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Introduction

The recent progress on 𝑇"𝑇 deformed CFT’s and related systems 
started as work on 2d QFT’s, but from the beginning there were 
hints that it is related to string theory.

For example, these theories have a Hagedorn spectrum in regions 
in coupling space where they make sense. Also, the free field 
Lagrangian 𝐿 = 𝜕𝑋'𝜕̅𝑋', 𝑖 = 1,… , 𝑑, turns after 𝑇"𝑇 deformation 
to the Nambu-Goto Lagrangian for a stretched string in 𝑑 + 2
dimensions.



It is interesting to understand this relation further. The work I will
describe today is intended to do that by using holography.

It leads to a rich interplay between the dynamics of deformed
CFT’s which do not approach an RG fixed point in the UV, and
string theory in geometries that are not asymptotically AdS.



The insights flow both ways:

Ø String theory gives rise to an efficient tool for calcula[ng
observables such as the spectrum and torus par[[on sum of
deformed CFTs, and provides hints for the behavior of others,
such as correla[on func[ons and entanglement entropy.

Ø Understanding the deformed CFTs leads to new holographic
duali[es in string backgrounds such as asympto[cally linear
dilaton space[mes, that figure prominently in string theory as
geometries near NS5-branes and singulari[es of Calabi-Yau
manifolds.



Ø Understanding these duali[es leads to a rela[on between
proper[es of the spectrum of the deformed CFT’s and
proper[es of the dual geometries.

Ø It also provides new tests of 𝐴𝑑𝑆2/𝐶𝐹𝑇6 duality.



Today, I will mainly discuss two technical problems from the
above point of view. The starting point of the analysis will be a
𝐶𝐹𝑇6 with a left-moving current 𝐽 and a right-moving current ̅𝐽.

We will deform the Lagrangian of the CFT by

𝛿𝐿 = 𝑡𝑇"𝑇 + 𝜇<𝐽"𝑇 + 𝜇_𝑇 ̅𝐽

and ask what is the spectrum of the deformed theory and
what is its torus partition sum.

Today, I will mainly discuss two technical problems from the
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!"#$ with a left-moving current % and a right-moving current ̅%.

We will deform the Lagrangian of the CFT by

() = +#,# + ./%,# + ._# ̅%

and ask what is the spectrum of the deformed theory and
what is its torus partition sum.



Of course, once we know the spectrum, we in principle know the
torus par[[on sum. Indeed, for a torus of size 𝑅 and modulus 𝜁 =
𝜁@ + 𝑖𝜁6, the par[[on sum can be interpreted as the trace

where the trace runs over all the eigenstates of the Hamiltonian 
and momentum operator. 

1. Introduction

An interesting recent development in Quantum Field Theory (QFT) is the discovery

of a class of theories that can be thought of as irrelevant deformations of two dimensional

Conformal Field Theories (CFT’s), or more generally of Renormalization Group (RG) flows

connecting such CFT’s. One reason for the interest in these theories is that unlike general

irrelevant deformations, they seem to be well defined (in some region in their parameter

space). The usual ambiguity in flowing up the RG is eliminated by using symmetries, a

mechanism that might be of more general interest. Another reason is that these theories

typically have a Hagedorn high energy density of states, i.e. they do not approach a fixed

point of the RG in the UV. The Hagedorn entropy and other considerations suggest that

these theories are non-local.

So far, one of the main results on these theories has been their spectrum on a circle.

The original work of [1,2] was on theories obtained by deforming a CFT by a bilinear in

stress-tensors (the so-called TT deformations). That work was generalized to deformations

that are products of a conserved U(1) current and a stress-tensor (JT deformations) [3-5],

and more recently to a general linear combination of TT , JT , and TJ [6,7].

Another observable that has been discussed in these theories is the partition sum on

the torus. We can parametrize the torus by a complex coordinate

� = �1 + i�2, (1.1)

with the identifications

� ⇠ � + 2⇡, � ⇠ � + 2⇡⇣, (1.2)

where

⇣ = ⇣1 + i⇣2 (1.3)

is the modulus of the torus. The overall scale of the torus is R, i.e. the metric on the torus

is

ds
2 = R

2
d�d�. (1.4)

As is standard in QFT, the partition sum of the theory on the torus (1.1) – (1.4), Z(⇣, ⇣, R),

can be written as

Z(⇣, ⇣, R) = Tre�2⇡⇣2RE+2⇡i⇣1RP
, (1.5)

where the trace runs over all the eigenstates of the Hamiltonian, P is the momentum of

the states, which satisfies the property n = PR 2 Z, and E is the energy of the states.
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However, it is hard to do anything useful with the resul[ng
expression. E.g., one knows on general grounds that the par[[on
sum should be modular invariant, with 𝑅 transforming non-
trivially, but it is hard to see this using the explicit formula.

It is also hard to use this expression to study the par[[on sum on
small tori.

So, it is useful to have a more user friendly expression for the
par[[on sum, and string theory provides one.



The basic ideas we will use are the following:

v Universality of the spectrum: from the definition of the deformed
theories, it is clear that the deformed energies have the form

Here 𝑛 labels the different states, is the deformed energy, 𝐸C
is the corresponding undeformed energy, and the other variables
are the momentum and charges, and the coupling.
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1. Entanglement entropy for coupled harmonic oscillators

The basic setup of our problem is the following. We start with an infinite chain of

coupled harmonic oscillators, with the Hamiltonian1

H =
1

2

1X

j=�1

⇥
P

2
j + k(Xj �Xj+1)

2
⇤

(1.1) aaa

Of course, this Hamiltonian has a zero mode, corresponding to overall translations of all

Xj . We can get rid of it by adding a small “mass term” µ
P

j X
2
j , or by studying the

system on a finite interval, with the ends fixed, but for now let’s see if we can do without

it. In the continuum limit, the system (1.1) goes over to a free scalar field X(�, ⌧), so we

can learn from studying it about that 1 + 1 dimensional field theory.

En = E(En, pn, qn, qn, t, µ±)

To diagonalize the Hamiltonian (1.1) we define

eX✓ =
1X

j=�1
Xje

2⇡ij✓ (1.2) bbb

Note that from the definition eX✓ satisfies:

(1) eX✓+1 = eX✓. Thus, ✓ is a periodic variable. We will take it to be in the range

� 1
2  ✓  1

2 , with the endpoints identified.

(2) From the definition, eX✓ are complex variables, but they satisfy the reality condition

eX⇤
✓ = X�✓.

(3) The inverse of (1.2) is

Xj =

Z 1
2

� 1
2

d✓ eX✓e
�2⇡ij✓ (1.3) ccc

The momenta Pj in (1.1) are canonically conjugate toXj , i.e. they satisfy the commutation

relation (h̄ = 1)

[Pj , Xl] = �i�jl (1.4) ddd

1 We are not worrying about dimensions here. Need to insert dimensionful constants to make

the dimensions work.
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The key point is that the function is universal, i.e. the deformed
energies are given by a universal function of the undeformed
charges, and the couplings.

Thus, if we have a class of examples of these theories that is
understood, we can use it to find the universal function , and use
it for any other deformed CFT.

v 𝐴𝑑𝑆2/𝐶𝐹𝑇6 provides precisely such a class of examples, via the
dynamics of long strings in 𝐴𝑑𝑆2. Therefore, we can read off
from it the function .
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A very similar story can be told for the torus partition sum: if we
know the torus partition sum 𝑍(𝜁, ̅𝜁, 𝑅) as a functional of the
undeformed partition sum 𝑍GHI 𝜏, ̅𝜏 for a class of examples, the
resulting expression must be true for any undeformed CFT.

Again, 𝐴𝑑𝑆2/𝐶𝐹𝑇6 provides precisely such a class, and gives an
expression for the partition sum which is guaranteed to be general
due to universality.

The goal of the rest of this talk is to explain these comments and
the resulting expressions for the spectrum and partition sum. At
the end, I will comment on other observables.



Aspects	of	string	theory	on	𝐴𝑑𝑆2

The worldsheet theory for a string propaga[ng on 𝐴𝑑𝑆2 is described 
by a WZW model on the SL(2,R) group manifold. It is invariant under 
lec and right moving SL(2,R) current algebras at level k. This level is 
related to the radius of curvature of 𝐴𝑑𝑆2, 𝑅Z[\ = 𝑘𝑙_ .

The current algebra plays an important role in analyzing the 
spectrum, symmetries, and correla[on func[ons of this theory. 



The AdS/CFT correspondence relates string theory on 𝐴𝑑𝑆2 to a 2d 
CFT living on the boundary. For pure NS H-flux, this theory has the 
following properties:

Ø It has an SL(2,R) invariant vacuum, the NS vacuum in the dual CFT. 
In the bulk, it corresponds to 𝐴𝑑𝑆2 in global coordinates. The 
Ramond vacuum of the boundary CFT corresponds in the bulk to 
the M=0 BTZ black hole. 



