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Introduction
• Today’s topic: dynamics of many-body systems

• Far out of equilibrium properties of many-body systems;
quantum quench, etc.

• Motivations: cold atom systems, quantum transport in
strongly correlated systems, black hole physics, ...

• One universal behavior: thermalization even in isolated
quantum systems



Introduction
• Memory of initial states is lost, or inaccessible locally.

Scrambling: (fast) delocalization of quantum information.
[Sekino-Susskind, Lashkari Stanford et al.]

• Can happen for sufficiently complex dynamics

• Out-of-time-order correlator (OTOC) [Kitaev, Stanford-Shenker, ...]

C(t) = 〈[W (t), V (0)]2〉β ∼ eλt

• Studied, for example, in the Sachdev-Ye-Kitaev models.

• Other probes: Spectral form factor, relative entropy, distance
between states, etc.

• In this talk, I will be using operator entanglement defined for
unitary time evolution operator of quantum systems



Operator entanglement
• Operators acting on H can be mapped to states in the

doubled Hilbert space H⊗H:

O =
∑
a

Oab|a〉〈b| −→ |O〉 =
∑
a

Oab|a〉|b〉

• Will call the two Hilbert spaces input and output Hilbert
spaces.

• For the unitary-time evolution operator in field theories or
many-body systems

Uε(t) = eH(−ε−it) =
∑
a

eEa(−ε−it)|a〉〈a|

−→ |Uε(t)〉 =
∑
a

eEa(−ε−it)|a〉|a〉 × N

ε is the regulator.



Operator entanglement
• Once an operator is mapped to a state, we can discuss

entanglement, in particular, entanglement between input and
output.

• How efficiently U(t) can be represented by Matrix product
operator (MPO)

• Useful to diagnose scrambling and chaos.
[Hosur-Qi-Roberts-Yoshida (16);Jonay-Huse-Nahum (18), ...]



The n-th Rényi entropy:

S
(n)
A = 1

1− n log [TrA(ρnA)]

where ρA = TrĀ|Uε(t)〉〈Uε(t)| is the reduced density matrix for
subsystem A. The limit n→ 1 gives the von-Neumann entropy:

S
(n→1)
A = SA = −TrA [ρA log ρA]



The n-th bi-partite operator mutual information (BOMI)

I(n)(A,B) = S
(n)
A + S

(n)
B − S(n)

A∪B,

for two sub Hilbert spaces HA,HB ⊂ Htot ,



The n-th tri-partite operator mutual information (TOMI)

I(n)(A,B1, B2) = I(n)(A,B1) + I(n)(A,B2)− I(n)(A,B1 ∪B2),

for three sub Hilbert spaces HA,HB1 ,HB2 ⊂ Htot .



Operator entanglement and scrambling

• Negativity of tripartite information indicates scrambling
[Hosur-Qi-Roberts-Yoshida]

• Chaos and scrambling in CFT? Can we use operator
entanglement?



Systems of interest
• We will consider operator mutual information of the

time-evolution operator of 2d CFTs.

• Free fermion CFT with c = 1

• Compactified free boson CFT with radius R with c = 2
(Tomonaga-Luttinger liquid)
Realizing both rational and irrational CFT

• Holographic CFTs with large c



Methods
• Replica method → Twist operator formalism [Calabrese-Cardy]

Tr ρn ∼ 〈σn(X1)σ̃n(X2)σ̃n(Y1, τ1)σn(Y2, τ1)〉

• τ1 is analytically continued to the real time τ1 → it.
• Depends on four point correlation function; depends on the

operator content of the theory.



Results

• Bipartite operator mutual information
Free fermion, compactified free boson, holographic CFTs

• Tripartite operator mutual information
Free fermion, compactified free boson, holographic CFTs



Bipartite, free fermion CFT



Bipartite, free fermion CFT

Can be explained by the quasi-particle picture [C.f. Calabrese-Cardy]:



Bipartite, compactified free boson CFT

• Very similar to the free fermion case.

• Corners are slightly rounded.

• Tri-partite case is more interesting.



Bipartite, holographic

•

• No plateau; strong violation of quasi-particle picture



Tri-partite

• Setting:

We consider the case where B1,2 are both semi-infinite.



Tri-partite, free fermion CFT

• I(A,B1, B2) is identically zero.



Tri-partite, compactified free boson



• Parameterize the radius as:

R = √η, η = p

p′
, p, p′ : relatively coprime integers

η = 1 is the self-dual radius.
• Rational case: (η̃ = max{η, 1/η})

I(2)(A,B1, B2) t→∞−−−−→
LA�ε


−2 log dσ2 2pp′, η̃ � LA

ε

−2 log LA
ε η̃ � LA

ε � 2pp′

− log
(
η̃LA

ε

)
LA
ε � 2pp′, η̃

where dσ2 is the quantum dimension of the twist operator.
• Irrational case

I(2)(A,B1, B2) t→∞−−−−→
LA�ε

−2 log LA
ε η̃ � LA

ε

− log
(
η̃LA

ε

)
η̃ � LA

ε



Tri-partite, compactified free boson

• Least negative at the self-dual radius (because of SU(2)
symmetry?)



Tri-partite, holographic CFTs

• Late-time behavior: I(1)(A,B1, B2)→ −πc
3ε LA =: −2SRA

• SRA is regulated entanglement entropy:

SR
A = lim

n→1

1
1− n ln

[
〈σn(w1, w̄1)σ̄n(w2, w̄2)〉

|dz/dw|4hn
w=0

]

• Saturating the bound I(A,B1, B2) ≥ −2Min[SA, SB]



Summary: bipartite



Summary: bipartite



Summary: tripartite



v.s. Random unitary circuit

•
[Nahum-Ruhman-Vijay-Haah (16-18); Khemani-Vishwanath-Huse (18);
Zhou-Nahum (18); Joney-Huse-Nahum (18), ...]



v.s. Random unitary circuit
[Kudler-Flam, Tan, Nozazki, SR]

• Random unitary circuit:

• Holographic CFTs:



Line-tension picture

E(v, x, t) =
{

log q v < 1
v log q v > 1

[Joney-Huse-Nahum (18),...]



Line-tension picture

• Time v.s. radial coordinate in AdS
• Phase transition in minimal surface area
• Kink in the slope



v.s. OTOC
• [Hosur-Qi-Roberts-Yoshida] relates the averaged OTOC to the 2nd

Renyi operator entanglement for qubit systems.
• For the compactified boson theory our analysis is similar to the

calculations of the OTOC [Caputa-Kusuki-Takayanagi-Watanabe (17)].
• For 4-pt function relevant to OTOC, the cross ratio makes a

round trip. Hence, for rational CFT, OTOC at late time is
given by quantum dimension. [Roberts-Stanford(16), Gu-Qi(16),
Caputa-Numasawa-Veliz-Osorio (16)]

For operator mutual information, the cross ratio does not
make a round trip.



Summary

• The unitary time-evolution operators of CFTs with different
quantum information scrambling capabilities show distinct late
time behaviors in the operator entanglement.

• It would be interesting to link to hydrodynamic pictures of
entanglement spreading, and operator hydrodynamics.

• Precise relation to other indicators of scrambling/chaos ?

• The precise definition of quantum chaos?


