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Introduction

The recent progress on TT deformed CFT’s and related systems
started as work on 2d QFT’s, but from the beginning there were
hints that it is related to string theory.

For example, these theories have a Hagedorn spectrum in regions
in coupling space where they make sense. Also, the free field
Lagrangian L = 0X'0X'i=1,..,d, turns after TT deformation
to the Nambu-Goto Lagrangian for a stretched string in d + 2
dimensions.



It is interesting to understand this relation further. The work | will
describe today is intended to do that by using holography.

It leads to a rich interplay between the dynamics of deformed
CFT’s which do not approach an RG fixed point in the UV, and
string theory in geometries that are not asymptotically AdS.



The insights flow both ways:

» String theory gives rise to an efficient tool for calculating
observables such as the spectrum and torus partition sum of
deformed CFTs, and provides hints for the behavior of others,
such as correlation functions and entanglement entropy.

» Understanding the deformed CFTs leads to new holographic
dualities in string backgrounds such as asymptotically linear
dilaton spacetimes, that figure prominently in string theory as
geometries near NS5-branes and singularities of Calabi-Yau
manifolds.



» Understanding these dualities leads to a relation between
properties of the spectrum of the deformed CFT’s and
properties of the dual geometries.

> It also provides new tests of AdS;/CFT, duality.



Today, | will mainly discuss two technical problems from the
above point of view. The starting point of the analysis will be a
CFT, with a left-moving current J and a right-moving current J.

We will deform the Lagrangian of the CFT by
SL =tTT + u, JT + u.T]

and ask what is the spectrum of the deformed theory and
what is its torus partition sum.



Of course, once we know the spectrum, we in principle know the
torus partition sum. Indeed, for a torus of size R and modulus ¢ =
(1 + i{,, the partition sum can be interpreted as the trace
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where the trace runs over all the eigenstates of the Hamiltonian
and momentum operator.



However, it is hard to do anything useful with the resulting
expression. E.g., one knows on general grounds that the partition
sum should be modular invariant, with R transforming non-
trivially, but it is hard to see this using the explicit formula.

It is also hard to use this expression to study the partition sum on
small tori.

So, it is useful to have a more user friendly expression for the
partition sum, and string theory provides one.



The basic ideas we will use are the following:

¢ Universality of the spectrum: from the definition of the deformed

theories, it is clear that the deformed energies have the form

gn — S(Envpna qnagnata ,LL:|:)

Here n labels the different states, &,, is the deformed energy, E,,
is the corresponding undeformed energy, and the other variables

are the momentum and charges, and the coupling.



The key point is that the function £ is universal, i.e. the deformed
energies are given by a universal function of the undeformed
charges, and the couplings.

Thus, if we have a class of examples of these theories that is

understood, we can use it to find the universal function &£, and use
it for any other deformed CFT.

“» AdS;/CFT, provides precisely such a class of examples, via the

dynamics of long strings in AdSs3. Therefore, we can read off
from it the function £.



A very similar story can be told for the torus partition sum: if we
know the torus partition sum Z(d, (_,R) as a functional of the
undeformed partition sum Z.¢.(7,7) for a class of examples, the
resulting expression must be true for any undeformed CFT.

Again, AdS;/CFT, provides precisely such a class, and gives an
expression for the partition sum which is guaranteed to be general
due to universality.

The goal of the rest of this talk is to explain these comments and
the resulting expressions for the spectrum and partition sum. At
the end, | will comment on other observables.



Aspects of string theory on Ad S5

The worldsheet theory for a string propagating on Ad S5 is described
by a WZW model on the SL(2,R) group manifold. It is invariant under
left and right moving SL(2,R) current algebras at level k. This level is

related to the radius of curvature of AdSs, Rygs = Vkls .

The current algebra plays an important role in analyzing the
spectrum, symmetries, and correlation functions of this theory.



The AdS/CFT correspondence relates string theory on AdS5 to a 2d
CFT living on the boundary. For pure NS H-flux, this theory has the
following properties:

» It has an SL(2,R) invariant vacuum, the NS vacuum in the dual CFT.
In the bulk, it corresponds to Ad S5 in global coordinates. The
Ramond vacuum of the boundary CFT corresponds in the bulk to
the M=0 BTZ black hole.



» In the NS sector, the spectrum of excitations includes discrete
states followed by a continuum of long string states. The

continuum starts at dimension ~ g (MO 2001). In the Ramond

sector one finds a continuum of long strings above a gap of order
1

P



» The theory on a single long string in global AdS; was analyzed in
SW 1999. In string theory on AdS3X N , it is described by a
sigma model on /\/lé? = IR, x M . The central charge of this
theory is ¢y = 6k.