Ø In the NS sector, the spectrum of excita[ons includes discrete 
states followed by a con[nuum of long string states. The 

con[nuum starts at dimension ∼ a
6 (MO 2001). In the Ramond

sector one finds a con[nuum of long strings above a gap of order  
@
a .



Ø The theory on a single long string in global 𝐴𝑑𝑆2 was analyzed in 
SW 1999 .  In string theory on 𝐴𝑑𝑆2× 𝑁 , it is described by a 
sigma model on                               . The central charge of this 
theory is 𝑐e = 6𝑘.

Ø The theory on 𝑅g has a linear dilaton with slope 

Ø Example: for string theory on 𝐴𝑑𝑆2×𝑆2×𝑇h , which has (4,4) 
superconformal symmetry,                                                .
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the spacetime CFT, which preserves SUSY, corresponds in the bulk description to the

M = J = 0 BTZ black hole.

(2) In the NS sector, the spectrum of excitations consists of a sequence of discrete states

which come from the principal discrete series representations of SL(2, IR), followed by

a continuum of long string states. The continuum starts at dimension ⇠ k/2, and is

described by applying spectral flow to the principal continuous series states. There

are also discrete states obtained by applying spectral flow to the principal discrete

series [3].

(3) In the Ramond sector, the spectrum contains a continuum of long string states, asso-

ciated with the principal continuous series. It may also have states coming from the

principal discrete series, but the status of those is unclear.

(4) The theory on a single long string in global AdS3 was analyzed in [4]. In string theory

on AdS3 ⇥N , it is described by a �-model on2

M
(L)
6k = IR� ⇥N (2.1) aaa

The coordinate � parametrizes the location of the string in the radial direction of

AdS3; the boundary is at � ! 1. The theory on IR� has a linear dilaton with slope

Q
(L) = (k � 1)

r
2

k
(2.2) bbb

The central charge of the theory (2.1) is given by

cM = 6k (2.3) ccc

which explains the subscript on the l.h.s. of (2.1). An example is string theory on

AdS3⇥S
3
⇥T

4, where M(L)
6k = IR�⇥SU(2)k ⇥T

4, a CFT with (4, 4) superconformal

symmetry.

2 The superscript (L) stands for long string. The subscript will be explained momentarily.

2
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Ø The effective string coupling on the long string, 
increases as the string moves towards the boundary. Thus, the 
physics of long strings is strongly coupled there. This observation

plays an important role in studying the theory (GKRS 2005).
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(5) The e↵ective string coupling on the long string, gs ⇠ exp(Q(L)
�), increases as the

string moves towards the boundary.3 Thus, the physics of long strings near the bound-

ary is strongly coupled. This observation plays an important role in studying the dual

CFT [5].

An interesting open problem is what is the spacetime theory corresponding to a given

AdS3 vacuum. There is strong evidence for the conjecture that the long string states are

well described by the symmetric product CFT

⇣
M

(L)
6k

⌘p

/Sp (2.4) ddd

where p is the number of strings that make up the vacuum.4 One way to understand this

is to follow the logic of matrix string theory [6,7]. It was shown in that context, that if

the theory living on a string wrapping once around a circle is M, then the symmetric

product CFT M
N

/SN provides an e↵ective description of the Hilbert space of N free

strings. Untwisted sector states describe N strings, each winding once around the circle,

while Zw twisted states (with w = 2, 3, · · · , N) describe strings that wind w times around

the circle. General states corresponding to n strings with windings (w1, · · · , wn), with

w1 + · · ·+ wn = N , are described in terms of conjugacy classes of the symmetric product

(2.4).

The work on matrix string theory is relevant for long strings on AdS3 since they are

weakly coupled in a wide range of positions in the radial direction. As mentioned in (5)

above, eventually when the strings move far enough towards the boundary in the radial

direction, their coupling becomes large, and one expects corrections to (2.4) to become

important. We will discuss such corrections below.

3 For k > 1; for k < 1 it decreases, and the physics is di↵erent [..].
4 One can think of AdS3 backgrounds of the sort discussed here as obtained from linear dilaton

backgrounds, i.e. vacua of Little String Theory, by adding to them p fundamental strings [..]. This

gives rise in the near-horizon geometry of the strings to an AdS3 vacuum with string coupling

g2s ⇠ 1/p.
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An interesting open problem is what is the boundary  CFT dual to a 
given 𝐴𝑑𝑆2 vacuum. There is strong evidence for the conjecture 
that long strings are described by the symmetric product CFT 

Some of the evidence for this is:
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above, eventually when the strings move far enough towards the boundary in the radial

direction, their coupling becomes large, and one expects corrections to (2.4) to become

important. We will discuss such corrections below.

3 For k > 1; for k < 1 it decreases, and the physics is di↵erent [..].
4 One can think of AdS3 backgrounds of the sort discussed here as obtained from linear dilaton

backgrounds, i.e. vacua of Little String Theory, by adding to them p fundamental strings [..]. This

gives rise in the near-horizon geometry of the strings to an AdS3 vacuum with string coupling

g2s ⇠ 1/p.
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Ø Matrix string theory logic (Motl, DVV, 1997): if the theory living 
on a single string winding around a circle is 𝑀, the symmetric 
product theory 𝑀j/𝑆j provides a description of the Hilbert 
space of 𝑁 free strings. Untwisted sector states describe 
𝑁 strings each winding once around the circle; 𝑍k twisted states 
describe strings with winding  𝑤; general states of 𝑛 strings with 
windings  (𝑤@,⋯ ,𝑤C) are described in terms of conjugacy 
classes of the symmetric product. 

The long strings on 𝐴𝑑𝑆2 are weakly coupled in a wide range of 
positions in the radial direction, so the symmetric product 
description should be a good description of their dynamics in this 
regime. 



Ø Spectrum of long strings: for example, in the Ramond sector 
(massless BTZ) one finds 

𝑅=radius of boundary circle;           = lec and right-moving excita[on 
levels; 𝑠 ∝ radial momentum of the string.
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Another piece of evidence for the symmetric product structure (2.4) is the spectrum

of fundamental strings on AdS3. As an example, in the Ramond sector of the spacetime

CFT, which as mentioned above corresponds to the massless BTZ background in string

theory, the spectrum of long strings is given by [..]

EL,R =
1

w


�

j(j + 1)

k
+ NL,R �

1

2

�
(2.5) eee

where

EL =
R

2
(E + P ) ; ER =

R

2
(E � P ) ; P 2

1

R
Z (2.6) ↵f

and R is the radius of the spatial circle on the boundary. NL,R are the left and right-moving

excitation levels of the string.

For long strings moving with momentum p in the radial direction one has

j = �
1

2
+ is; s 2 IR (2.7) ggg

with p = s

q
2
k
in string units. The quantum number w = 1, 2, · · · in (2.5) is the winding

number of the string around the boundary circle. This quantum number is not conserved,

since the circle is contractible.

To make contact with (2.4), we note that in a symmetric product CFT, MN
/SN ,

states in the Zw twisted sector have energies,

EL = hw �
kw

4
; ER = hw �

kw

4
(2.8) hhh

where hw, hw are the left and right moving scaling dimensions of the operator that creates

the state in question from the SL(2,C) invariant vacuum. States with w = 1 are those of

the original CFT M. For every such state with left-moving dimension h1, there is a state

in the Zw twisted sector, with dimension hw given by [..]

hw =
h1

w
+

k

4

✓
w �

1

w

◆
(2.9) iii
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To make contact with                    , one notes that in a symmetric 
product CFT,  states in the 𝑍k twisted sector have energies 

𝑤 = 1 corresponds to the original CFT. For every state with 
dimension ℎ@ in that CFT, there is a state in the 𝑍k twisted 
sector, with dimension ℎk given by

The string spectrum on the previous page has the same form. 
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(5) The e↵ective string coupling on the long string, gs ⇠ exp(Q(L)
�), increases as the

string moves towards the boundary.3 Thus, the physics of long strings near the bound-

ary is strongly coupled. This observation plays an important role in studying the dual

CFT [5].

