimetals
 Observed in multifold fermion RhSi

de Juan, Grushin, Morimoto, Moore, Nat. Commun. (2017) Flicker et al., PRB (2018) Rees et al. arxivarXiv:1902.03230

- · Shift current is a geometric nonlinear response
 - I-V characteristics suggests LLs may be good as a solar cell/photodetector.
 Morimoto, Nagaosa, Sci. Adv. (2016)

Morimoto, Nagaosa, Sci. Adv. (2016) Morimoto, Nakamura, Kawasaki, Nagaosa, PRL (2018)

- Outlook:
 - Observation of the quantized slope of CPGE at initial time and in other materials (Weyls)
 - Nonlinear responses in strongly correlated systems and its relationship to geometry