L
> The theory on Ry has a linear dilaton with slope Q) = (k — 1) %

> Example: for string theory on AdS;xS3xT*, which has (4,4)

superconformal symmetry, /\/lé'l;) =Ry x SU(2)k x T*.



> The effective string coupling on the long string, gs ~ exp(Q1¢),
increases as the string moves towards the boundary. Thus, the
physics of long strings is strongly coupled there. This observation

plays an important role in studying the theory (GKRS 2005).



An interesting open problem is what is the boundary CFT dual to a
given AdS3; vacuum. There is strong evidence for the conjecture
that long strings are described by the symmetric product CFT
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Some of the evidence for this is:



» Matrix string theory logic (Motl, DVV, 1997): if the theory living
on a single string winding around a circle is M, the symmetric
product theory MY /Sy provides a description of the Hilbert
space of N free strings. Untwisted sector states describe
N strings each winding once around the circle; Z,,, twisted states
describe strings with winding w; general states of n strings with
windings (wq, -+, wy,) are described in terms of conjugacy
classes of the symmetric product.

The long strings on AdS; are weakly coupled in a wide range of
positions in the radial direction, so the symmetric product
description should be a good description of their dynamics in this
regime.



» Spectrum of long strings: for example, in the Ramond sector
(massless BTZ) one finds
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R=radius of boundary circle; N,_ g = left and right-moving excitation
levels; s « radial momentum of the string.



. o) . .
To make contact with M /Sy, one notes that in a symmetric
product CFT, states in the Z,, twisted sector have energies
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w = 1 corresponds to the original CFT. For every state with
dimension hq in that CFT, there is a state in the Z,,, twisted
sector, with dimension h,, given by

The string spectrum on the previous page has the same form.



» Another piece of strong evidence for the long string CFT comes
from the study of irrelevant deformation such as TT , to which
we turn next.



Some solvable irrelevant deformations
of string theory on AdS;

String theory on AdS; always contains an operator D(x, X), found in
KS 1999, that has many properties in common with the operator TT
in the boundary CFT. In particular, it is quasi-primary and has the
same OPEs with the stress-tensor as TT. However, while TT is a
double trace operator, D(x, X) is a single trace one. In this context
this means that D (x, X) corresponds to a vertex operator integrated
over the worldsheet, while TT is a product of such integrated vertex
operators.



It is natural to ask what happens when we add the operator D to the
Lagrangian of the boundary CFT. One can show (IGK 2017) that this is

the same as adding to the worldsheet Lagrangian
SL=X"J

Where /™ is the left-moving SL(2, R) current, whose zero mode gives
the boundary Virasoro generator L_4.



Already at this level, we see a number of parallels between the
deformation corresponding to D and TT in the spacetime CFT.

» The coupling has boundary dimension (-1,-1) in both cases.

» Both are solvable. In the case of D, this is related to the fact that
while the deformation is irrelevant in the boundary CFT, it is

exactly marginal on the worldsheet. Being a current-current
deformation, it is solvable.



To understand better the relation between the two types of
deformations, we appeal to our discussion of string theory on
AdS3 above. In particular, we would like to understand the action
of this deformation on long string states.

We saw that these states are described by a symmetric product
CFT. Thus, we need to understand the role of the coupling A in that
CFT.



Some useful observations:

** Local single trace operators in string theory correspond in the
symmetric product to operators in the block, symmetrized over
all copies. Thus, we can write

where D; is a dimension (2,2) quasi-primary operator living in

the j’th copy of /\/l(").



** A natural candidate for Djis D; = TJY_"] In general, there could
be other operators with the right properties, but since the
operator D is universal, the above identification is likely. In fact
one can prove that it is correct, by showing that in the string
theory there in general aren’t other operators with the right
properties.

*»* If the boundary CFT has (2,2) supersymmetry, one can show
that D is a top component of a superfield, whose bottom
component has dimension (1,1), and corresponds (by similar

arguments) to Y J;/; .



Therefore, we conclude that turning on the single trace coupling A
in string theory on AdS; corresponds in the symmetric product

L1 L
Mg 1S
to a TT deformation in the block.
In particular, the energies of long string states must be deformed

at finite 1 in the same way as they would be via the above TT
deformation.



The above discussion has a generalization that involves Kac-Moody
currents. As before, we start with string theory on AdS3;X N, but
now we take N to contain a left-moving conserved current K (z).