An interesting open problem is what is the spacetime theory corresponding to a given

AdS3 vacuum. There is strong evidence for the conjecture that the long string states are

well described by the symmetric product CFT

⇣
M

(L)
6k

⌘p

/Sp (2.4) ddd

where p is the number of strings that make up the vacuum.4 One way to understand this

is to follow the logic of matrix string theory [6,7]. It was shown in that context, that if

the theory living on a string wrapping once around a circle is M, then the symmetric

product CFT M
N

/SN provides an e↵ective description of the Hilbert space of N free

strings. Untwisted sector states describe N strings, each winding once around the circle,

while Zw twisted states (with w = 2, 3, · · · , N) describe strings that wind w times around

the circle. General states corresponding to n strings with windings (w1, · · · , wn), with

w1 + · · ·+ wn = N , are described in terms of conjugacy classes of the symmetric product

(2.4).

The work on matrix string theory is relevant for long strings on AdS3 since they are

weakly coupled in a wide range of positions in the radial direction. As mentioned in (5)

above, eventually when the strings move far enough towards the boundary in the radial

direction, their coupling becomes large, and one expects corrections to (2.4) to become

important. We will discuss such corrections below.

3 For k > 1; for k < 1 it decreases, and the physics is di↵erent [..].
4 One can think of AdS3 backgrounds of the sort discussed here as obtained from linear dilaton

backgrounds, i.e. vacua of Little String Theory, by adding to them p fundamental strings [..]. This

gives rise in the near-horizon geometry of the strings to an AdS3 vacuum with string coupling

g2s ⇠ 1/p.

3
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Ø Another piece of strong evidence for the long string CFT comes 
from the study of irrelevant deformation such as  𝑇"𝑇 , to which 
we turn next. 



Some	solvable	irrelevant	deformations	
of	string	theory	on	𝐴𝑑𝑆2

String theory on 𝐴𝑑𝑆2 always contains an operator 𝐷(𝑥, 𝑥̅), found in 
KS 1999, that has many proper[es in common with the operator 𝑇"𝑇
in the boundary CFT. In par[cular, it is quasi-primary and has the 
same OPEs with the stress-tensor as 𝑇"𝑇. However, while 𝑇"𝑇 is a 
double trace operator, 𝐷(𝑥, 𝑥̅) is a single trace one. In this context 
this means that 𝐷(𝑥, 𝑥̅) corresponds to a vertex operator integrated 
over the worldsheet, while 𝑇"𝑇 is a product of such integrated vertex 
operators.



It is natural to ask what happens when we add the operator 𝐷 to the 
Lagrangian of the boundary CFT. One can show (IGK 2017) that this is 
the same as adding to the worldsheet Lagrangian

Where 𝐽{ is the left-moving 𝑆𝐿 2, 𝑅 current, whose zero mode gives 
the boundary Virasoro generator 𝐿{@.
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Following [..], it is natural to ask what happens when we perturb the spacetime La-

grangian by D(x, x). As shown in [..], this is the same as adding to the worldsheet La-

grangian the operator

�L = �J
�

J
�

(3.1) lll

where J
�(J

�
) is the left-moving (right-moving) SL(2, IR) current whose zero mode gives

rise to the spacetime Virasoro generator L�1(L�1). Already at this level, we see a number

of parallels between the deformation (3.1) and T T in the spacetime CFT. In particular,

since the currents J
� and J

�
have spacetime scaling dimensions (1, 0) and (0, 1), respec-

tively, � in (3.1) has dimension (�1,�1), like the T T coupling. Furthermore, the defor-

mation (3.1) is exactly solvable in string theory, since it corresponds to a truly marginal

deformation of the worldsheet theory. This is reminiscent of the fact that the T T defor-

mation is exactly solvable in field theory.

To understand the origin of the relation between (3.1) and T T , we appeal to the

discussion of the previous section. In particular, we would like to understand the action

of this deformation on the long string states. As we saw in section 2, these states are

described by the symmetric product CFT (2.4). Thus, we need to understand the role of

the coupling � in that CFT.

Local single trace operators in string theory correspond in the symmetric product to

operators of the form
pX

j=1

Oj(x, x) (3.2) mmm

where Oj is an operator in the j’th copy of the block of the symmetric product. Thus, we

expect D(x, x) to be expressible as

D(x, x) =
pX

j=1

Dj(x, x) (3.3) nnn

where Dj is a dimension (2, 2) quasi-primary operator living in the j’th copy of M(L)
6k

.

There is a natural candidate for such an operator, Dj = TjT j , the product of the holo-

morphic and anti-holomorphic stress-tensors in the j’th block. In general, there could be

10



Already at this level, we see a number of parallels between the 
deformation corresponding to 𝐷 and 𝑇"𝑇 in the spacetime CFT. 

Ø The coupling has boundary dimension (-1,-1) in both cases.

Ø Both are solvable. In the case of 𝐷, this is related to the fact that 
while the deformation is irrelevant in the boundary CFT, it is 
exactly marginal on the worldsheet. Being a current-current 
deformation, it is solvable. 



To understand better the relation between the two types of 
deformations, we appeal to our discussion of string theory on 
𝐴𝑑𝑆2 above. In particular, we would like to understand the action 
of this deformation on long string states. 

We saw that these states are described by a symmetric product 
CFT. Thus, we need to understand the role of the coupling 𝜆 in that 
CFT. 



Some useful observa[ons:
v Local single trace operators in string theory correspond in the 

symmetric product to operators in the block, symmetrized over 
all copies. Thus, we can write

where 𝐷} is a dimension (2,2) quasi-primary operator living in

the j’th copy of            .   
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morphic and anti-holomorphic stress-tensors in the j’th block. In general, there could be
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string, which perturbatively is M
(L)
6k

(2.1), has many more states obtained by replacing

the AdS3 geometry with a perturbative excitation by a BTZ black hole with the same

quantum numbers.

This explains why the perturbative description of the theory on a long string is cor-

rected due to non-perturbative e↵ects in the regime where long strings can exist. In the

NS sector of the spacetime CFT this happens for scaling dimensions above the gap to the

long strings, h = k/4; in the Ramond sector, the gap is of order 1/k.5

The above discussion clarifies the sense in which the spacetime CFT corresponding to

string theory with purely NS-NS H-flux is singular. In addition to the continuum above

a gap, it has the property that non-perturbative (in gs) e↵ects influence the physics at

energy scales that do not depend on the value of the underlying string coupling, which can

be taken to be arbitrarily small. The situation is reminiscent of string theory on Calabi-

Yau manifolds near singularities, where the underlying string coupling can be taken to be

arbitrarily small, but the masses of non-perturbative states such as D-branes can be held

fixed, and even go to zero, as one approaches a singular point in moduli space (see e.g.

[10,11,12].

The discussion above sheds light on the relation of the perturbative block M
(L)
6k

(2.1)

to the non-perturbative one M6k (2.10). In matrix theory, the description of wrapped

strings also involves turning on a twist field that exchanges copies of the block [6,7]. In our

case such a twist field is irrelevant for k > 1, and hence cannot appear in the low energy

theory. For k = 1 it can appear, and one expects it to.

We finish this section with a few comments:

5 Note that this does not invalidate the discussion of perturbative long string states above this

gap around equations (2.5) – (2.7), since the wavefunctions of perturbative states have support in

the wide region where the theory is weakly coupled. Rather, it implies that there are additional

states that are supported in the strongly coupled region, that have energies comparable to those

of the perturbative states. The situation is similar to that in Liouville-type theories, where there

is a continuum of scattering states living far from the wall, and there may be additional states

whose wavefunctions are localized near the wall, some or all of which may be non-perturbative.
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v A natural candidate for  𝐷} is 𝐷} = 𝑇} ~𝑇}. In general, there could 
be other operators with the right proper[es, but since the 
operator 𝐷 is universal, the above iden[fica[on is likely. In fact 
one can prove that it is correct, by showing that in the string 
theory there in general aren’t other operators with the right 
proper[es.  

v If the boundary CFT has (2,2) supersymmetry, one can show 
that 𝐷 is a top component of a superfield, whose bokom 
component has dimension (1,1), and corresponds (by similar 
arguments) to  ∑' 𝐽'~𝐽' .



Therefore, we conclude that turning on the single trace coupling 𝜆
in string theory on 𝐴𝑑𝑆2 corresponds in the symmetric product 

to a 𝑇"𝑇 deformation in the block.

In particular, the energies of long string states must be deformed 
at finite 𝜆 in the same way as they would be via the above  𝑇"𝑇
deformation.  
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(5) The e↵ective string coupling on the long string, gs ⇠ exp(Q(L)
�), increases as the

string moves towards the boundary.3 Thus, the physics of long strings near the bound-

ary is strongly coupled. This observation plays an important role in studying the dual

CFT [5].

