Signature of quantum information scrambling in operator entanglement in $(1+1)$ d CFTs

Shinsei Ryu
in collaboration with
Laimei Nie,
Masahiro Nozaki, Mao Tian Tan,
Jonah Kudler-Flam
University of Chicago

May 30, 2019

Introduction

- Today's topic: dynamics of many-body systems
- Far out of equilibrium properties of many-body systems; quantum quench, etc.
- Motivations: cold atom systems, quantum transport in strongly correlated systems, black hole physics, ...
- One universal behavior: thermalization even in isolated quantum systems

Introduction

- Memory of initial states is lost, or inaccessible locally. Scrambling: (fast) delocalization of quantum information. [Sekino-Susskind, Lashkari Stanford et al.]
- Can happen for sufficiently complex dynamics
- Out-of-time-order correlator (OTOC) [Kitaev, Stanford-Shenker, ...]

$$
C(t)=\left\langle[W(t), V(0)]^{2}\right\rangle_{\beta} \sim e^{\lambda t}
$$

- Studied, for example, in the Sachdev-Ye-Kitaev models.
- Other probes: Spectral form factor, relative entropy, distance between states, etc.
- In this talk, I will be using operator entanglement defined for unitary time evolution operator of quantum systems

Operator entanglement

- Operators acting on \mathcal{H} can be mapped to states in the doubled Hilbert space $\mathcal{H} \otimes \mathcal{H}$:

$$
O=\sum_{a} O_{a b}|a\rangle\langle b| \longrightarrow|O\rangle=\sum_{a} O_{a b}|a\rangle|b\rangle
$$

- Will call the two Hilbert spaces input and output Hilbert spaces.
- For the unitary-time evolution operator in field theories or many-body systems

$$
\begin{gathered}
U_{\epsilon}(t)=e^{H(-\epsilon-i t)}=\sum_{a} e^{E_{a}(-\epsilon-i t)}|a\rangle\langle a| \\
\longrightarrow \quad\left|U_{\epsilon}(t)\right\rangle=\sum_{a} e^{E_{a}(-\epsilon-i t)}|a\rangle|a\rangle \times \mathcal{N}
\end{gathered}
$$

ϵ is the regulator.

Operator entanglement

- Once an operator is mapped to a state, we can discuss entanglement, in particular, entanglement between input and output.

- How efficiently $U(t)$ can be represented by Matrix product operator (MPO)
- Useful to diagnose scrambling and chaos.
[Hosur-Qi-Roberts-Yoshida (16);Jonay-Huse-Nahum (18), ...]

The n-th Rényi entropy:

$$
S_{A}^{(n)}=\frac{1}{1-n} \log \left[\operatorname{Tr}_{A}\left(\rho_{A}^{n}\right)\right]
$$

where $\rho_{A}=\operatorname{Tr}_{\bar{A}}\left|U_{\epsilon}(t)\right\rangle\left\langle U_{\epsilon}(t)\right|$ is the reduced density matrix for subsystem A. The limit $n \rightarrow 1$ gives the von-Neumann entropy:

$$
S_{A}^{(n \rightarrow 1)}=S_{A}=-\operatorname{Tr}_{A}\left[\rho_{A} \log \rho_{A}\right]
$$

The n-th bi-partite operator mutual information (BOMI)

$$
I^{(n)}(A, B)=S_{A}^{(n)}+S_{B}^{(n)}-S_{A \cup B}^{(n)}
$$

for two sub Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B} \subset \mathcal{H}_{\text {tot }}$,

(1) BOMI

The n-th tri-partite operator mutual information (TOMI)

$$
I^{(n)}\left(A, B_{1}, B_{2}\right)=I^{(n)}\left(A, B_{1}\right)+I^{(n)}\left(A, B_{2}\right)-I^{(n)}\left(A, B_{1} \cup B_{2}\right)
$$

for three sub Hilbert spaces $\mathcal{H}_{A}, \mathcal{H}_{B_{1}}, \mathcal{H}_{B_{2}} \subset \mathcal{H}_{\text {tot }}$.

(2) TOMI

Operator entanglement and scrambling

- Negativity of tripartite information indicates scrambling [Hosur-Qi-Roberts-Yoshida]

-integrable
-chaotic
-Haar-scrambled

- Chaos and scrambling in CFT? Can we use operator entanglement?

Systems of interest

- We will consider operator mutual information of the time-evolution operator of 2 d CFTs.
- Free fermion CFT with $c=1$
- Compactified free boson CFT with radius R with $c=2$ (Tomonaga-Luttinger liquid) Realizing both rational and irrational CFT
- Holographic CFTs with large c

Methods

- Replica method \rightarrow Twist operator formalism [Calabrese-Cardy]

$$
\operatorname{Tr} \rho^{n} \sim\left\langle\sigma_{n}\left(X_{1}\right) \tilde{\sigma}_{n}\left(X_{2}\right) \tilde{\sigma}_{n}\left(Y_{1}, \tau_{1}\right) \sigma_{n}\left(Y_{2}, \tau_{1}\right)\right\rangle
$$

- τ_{1} is analytically continued to the real time $\tau_{1} \rightarrow i t$.
- Depends on four point correlation function; depends on the operator content of the theory.

Results

- Bipartite operator mutual information Free fermion, compactified free boson, holographic CFTs
- Tripartite operator mutual information Free fermion, compactified free boson, holographic CFTs

Bipartite, free fermion CFT

Bipartite, free fermion CFT

Can be explained by the quasi-particle picture [C.f. Calabrese-Cardy]:

$$
t=u_{L}
$$

Bipartite, compactified free boson CFT

- Very similar to the free fermion case.
- Corners are slightly rounded.
- Tri-partite case is more interesting.