An interesting open problem is what is the spacetime theory corresponding to a given

AdS3 vacuum. There is strong evidence for the conjecture that the long string states are

well described by the symmetric product CFT

⇣
M

(L)
6k

⌘p

/Sp (2.4) ddd

where p is the number of strings that make up the vacuum.4 One way to understand this

is to follow the logic of matrix string theory [6,7]. It was shown in that context, that if

the theory living on a string wrapping once around a circle is M, then the symmetric

product CFT M
N

/SN provides an e↵ective description of the Hilbert space of N free

strings. Untwisted sector states describe N strings, each winding once around the circle,

while Zw twisted states (with w = 2, 3, · · · , N) describe strings that wind w times around

the circle. General states corresponding to n strings with windings (w1, · · · , wn), with

w1 + · · ·+ wn = N , are described in terms of conjugacy classes of the symmetric product

(2.4).

The work on matrix string theory is relevant for long strings on AdS3 since they are

weakly coupled in a wide range of positions in the radial direction. As mentioned in (5)

above, eventually when the strings move far enough towards the boundary in the radial

direction, their coupling becomes large, and one expects corrections to (2.4) to become

important. We will discuss such corrections below.

3 For k > 1; for k < 1 it decreases, and the physics is di↵erent [..].
4 One can think of AdS3 backgrounds of the sort discussed here as obtained from linear dilaton

backgrounds, i.e. vacua of Little String Theory, by adding to them p fundamental strings [..]. This

gives rise in the near-horizon geometry of the strings to an AdS3 vacuum with string coupling

g2s ⇠ 1/p.

3



The above discussion has a generaliza[on that involves Kac-Moody 
currents. As before, we start with string theory on 𝐴𝑑𝑆2× 𝑁 , but 
now we take 𝑁 to contain a lec-moving conserved current 𝐾(𝑧).

From this data, one can construct a holomorphic conserved current 
in the boundary CFT, 𝐾 𝑥 . Following the discussion of 𝑇"𝑇 before, 
we can deform the boundary theory by the double trace operator 
𝐾 𝑥 "𝑇(𝑥̅), or by the dimension (1,2) single trace operator 𝐴(𝑥, 𝑥̅), 
which corresponds in the bulk string theory to the worldsheet
deforma[on 
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(3) Adding the operator A(x, x) to the spacetime Lagrangian is the same as adding to

the worldsheet Lagrangian the term

�L = �
0
K(z)J

�
(3.5) ppp

and similarly for A(x, x). These perturbations are irrelevant in spacetime but truly

marginal on the worldsheet. More generally, one can add to the worldsheet Lagrangian

a combination of all these coupling,

�L = �J
�

J
�
+ �

0
K(z)J

�
+ �

00
J
�

K (3.6) qqq

On the worldsheet, this leads to a conformal manifold (a moduli space of conformal

field theories). Moreover, the theory is solvable using standard techniques for all

values of the couplings. In spacetime, this corresponds to deforming the block of

the symmetric product (2.4), M(L)
6k

, by a combination of the corresponding irrelevant

couplings,

�L = b�T T + b�0
JT + b�00

T J (3.7) rrr

(4) Turning on only � in (3.6) (and, therefore, only b� in (3.7)) one gets the theory analyzed

in [..]. The spectrum obtained from the string theory analysis agrees with that found

in field theory [..]. Similarly, turning on only �
0 in (3.6) (and, therefore, only b�0 in

(3.7)) gives the theory analyzed in [..]. Again, the field and string theory analyses

agree. This provides strong support to the picture presented in section 2.

(5) In string theory, it is not hard to calculate the spectrum for an arbitrary combination

of all the couplings, (3.6). The discussion of this and the previous section predicts

that this spectrum is correct for a theory with general deformation parameters (3.7).

In the next few sections, we will discuss some properties of the theory (3.6). In particular,

we will describe the modifications of the AdS3 geometry induced by these irrelevant defor-

mations, the spectrum of excitations in the resulting geometries, and the relation between

pathologies of the geometries and pathologies of the corresponding spectra. Our main goal

13



Many of the comments above are valid here as well. In par[cular:

v While the single trace deforma[on by 𝐴(𝑥, 𝑥̅) is irrelevant in the 
boundary CFT, it is truly marginal (and solvable) in the bulk 
string theory. 

v In the symmetric product theory of the long strings, it 
corresponds to a 𝐾"𝑇 deforma[on of the block of the symmetric 
product,                                           . 

v Thus, one can use the string theory construc[on to calculate the 
deformed energies in 𝐾"𝑇 deformed CFT.  
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pathological – the energies of highly excited states in the original CFT become complex

after the deformation, which seems inconsistent with unitarity.

In the string description, these properties reflect the geometry of the deformed space-

time corresponding to (3.1). For positive coupling, the deformation (3.1) modifies the

AdS3 spacetime in the UV (near the boundary) to an asymptotically linear dilaton one,

which describes a two dimensional vacuum of Little String Theory. The latter is known to

have a Hagedorn density of states [..], which explains the appearance of this behavior in

the deformed theory (3.1).

For negative coupling, the deformation (3.1) modifies the AdS3 in the UV to a geom-

etry which has a singularity at a finite value of the radial coordinate, beyond which one

finds closed timelike curves. This explains the pathological UV behavior of the spectrum

– it results from string quantization in a pathological spacetime. It has been argued in [..]

that the breakdown of unitarity is associated with the closed timelike curves (rather than

the singularity), and we will provide more support for this below.

The above discussion has an interesting generalization that involves Kac-Moody cur-

rents. If the internal worldsheet CFT N contains left (right)-moving conserved cur-

rents K(z)(K(z)), one can construct left (right)-moving currents in the spacetime theory

K(x)(K(x)) [..]. Following the construction of D(x, x), one can also construct dimension

(1, 2) and (2, 1) operators, A(x, x) and A(x, x), respectively [..]. These operators have the

following properties:

(1) A(x, x) has the same dimension and OPE’s with the currents as K(x)T (x). However,

unlike that operator, it is a single trace operator. A(x, x) is related in a similar way

to T (x)K(x).

(2) In the symmetric product CFT (2.4), one can think of the operator A as

A(x, x) =
pX

j=1

Kj(x)T j(x) (3.4) ooo

and similarly for A(x, x).

12



Another prediction of the string theory picture is that if the dual 
CFT has left and right-moving currents 𝐾 𝑥 , ~𝐾(𝑥̅), we can add to 
the boundary Lagrangian an arbitrary combination of the single 
trace  𝑇"𝑇, 𝐾 "𝑇, 𝑇~𝐾 couplings and get a solvable theory. On the 
worldsheet, this corresponds to studying deformed Lagrangians of 
the form

Since the perturbation is truly marginal and has a current-current 
form, the theory remains solvable for all values of the couplings.  
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we will describe the modifications of the AdS3 geometry induced by these irrelevant defor-

mations, the spectrum of excitations in the resulting geometries, and the relation between

pathologies of the geometries and pathologies of the corresponding spectra. Our main goal
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Why would we want to consider the theory for general couplings? 

Ø In general, to better understand any theory, it is useful to 
understand all its deformations.

Ø Two special cases that were already considered are single trace 
𝑇"𝑇,  𝜆� = 𝜆�� = 0, and single trace 𝐾"𝑇 , 𝜆 = 𝜆�� = 0. In the latter, 
it was found that the energies are complex for all real values of 
the couplings. Therefore, to construct a sensible theory that 
includes the couplings 𝜆�, 𝜆′′, one presumably needs to turn on 𝜆
as well.  



Ø In the cases that were already considered, there was an 
interesting correspondence between the appearance of complex 
energies in the deformed field theory, and the appearance of 
pathologies, like closed timelike curves and curvature 
singularities in the deformed bulk geometry. It is interesting to 
extend the discussion to a wider class of theories, to see what 
features of the geometry are related to the appearance of 
complex energies in the field theory.



Therefore, we will next:

1. Determine the deformed background at a general point in the 
three dimensional coupling space discussed above.

2. Determine the spectrum at a general point in coupling space 
using the ideas described above.

3. Compare the condi[ons for the spectrum to be real to those 
for not having pathologies in the dual bulk geometry. 

4.   Compute the corresponding torus par[[on sum.



The	deformed	bulk	geometry

Consider first the sigma model on 𝐴𝑑𝑆2×𝑆@ (the 𝑆@ gives the left 
and right-moving U(1)’s that we will need for the construction). In 
Poincare coordinates, one has 
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Flipping the chiralities one can similarly define the anti-holomorphic components K(z)

and J
�
SL(z).

10

We would like to obtain the spectrum of the boundary theory on a cylinder in its

Ramond vacuum with supersymmetry preserving boundary conditions. As discussed in

section 2, such a spacetime theory (before deformation) is dual to string theory on the

massless (M = J = 0) BTZ black-hole background in the bulk. We thus start with

the sigma model on massless BTZ⇥S
1. Massless BTZ is obtained by compactifying the

spacelike boundary direction in AdS3 in Poincaré coordinates.

In Poincaré coordinates, an element g 2 SL(2, IR) is parametrized as

g =

✓
1 0
� 1

◆✓
e
� 0
0 e

��

◆✓
1 �

0 1

◆
=

✓
e
�

�e
�

�e
�

e
�� + ��e

�

◆
. (4.1) gggg

The WZW action on SL(2, IR)⇥ U(1) is given by

S =
k

2⇡

Z
d
2
z

✓
@�@�+ e

2�
@�@� +

1

k
@y@y

◆
, (4.2) wzw

where k is the level of the SL(2, IR)L,R a�ne Lie algebra. The action (4.2) is invariant

under left and right-moving a�ne SL(2, IR)⇥ U(1) symmetry.

In (4.2), e
� = r is radial direction, � and � are the null directions transverse to the

radial direction, and y parametrizes the circle S
1 at self-dual radius. To obtain massless

BTZ black hole, one needs to compactify the spacelike boundary coordinate �1 on a circle

of radius R. The timelike and spacelike boundary coordinates �0 and �1 are defined by

� = �1 + �0 , � = �1 � �0 ; �1 ' �1 + 2⇡R . (4.3) ttxx

Next we consider the following deformation of (4.2):

�S =
��

2⇡k

Z
d
2
zJ

�
SLJ

�
SL �

�✏+

⇡
p

k

Z
d
2
zKJ

�
SL �

�✏�

⇡
p

k

Z
d
2
zJ

�
SLK, (4.4) dWZW

10 The precise definitions of the currents appear in appendix A.
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The exact deformed ac[on takes the form

where

𝜖± provide a parametriza[on of the space labeled by 𝜆�, 𝜆′′ above.   
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where � and ✏± are the truly marginal couplings. The exact deformed action is given by 11

S(�, ✏+, ✏�) =
k

2⇡

Z
d
2
z

✓
@�@�+ h�@� +

2✏+h
p

k
@y@� +

2✏�h
p

k
@�@y +

f
�1

h

k
@y@y

◆
(4.5) edWZW

where
f
�1 =�+ e

�2�
,

h
�1 =�� 4✏+✏� + e

�2�
.

(4.6) harmf

The deformed action is invariant under U(1)L,null⇥U(1)R,null⇥U(1)L ⇥U(1)R a�ne sym-

metry. The global U(1)L,null ⇥ U(1)R,null symmetry correspond to translations along the

null directions � and �, respectively. The deformation (4.4) breaks the a�ne SL(2, IR)L,R

to a�ne U(1)L,R,null, but leaves the left and right-moving U(1)L,R, associated with S
1,

unbroken.

The background (4.5) satisfies the vanishing of the worldsheet �-functions at order ↵0.

In type II superstrings, the deformed sigma-model background preserves (2, 2) worldsheet

supersymmetry (see e.g. [GW...]) implying, in particular, the vanishing of the higher-order

↵
0 corrections to the worldsheet �-functions [14]. 12

Upon Kaluza-Klein (KK) reduction along the y direction to three dimensions, one

obtains the metric, dilaton �, antisymmetric B-field and gauge fields A:

ds
2 =k

⇣
d�

2 + hd�d� � fh (✏+d� + ✏�d�)2
⌘

,

e
2� =g

2
s
e
�2�

h ,

B�� =
kh

2
, A� = 2

p

k✏+f , A� = 2
p

k✏�f ,

(4.7) rebg

where the harmonic functions f
�1

, h
�1 are given in (4.6). Here we denote the string

coupling at � ! �1 by gs.

In the following couple of sections we will derive the spectrum of string theory in the

deformed background (4.5) and then discuss its relation to the 3d reduced background

geometry (4.7).

11 The reader is directed to appendix A for the details of the derivation of the exact deformed

sigma-model background.
12 And the existence of a chiral GSO projection leading to supersymmetry in spacetime, for the

superstring on deformed AdS3⇥S1⇥N , if K,K are those of a U(1)L,R in the ‘internal’ N = (2, 2)

supersymmetric N CFT; see e.g. [GR...].

16
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To study the geometry, it is convenient to KK reduce this background 
on the circle labeled by 𝑦. This gives
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The	spectrum

We start with the massless BTZ background 

where the boundary coordinates are identified as follows:
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5. The spectrum

The main aim of this section is to derive the spectrum of string theory in the back-

ground (4.5), obtained by deforming the sigma-model action on massless BT Z ⇥ S
1 by a

general linear combination of J
�
SLJ

�
SL, KJ

�
SL and J

�
SLK. For that purpose, we first review

the constructing the spectrum of string theory in massless BTZ.

5.1. Massless BTZ

5.1.1. The spectrum of the worldsheet sigma model on massless BTZ

The sigma-model Lagrangian on AdS3 in Poincaré coordinates takes the form (4.2):

L = 2k(@�@�+ e
2�
@�@�), (5.1) adsl

and the periodic identification (4.3) gives rise to the worldsheet theory of massless BTZ.

It is convenient to rewrite it in the Wakimoto form [15-17],

LW = @�@�+ �@� + �@� � exp

 
�

r
2

k
�

!
�� �

r
2

k

bR�, (5.2) qWlag

where bR is the curvature of the worldsheet Riemann surface.13 The Lagrangian (5.1) is

recovered upon integrating out the auxiliary fields � and �, treating carefully the measure

of the path integral, and rescaling the fields. The last term in (5.2) indicates that the

dilaton is linear in �. The string coupling, gs, behaves as gs ⇠ exp
⇣
�

q
1
2k
�

⌘
, implying

that for large �, gs ! 0. In the near boundary limit (i.e. � ! 1), the interaction term in

(5.2) drops out as well and we are left with a free Lagrangian, given by

L = �@� + �@� + L� , (5.3) WLaga

where

L� = @�@��

r
2

k

bR� . (5.4) Lphia

13 Note that (5.2) is the worldsheet action for superstrings. In the case of bosonic strings, k

should be replaces by k � 2
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Flipping the chiralities one can similarly define the anti-holomorphic components K(z)

and J
�
SL(z).

10

We would like to obtain the spectrum of the boundary theory on a cylinder in its

Ramond vacuum with supersymmetry preserving boundary conditions. As discussed in

section 2, such a spacetime theory (before deformation) is dual to string theory on the

massless (M = J = 0) BTZ black-hole background in the bulk. We thus start with

the sigma model on massless BTZ⇥S
1. Massless BTZ is obtained by compactifying the

spacelike boundary direction in AdS3 in Poincaré coordinates.

In Poincaré coordinates, an element g 2 SL(2, IR) is parametrized as

g =

✓
1 0
� 1
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e

� 0
0 e

��
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The WZW action on SL(2, IR) ⇥ U(1) is given by

S =
k

2⇡

Z
d
2
z
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@�@� + e
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@�@� +

1

k
@y@y

◆
, (4.2) wzw

where k is the level of the SL(2, IR)L,R a�ne Lie algebra. The action (4.2) is invariant

under left and right-moving a�ne SL(2, IR) ⇥ U(1) symmetry.

In (4.2), e
� = r is radial direction, � and � are the null directions transverse to the

radial direction, and y parametrizes the circle S
1 at self-dual radius. To obtain massless

BTZ black hole, one needs to compactify the spacelike boundary coordinate �1 on a circle

of radius R. The timelike and spacelike boundary coordinates �0 and �1 are defined by

� = �1 + �0 , � = �1 � �0 ; �1 ' �1 + 2⇡R . (4.3) ttxx

Next we consider the following deformation of (4.2):

�S =
��

2⇡k

Z
d
2
zJ

�
SLJ

�
SL �

�✏+

⇡
p

k

Z
d
2
zKJ

�
SL �

�✏�

⇡
p

k

Z
d
2
zJ

�
SLK, (4.4) dWZW

10 The precise definitions of the currents appear in appendix A.
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Since we are interested in long strings propagating at large 𝜙, it is 
convenient to rewrite this in the Wakimoto form 

where we have rescaled some of the fields. This description is free 
at large 𝜙, which makes it easier to analyze the spectrum.  One finds 
the spectrum  quoted earlier in this talk. 
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13 Note that (5.2) is the worldsheet action for superstrings. In the case of bosonic strings, k

should be replaces by k � 2
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Now we turn on the general current-current perturba[ons discussed 
above. Using standard techniques one finds that the energies 
change as follows:

The haked variables are dimensionless couplings. For ̂𝜖 = 0 one 
finds the familiar 𝑇"𝑇 spectrum. Turning on only ̂𝜖<, gives the 𝐽 "𝑇 one.
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Recall that upon deformation of the worldsheet BT Z ⇥ S
1 theory by a general linear

combination of J
�
SLJ

�
SL, KJ

�
SL and J

�
SLK, (4.4), the form of the low-lying vertex operator

on deformed massless BT Z ⇥S
1 remains the same, though now the left and right moving-

energies EL,R are function of the couplings b�,b✏±. The scaling dimensions of VBT Z⇥S1 after

the deformation are given by (5.33) and the on-shell conditions for Vphys (5.34) are given

by (5.17), where NL,R are the left and right-moving scaling dimensions of VN .