Bipartite, holographic

Holographic:

Holographic:

Integrable:

Integrable:

- No plateau; strong violation of quasi-particle picture

Tri-partite

- Setting:

We consider the case where $B_{1,2}$ are both semi-infinite.

Tri-partite, free fermion CFT

- $I\left(A, B_{1}, B_{2}\right)$ is identically zero.

$$
\begin{aligned}
& I^{(n)}\left(A, B_{1}\right)+I^{(n)}\left(A, B_{2}\right)-I^{(n)}\left(A, B_{1}, B_{2}\right) \\
& I^{(n)}\left(A, B_{1}\right)+I^{(n)}\left(A, B_{2}\right)-I^{(n)}\left(A, B_{1}, B_{2}\right) \\
& =(/ \overbrace{A}^{B_{1}}+\frac{B_{2}}{A})-\frac{B_{2}, B_{1}}{B}
\end{aligned}
$$

Tri-partite, compactified free boson

- Parameterize the radius as:

$$
R=\sqrt{\eta}, \quad \eta=\frac{p}{p^{\prime}}, \quad p, p^{\prime}: \text { relatively coprime integers }
$$

$\eta=1$ is the self-dual radius.

- Rational case: $(\tilde{\eta}=\max \{\eta, 1 / \eta\})$

$$
I^{(2)}\left(A, B_{1}, B_{2}\right) \xrightarrow[L_{A} \gg \epsilon]{t \rightarrow \infty} \begin{cases}-2 \log d_{\sigma_{2}} & 2 p p^{\prime}, \tilde{\eta} \ll \frac{L_{A}}{\epsilon} \\ -2 \log \frac{L_{A}}{\epsilon} & \tilde{\eta} \ll \frac{L_{A}}{\epsilon} \ll 2 p p^{\prime} \\ -\log \left(\tilde{\eta} \frac{L_{A}}{\epsilon}\right) & \frac{L_{A}}{\epsilon} \ll 2 p p^{\prime}, \tilde{\eta}\end{cases}
$$

where $d_{\sigma_{2}}$ is the quantum dimension of the twist operator.

- Irrational case

$$
I^{(2)}\left(A, B_{1}, B_{2}\right) \xrightarrow[L_{A} \gg \epsilon]{t \rightarrow \infty} \begin{cases}-2 \log \frac{L_{A}}{\epsilon} & \tilde{\eta} \ll \frac{L_{A}}{\epsilon} \\ -\log \left(\tilde{\eta} \frac{L_{A}}{\epsilon}\right) & \tilde{\eta} \gg \frac{L_{A}}{\epsilon}\end{cases}
$$

Tri-partite, compactified free boson

- Least negative at the self-dual radius (because of $S U(2)$ symmetry?)

Tri-partite, holographic CFTs

- Late-time behavior: $I^{(1)}\left(A, B_{1}, B_{2}\right) \rightarrow \frac{-\pi c}{3 \epsilon} L_{A}=:-2 S_{A}^{R}$
- S_{A}^{R} is regulated entanglement entropy:

$$
S_{A}^{R}=\lim _{n \rightarrow 1} \frac{1}{1-n} \ln \left[\frac{\left\langle\sigma_{n}\left(w_{1}, \bar{w}_{1}\right) \bar{\sigma}_{n}\left(w_{2}, \bar{w}_{2}\right)\right\rangle}{|d z / d w|_{w=0}^{4 h_{n}}}\right]
$$

- Saturating the bound $I\left(A, B_{1}, B_{2}\right) \geq-2 \operatorname{Min}\left[S_{A}, S_{B}\right]$

Summary: bipartite

Summary: bipartite

Summary: tripartite

Free fermion channel
Compactified free boson channel

Unscrambling

Holographic channel (maximally scrambling)

v.s. Random unitary circuit

[Nahum-Ruhman-Vijay-Haah (16-18); Khemani-Vishwanath-Huse (18);
Zhou-Nahum (18); Joney-Huse-Nahum (18), ...]

v.s. Random unitary circuit

[Kudler-Flam, Tan, Nozazki, SR]

- Random unitary circuit:

- Holographic CFTs:

Line-tension picture

$$
\mathcal{E}(v, x, t)= \begin{cases}\log q & v<1 \\ v \log q & v>1\end{cases}
$$

[Joney-Huse-Nahum (18),...]

Line-tension picture

- Time v.s. radial coordinate in AdS
- Phase transition in minimal surface area
- Kink in the slope

v.s. OTOC

- [Hosur-Qi-Roberts-Yoshida] relates the averaged OTOC to the 2nd Renyi operator entanglement for qubit systems.
- For the compactified boson theory our analysis is similar to the calculations of the OTOC [Caputa-Kusuki-Takayanagi-Watanabe (17)].
- For 4-pt function relevant to OTOC, the cross ratio makes a round trip. Hence, for rational CFT, OTOC at late time is given by quantum dimension. [Roberts-Stanford(16), Gu-Qi(16),
Caputa-Numasawa-Veliz-Osorio (16)]

For operator mutual information, the cross ratio does not make a round trip.

Summary

- The unitary time-evolution operators of CFTs with different quantum information scrambling capabilities show distinct late time behaviors in the operator entanglement.
- It would be interesting to link to hydrodynamic pictures of entanglement spreading, and operator hydrodynamics.
- Precise relation to other indicators of scrambling/chaos ?
- The precise definition of quantum chaos?