Following a similar line of arguments used in constructing the spectrum of the space-

time theory dual to massless BTZ in the bulk, for generic b�,b✏±, one finds
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(5.35) dimft

where h!, h! are properties of the undeformed theory (e.g., they can be obtained by setting

b� = b✏± in (5.35), and using the dispersion relations of the undeformed theory).

The spectrum (5.35) has the structure of a symmetric product theory, which, following

the discussion in sections 2 and 3, is conjectured to be (M�tT T+µ+JT+µ�T J
)p

/Sp, with

t = ⇡↵
0
� , µ± = 2

p

2↵0✏± ; (5.36) tmumu

this precise relation can be read from [GIK1707,CGK1806...], giving rise, using (5.22), to a

map between the field-theory deformation couplings, t, µ±, and the geometry parameters,

b�,b✏±, respectively.

For ! = 1, the spectrum of the deformed theory takes the form:
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For 𝑤 = 1, i.e. for states in the block of the symmetric product, one 
has

with 
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A few comments on these formulae:
• The quantity C appearing in the square root is non-negative. 

Therefore, if 𝐴 ≤ 0, all energies are real. This is a generalization 
of known constraints. For ̂𝜖± = 0 it is the statement that the 𝑇"𝑇
coupling must be positive. For �𝜆 = 0 it is the statement that 
complex energies appear for all real ̂𝜖±.

• For a given negative 𝐴, the high energy spectrum has Hagedorn 
entropy, 𝑆 = 𝛽�𝐸, with inverse Hagedorn temperature   

In particular, 𝛽� → 0 as 𝐴 → 0. The theory has multiple scales.

preliminary draft: 4/10/119 10:46

and

n = h1 � h1, c = 6k. (5.39) nncc

David, can you please TAKE CARE of the rest of this section?...

Based on the properties of the couplings, the following comments are in order:

Case 1: Since the constant C is manifestly positive, complex energy states appear

only when A > 0. In this regime of the parameter space, the theory is sick. This is not

surprising because we encountered the same phenomenon before e.g. in the case of JT

deformed CFT2.

Case 2: For A < 0, the spectrum is real. In this region of the parameter space, the

energy spectrum for large C (in particular in the limit h1 ! 1) behaves as ER ⇠

q
C

|A| .

The entropy at high energies (large h1)
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E = �HE, (5.40) entpy

is Hagedorn where �H is the inverse Hagedorn temperature given by

�H = 4⇡R

r
c|A|

12
. (5.41) betah

Thus it is interesting to look at the critical limit A ! 0�.

So let us analyze the spectrum at the critical point A ! 0� (but for C finite). First

let us investigate what happens for states at criticality that satisfy B > 0. In this limit

the states decouples as limA!0� ER ! 1. But for B < 0, the spectrum behaves as

limA!0� ER = n + 2C

|B| . Thus at criticality (A ! 0�), the states that satisfy B ! 0�

decouple from the theory.

(*) The Cardy-like behavior ... should make this more precise... of the entropy

in the limit A ! 0� is possibly related to well behaved warped CFT2 type theories seeked

in the context of Kerr/CFT [...].

6. Relations between the geometry and the spectrum

Add once soumangsu is done...

25



• The limi[ng theory obtained as 𝐴 → 0 is interes[ng. The 
Hagedorn temperature vanishes. The behavior of the energies 
depends on the sign of 𝐵. States with 𝐵 > 0 decouple (their 
energies go to infinity) . States with 𝐵 < 0 survive; their energies 

approach 𝐸𝑅 = 𝑛 + 6�
� .

• For fixed charges, the entropy has, roughly, Cardy behavior, but 
the coefficient of 𝐸 depends on the charges (through 𝐵). This is 
an intermediate behavior between Cardy and Hagedorn. Our 
construc[on provides a bulk dual to this theory.



Torus	partition	sum

As mentioned above, now that we have the spectrum of the theory, 
in principle we can compute the partition sum by explicitly 
evaluating the trace. However, using our construction one can get a 
more useful  formula. 



The strategy is as before: 

Ø For the large class of examples arising from long strings in 𝐴𝑑𝑆2, 
we compute the partition sum of the long strings by 
compactifying Euclidean time on a circle. This gives the partition 
sum of the deformed CFT as a functional of that of the 
undeformed CFT. 

Ø Using universality, the expression one gets must be true for any 
undeformed CFT.



Results: 

For 𝑇"𝑇 deformed CFT one finds

where 𝜁 is the modulus of the target space torus, 𝜏 the modulus of 
the worldsheet one,         the upper half plane, and 𝜆 the 𝑇"𝑇
coupling evaluated at the KK scale.

(see also Dubovsky et al)

This SL(2, Z) symmetry is part of the SO(2, 2;Z) T-duality group of string theory on a

two-torus (see [20] for a review). The B-field does not transform under this symmetry.

Hence, the Fourier components of the partition sum, which are given by the sum (3.7)

with fixed N (3.10), are modular invariant as well.

To recapitulate, we conclude that the partition sum of string theory on M⇥N is given

by (3.7), and we can restrict the sum over the windings (mi, wi) to satisfy N = 1, with

N given by (3.10). The dual CFT (before the deformation) is given by (2.2) – (2.4), and

imposing the constraint N = 1 in the string theory corresponds in that CFT to restricting

to states in the building block of the symmetric product M(L)
6k (2.3), [13].

The partition sum of the CFT M
(L)
6k is given by Z? above. Therefore, using univer-

sality, we can write our final expression for the partition sum of the theory obtained by

TT deforming an arbitrary CFT, with partition sum Zcft

Z(⇣, ⇣,�) =
⇣2

2�

X

mi,wi| N=1

Z

F

d
2
⌧

⌧22

e
�S{mi,wi}Zcft(⌧, ⌧). (3.12)

To simplify the expression (3.12) further, one can use the fact that Zcft(⌧, ⌧) is modular

invariant, and modular transformations act on (m1, w1,m2, w2) by permuting them, while

keeping N (3.10) fixed. These properties can be used to trade the sum in (3.12) with an

integral over the fundamental domain F , for an integral over the whole upper half plane,

H+, with (mi, wi) set to a particular value with N = 1.

A convenient value to take is

m2 = w1 = 1, m1 = w2 = 0 . (3.13)

Plugging (3.13) into (3.12), and using (3.6), we find

Z(⇣, ⇣,�) =
⇣2

2�

Z

H+

d
2
⌧

⌧22

e
�

⇡
2�⌧2

|⌧�⇣|2
Zcft(⌧, ⌧) . (3.14)

The expression (3.14) agrees with previous studies of the torus partition function of TT de-

formed CFT [9,10]. For instance, one can obtain it by manipulating (52) of [10]. However,

the origin of this expression, and in particular that of the modulus ⌧ , seems to be di↵erent

in the two cases. In our case, ⌧ is the modulus of the worldsheet torus in a holographic

description, whereas in [10] holography does not seem to play a role, and ⌧ arises from the

two dimensional (JT) gravitational description of the deformed theory.
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For the general deformed CFT with all three couplings turned on:

where the kernel of the integral 𝐼 is

and 

The first line of (4.6) is a universal expression, which depends on the couplings and the

moduli of the worldsheet and target space tori, but not on the particular CFT that is

being deformed. The dependence on the CFT comes from the second line of (4.6). It gives

rise to the partition sum of the undeformed CFT with chemical potentials for U(1)R and

U(1)L proportional to � and �, respectively.

Indeed, comparing the second line of (4.6) to (A.14), we see that the path integral

over y gives rise in this case to the partition sum Zinv(⌧, ⌧ ,�,�) defined in (A.7), (A.11),

(A.13) (with  = 1, the appropriate value for this case). Putting this together with the

first line, which is evaluated as in section 3, we have

Z(⇣, ⇣,�, ✏+, ✏�) =
⇣2h

2

Z

F

d
2
⌧

⌧2

Z
d
2
�

⌧2

✓
1

2h✏+✏�

◆
e
�SinstZinv(⌧, ⌧ ,�,�), (4.7)

where

Sinst = 2⇡⌧2

✓
h@�@� +

1

4✏+✏�h⌧22
(�� 2i⌧2✏�h@�)

�
�� 2i⌧2✏+h@�

�◆
. (4.8)

Recall that, as in section 3, to evaluate (4.7), (4.8), we need to plug (3.5) into them and

perform the sum over (m1,m2;w1, w2), subject to the constraint N = 1 (3.10).

Since the integral (4.7) is modular invariant, we can trade it for an integral over the

upper half plane, while restricting the sum over (mi, wi) to the single value (3.13). For

this case, one has

@� = �i
(⌧ � ⇣)

2⌧2
, @� = i
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2⌧2
. (4.9)

Plugging (4.9) into (4.7), (4.8), we find the final result
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Equations (4.10) and (4.11) are one of the main results of this paper. One can perform a

number of checks on them.

(1) It is straightforward to verify that the partition sum is modular invariant, with the

couplings transforming as expected
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where n,w are integers, the momentum and winding of a state, respectively.2

The partition sum with chemical potentials for pL, pR is defined by

Zcft(⌧, ⌧ , ⌫, ⌫) = Tre2⇡i⌧(L0�
c
24 )�2⇡i⌧(L0�

c
24 )+2⇡i⌫pL�2⇡i⌫pR , (A.7)

where c is the central charge of the CFT. For the case of a single scalar field we have c = 1.

The partition sum Zcft (A.7) can be computed following standard textbook treatments,

such as the one leading to (8.2.9) of [19]. Using the fact that

L0 =
1

2
p
2
L +N ; L0 =

1

2
p
2
R +N, (A.8)

where N,N are the left and right-moving oscillator levels, one finds
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with ⌘(⌧) the Dedekind eta function.

To study the transformation properties of (A.9) under the modular group, it is con-

venient to Poisson resum it in the variable n. Using (8.2.10) of [19], we find

Zcft(⌧, ⌧ , ⌫, ⌫) =
r

p
2⌧2|⌘(⌧)|2

X

m,w

exp


�
⇡r

2

2⌧2
|m� w⌧ |

2

+
⇡r⌫

⌧2
(m� w⌧)�

⇡r⌫

⌧2
(m� w⌧)�

⇡

2⌧2
(⌫ � ⌫)2

�
.
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It is natural to define the quantity

Zinv(⌧, ⌧ , ⌫, ⌫) = Zcft(⌧, ⌧ , ⌫, ⌫)e
⇡(⌫�⌫)2/2⌧2 , (A.11)

which, following the discussion after (8.2.11) of [19], can be shown to be invariant under

⌧ !
a⌧ + b

c⌧ + d
; ⌫ !

⌫

c⌧ + d
; ⌫ !

⌫

c⌧ + d
. (A.12)

A few comments on (A.11), (A.12):

(1) These results were derived for the specific case of the compact scalar CFT, (A.1),

(A.2), with the chemical potentials ⌫, ⌫ coupling to currents normalized as in (A.4),

2
The charges pL, pR, (A.5), (A.6), are denoted by qL, qR in (4.14).
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by 1/|⌘(⌧)|6 for the bosons and the standard expression in terms of ✓ functions for the

fermions)), and we only need to track the zero mode contribution. This can be done in a

very similar way to our discussion of (�, �) in the previous section.

If y lives on a circle of radius r, the analog of (3.5) for it is

y = 2⇡r(w3�1 +m3�2). (4.2)

Thus, @y, @y are independent of z, like the derivatives of �, � in section 3. As there,

to evaluate the zero mode contribution to the partition sum, we need to plug (3.5), (4.2)

into the worldsheet action (2.8), evaluated at large �, and sum exp(�S{mi,wi}
) over all

(mi, wi), i = 1, 2, 3.

To see what this procedure gives, one can proceed as follows. The worldsheet La-

grangian for (�, �, y) that follows from (2.8) can be written as

L =
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⇤
(4.3)

where

h =
1

�� 4✏+✏�
(4.4)

is the value of (2.9) at � ! 1, and again, as in (3.1), we used a di↵erent normalization

than in (2.8).

We split the path integral into the contribution of the non-zero modes and that of

the zero modes of all the fields. As mentioned above, the only part of the computation

that depends on the couplings and moduli is the zero mode contribution of the three fields

(�, �, y) in (4.3). To decouple them, we introduce the auxiliary complex parameter �, and

rewrite (4.3) as
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. (4.5)

Note that here � is not a worldsheet field, and the integral over it is a regular (complex)

Gaussian integral. This is related to the fact that for the zero modes, all the derivatives of

fields in (4.3), (4.5), are independent of z. They do depend on (mi, wi) (3.5), (4.2), and as

mentioned above, one needs to sum exp(�S) over all the saddle points (see appendix A).

It is convenient to rewrite (4.5) as
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(4.6)

12



One can check explicitly that the integral formula gives the correct 
spectrum of the deformed CFT (by construc[on), and is modular 
invariant:

The first line of (4.6) is a universal expression, which depends on the couplings and the

moduli of the worldsheet and target space tori, but not on the particular CFT that is

being deformed. The dependence on the CFT comes from the second line of (4.6). It gives

rise to the partition sum of the undeformed CFT with chemical potentials for U(1)R and

U(1)L proportional to � and �, respectively.

Indeed, comparing the second line of (4.6) to (A.14), we see that the path integral

over y gives rise in this case to the partition sum Zinv(⌧, ⌧ ,�,�) defined in (A.7), (A.11),

(A.13) (with  = 1, the appropriate value for this case). Putting this together with the

first line, which is evaluated as in section 3, we have
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e
�SinstZinv(⌧, ⌧ ,�,�), (4.7)

where
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✓
h@�@� +

1

4✏+✏�h⌧2
2

(� � 2i⌧2✏�h@�)
�
� � 2i⌧2✏+h@�

�◆
. (4.8)

Recall that, as in section 3, to evaluate (4.7), (4.8), we need to plug (3.5) into them and

perform the sum over (m1,m2;w1, w2), subject to the constraint N = 1 (3.10).

Since the integral (4.7) is modular invariant, we can trade it for an integral over the

upper half plane, while restricting the sum over (mi, wi) to the single value (3.13). For

this case, one has

@� = �i
(⌧ � ⇣)

2⌧2
, @� = i

(⌧ � ⇣)

2⌧2
. (4.9)

Plugging (4.9) into (4.7), (4.8), we find the final result

Z(⇣, ⇣,�, ✏+, ✏�) =

Z

H+

d
2
⌧

Z

C

d
2
� I(⇣, ⇣, ⌧, ⌧ ,�,�)Zinv(⌧, ⌧ ,�,�), (4.10)

where
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2

e
�
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�
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(�+✏�h(⌧�⇣))(��✏+h(⌧�⇣))

. (4.11)

Equations (4.10) and (4.11) are one of the main results of this paper. One can perform a

number of checks on them.

(1) It is straightforward to verify that the partition sum is modular invariant, with the

couplings transforming as expected

Z

✓
|c⇣ + d|

2
h,

✏+

c⇣ + d
,

✏�

c⇣ + d
,
a⇣ + b

c⇣ + d
,
a⇣ + b

c⇣ + d

◆
= Z(h, ✏+, ✏�, ⇣, ⇣). (4.12)
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The string construction is also useful for calculating the partition 
sum for the symmetric product of deformed CFT’s. It gives the 
following. Define

where 

is the action of a map from the worldsheet torus with modulus 𝜏 to 
the target space torus with modulus 𝜁, and                                      is 
the winding number of the map.  

results of [5] is a TT deformed CFT of (8). In order to generalize the discussion to (3) we

need to do two things:

(1) Look at the coe�cient of ⌘N with N > 1 in the partition sum Z
(g).

(2) Keep only the contributions of states with total winding number N , which are com-

binations of states of positive winding. Examples of contributions that should be

included are those of single string states with winding N , two string states with wind-

ings N � 1 and 1, etc. Examples of states that shouldn’t contribute are two string

states with windings N + 1 and �1, or N and 0, etc.

To achieve that, we consider the modified partition sum

⌅(⇣, ⇣,�, ⌘) ⌘ exp

"
1X

N=1

⌘NZN (⇣, ⇣,�)

#
(16)

which di↵ers from Z
(g) in that the sum over N runs only over the positive integers, rather

than over all integers.

Our discussion above leads to the conjecture that expanding (16) in a power series in

⌘,

⌅(⇣, ⇣,�, ⌘) = 1 +
1X

N=1

⌘N⌅N (⇣, ⇣,�), (17)

the coe�cient of ⌘N , ⌅N (⇣, ⇣,�), is the partition sum of the symmetric product (3) of N

TT deformed CFT’s of the form (8).

The argument above is a “physics proof” of the formula for the partition sum of (3),

but one can prove directly that it is correct, by using results of previous work [21]. To do

that, we examine the partition sum ZN in (16),

ZN (⇣, ⇣,�) =
⇣2
2�

X

mi,wi| N

Z

F

d2⌧

⌧22
e�S{mi,wi}Z?(⌧, ⌧). (18)

It is convenient to assemble (wi,mi) into a matrix

✓
m2 m1

w2 w1

◆
. (19)

The sum in (18) is restricted to matrices (19) with determinant N (see (15)). Each such

matrix can be written uniquely as one of the matrices

TN =

⇢✓
a b
0 d

◆
, a, b, d 2 Z ad = N, 0  b < d

�
(20)
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where F is a fundamental domain of the modular group, Z? is the torus partition function

of the CFT M (8), and

S{mi,wi} =
⇡(w2⇣ + w1)(w2⇣ + w1)

2�⌧2

✓
⌧ �

m2⇣ + m1

w2⇣ + w1

◆✓
⌧ �

m2⇣ + m1

w2⇣ + w1

◆
(12)

is the action4 of a linear map from the worldsheet T 2 with modulus ⌧ to the spacetime T 2

with modulus ⇣.

The partition sum (11) includes contributions from all perturbative string states in

the theory. To be more precise, the quantity

Z
(g)(⇣, ⇣,�) ⌘ exp Z(⇣, ⇣,�) (13)

is the trace of e��H+i�p, with � / ⇣2, and � / ⇣1, over all string states, including multi

string states constructed out of single string states of arbitrary winding (positive and

negative).

To make the connection with (3), we would like to restrict the sum to run over multi

string states with total string number N , constructed out of single string states with

positive winding. To do that, we follow [1] and turn on a B-field, eB, on the T 2 (10). The

partition sum (11) becomes now a function of eB as well as the other variables, and in a

suitable normalization of eB, is periodic with period one, Z(⇣, ⇣,�, eB + 1) = Z(⇣, ⇣,�, eB).

As discussed in [1], it can be written as

Z(⇣, ⇣,�, ⌘) =
1X

N=�1

ZN (⇣, ⇣,�)⌘N , (14)

where ⌘ = e�2⇡ieB and

N = w1m2 � w2m1. (15)

The integer N (15) is the winding number of the map from the worldsheet torus to the

target space one. To restrict the trace to states with a given total string number N , we

need to pick out the coe�cient of ⌘N in Z
(g) = exp Z as is defined in (13) and (14). There

is an infinite number of such contributions, due to the fact that the winding number N

given by (15) can take both positive and negative values.

In [1] we focused on the contribution Z1 (denoted by Z in (1)) to the partition sum

(14). This is the partition sum of single string states with winding one, which via the

4 Equation (12) is a re-writing of (3.6) of [1].
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The proof relies on our construc[on and on the fact that

where  𝑇j is the Hecke operator 

associated with the matrix 

multiplied from the left by an element of SL(2, Z) [21]. We can use this to replace the sum

over (wi, mi) in (18) by a restricted sum over matrices of the form (20), and trade the sum

over elements of SL(2, Z) multiplying these matrices for an extension of the integration

region to the upper half plane. This “unfolding” is a generalization of the one done in [1]

for N = 1.

Using it and plugging in the values (20) into (18), we find that

ZN (⇣, ⇣,�) = TN

⇥
Z1(⇣, ⇣,�)

⇤
(21)

where the Hecke operator TN acts as

TN [Z1(⇣, ⇣,�)] =
1

N

X

a,b,d

Z1

✓
a⇣ + b

d
,

a⇣ + b

d
,
�

d2

◆
(22)

and the sum over (a, b, d) runs over the values in (20). Equation (22) is the equivalent of

(3.5) in [21].

Plugging (21) into (16) and using (17) we see that the result we got from our physics

arguments agrees with that obtained in [21] by studying the contributions to the partition

sum5 of the various sectors of the symmetric orbifold.

Some comments are useful at this point:

(1) The full partition sum (11), and its generalization to non-zero B-field, (14), is modular

invariant (2). Since the B-field does not transform under modular transformations of

the target space torus (see e.g. [22]), the Fourier components (14), (18) are modular

invariant as well, and the same is true for ⌅n (17).

(2) We presented the discussion in the context of string theory on AdS3, where the unde-

formed CFT M that enters the discussion is (8), and its partition sum is Z? in (11).

As in [1], we can use the universality of T T deformed CFT to generalize the result to

arbitrary unperturbed CFT’s, by replacing Z? in (11) with the partition sum of the

undeformed CFT Zcft.

Our main conclusion is that the partition function of the symmetric product SN
Mµ

is given by ⌅N defined via (16) and (17). It may be useful to make this quantity more

explicit for low values of N and to highlight its properites. For N = 2, we have

⌅2 =
1

2
Z

2
1 + Z2 . (23)

5 The authors of [21] studied the elliptic genus rather than the partition sum, but the di↵erence

is not important for our purposes.
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Plugging (21) into (16) and using (17) we see that the result we got from our physics

arguments agrees with that obtained in [21] by studying the contributions to the partition

sum5 of the various sectors of the symmetric orbifold.

Some comments are useful at this point:

(1) The full partition sum (11), and its generalization to non-zero B-field, (14), is modular

invariant (2). Since the B-field does not transform under modular transformations of

the target space torus (see e.g. [22]), the Fourier components (14), (18) are modular

invariant as well, and the same is true for ⌅n (17).

(2) We presented the discussion in the context of string theory on AdS3, where the unde-

formed CFT M that enters the discussion is (8), and its partition sum is Z? in (11).

As in [1], we can use the universality of T T deformed CFT to generalize the result to

arbitrary unperturbed CFT’s, by replacing Z? in (11) with the partition sum of the

undeformed CFT Zcft.

Our main conclusion is that the partition function of the symmetric product SN
Mµ

is given by ⌅N defined via (16) and (17). It may be useful to make this quantity more

explicit for low values of N and to highlight its properites. For N = 2, we have

⌅2 =
1

2
Z

2
1 + Z2 . (23)

5 The authors of [21] studied the elliptic genus rather than the partition sum, but the di↵erence

is not important for our purposes.
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results of [5] is a T T deformed CFT of (8). In order to generalize the discussion to (3) we

need to do two things:

(1) Look at the coe�cient of ⌘N with N > 1 in the partition sum Z
(g).

(2) Keep only the contributions of states with total winding number N , which are com-

binations of states of positive winding. Examples of contributions that should be

included are those of single string states with winding N , two string states with wind-

ings N � 1 and 1, etc. Examples of states that shouldn’t contribute are two string

states with windings N + 1 and �1, or N and 0, etc.

To achieve that, we consider the modified partition sum

⌅(⇣, ⇣, �, ⌘) ⌘ exp

"
1X

N=1

⌘N
ZN (⇣, ⇣, �)

#
(16)

which di↵ers from Z
(g) in that the sum over N runs only over the positive integers, rather

than over all integers.

Our discussion above leads to the conjecture that expanding (16) in a power series in

⌘,

⌅(⇣, ⇣, �, ⌘) = 1 +
1X

N=1

⌘N⌅N (⇣, ⇣, �), (17)

the coe�cient of ⌘N , ⌅N (⇣, ⇣, �), is the partition sum of the symmetric product (3) of N

T T deformed CFT’s of the form (8).

The argument above is a “physics proof” of the formula for the partition sum of (3),

but one can prove directly that it is correct, by using results of previous work [21]. To do

that, we examine the partition sum ZN in (16),

ZN (⇣, ⇣, �) =
⇣2

2�

X

mi,wi| N

Z

F

d2⌧

⌧2
2

e�S{mi,wi}Z?(⌧, ⌧). (18)

It is convenient to assemble (wi, mi) into a matrix

✓
m2 m1

w2 w1

◆
. (19)

The sum in (18) is restricted to matrices (19) with determinant N (see (15)). Each such

matrix can be written uniquely as one of the matrices

TN =

⇢✓
a b
0 d

◆
, a, b, d 2 Z ad = N, 0  b < d

�
(20)
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Discussion

So far, most of the concrete results on these theories had to do with 
their spectrum. It is interesting to consider other observables, such 
as deformed correlation functions, entanglement entropy, etc. For 
these, the string theory construction is not directly applicable, since 
as we discussed earlier, the string deformation only agrees with 𝑇"𝑇
and generalizations for the spectrum in the long string sector. 



Nevertheless, these deformations are closely related, so it is 
interesting to compute such observables in string theory. This was 
done, for correlation functions in AGIK (2017), and for the EE in CGIK 
(2018).

Some insights were obtained from these analyses, but more work is 
needed.

The main conclusion from the study of these theories so far is that 
they are very rich and understanding them better is likely to teach us 
a lot about field theory, string theory and holography. 