From this data, one can construct a holomorphic conserved current
in the boundary CFT, K (x). Following the discussion of TT before,
we can deform the boundary theory by the double trace operator
K (x)T (%), or by the dimension (1,2) single trace operator A(x, X),
which corresponds in the bulk string theory to the worldsheet
deformation

0L =NK(z)J



Many of the comments above are valid here as well. In particular:

¢ While the single trace deformation by A(x, Xx) is irrelevant in the
boundary CFT, it is truly marginal (and solvable) in the bulk
string theory.

** In the symmetric product theory of the long strings, it
corresponds to a K@rmaﬁon of the block of the symmetric

product, A(x,X) = K;(x)T;(X) .
i=1

** Thus, one can use the string theory construction to calculate the
deformed energies in KT deformed CFT.



Another prediction of the string theory picture is that if the dual
CFT has left and right-moving currents K (x), K(X), we can add to
the boundary Lagrangian an arbitrary combination of the single
trace TT,KT,TK couplings and get a solvable theory. On the
worldsheet, this corresponds to studying deformed Lagrangians of
the form

3L=AN"J +AK(@Z)JI +ANIK

Since the perturbation is truly marginal and has a current-current
form, the theory remains solvable for all values of the couplings.



Why would we want to consider the theory for general couplings?

» In general, to better understand any theory, it is useful to
understand all its deformations.

» Two special cases that were already considered are single trace
TT, ' = 1" =0, and single trace KT , A = 1" = 0. In the latter,
it was found that the energies are complex for all real values of
the couplings. Therefore, to construct a sensible theory that
includes the couplings A, 1", one presumably needs to turn on A
as well.



» In the cases that were already considered, there was an
interesting correspondence between the appearance of complex
energies in the deformed field theory, and the appearance of
pathologies, like closed timelike curves and curvature
singularities in the deformed bulk geometry. It is interesting to
extend the discussion to a wider class of theories, to see what
features of the geometry are related to the appearance of
complex energies in the field theory.



Therefore, we will next:

1. Determine the deformed background at a general point in the
three dimensional coupling space discussed above.

2. Determine the spectrum at a general point in coupling space
using the ideas described above.

3. Compare the conditions for the spectrum to be real to those
for not having pathologies in the dual bulk geometry.

4. Compute the corresponding torus partition sum.



The deformed bulk geometry

Consider first the sigma model on AdS3xS* (the S? gives the left
and right-moving U(1)’s that we will need for the construction). In
Poincare coordinates, one has

S = % /dQZ (ékz@gb + e22950~ + %8y5y)



The exact deformed action takes the form

2¢.h . — 2¢_h  — f-1h  _
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where

= =A+e72°,

h™ =A—4010+ 629

€4 provide a parametrization of the space labeled by A', 1" above.



To study the geometry, it is convenient to KK reduce this background
on the circle labeled by y. This gives

L1

ds? =k do? + hdydy — fh (Cldy + Cdy)”

e?® =g2e **h ,
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The spectrum

We start with the massless BTZ background
L = 2k(0¢pd¢p + *?070)

where the boundary coordinates are identified as follows:

Y =Y1+Yo, Y=VY1—VYo; vi Lyl + 2nR



Since we are interested in long strings propagating at large ¢, it is
convenient to rewrite this in the Wakimoto form

_ L 9 _
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where we have rescaled some of the fields. This description is free
at large @, which makes it easier to analyze the spectrum. One finds
the spectrum quoted earlier in this talk.



Now we turn on the general current-current perturbations discussed
above. Using standard techniques one finds that the energies
change as follows:

AN
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The hatted variables are dimensionless couplings. For € = 0 one
finds the familiar TT spectrum. Turning on only €., gives the JT one.



Forw = 1, i.e. for states in the block of the symmetric product, one
has

1 L | L 1 L
ER:EL—I—ER:n—I—ﬁ —B— B?—-4AC
with
1|_| , L |
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A few comments on these formulae:

 The quantity C appearing in the square root is non-negative.
Therefore, if A < 0, all energies are real. This is a generalization
of known constraints. For €4 = 0 it is the statement that the TT
coupling must be positive. For A = 0 it is the statement that
complex energies appear for all real é;.

* For a given negative A, the high energy spectrum has Hagedorn
entropy, S = fyE, with inverse Hagedorn temperature

C|A
5|_| :47TR %

In particular, By = 0 as |A| = 0. The theory has multiple scales.



* The limiting theory obtained as |A| — 0 is interesting. The
Hagedorn temperature vanishes. The behavior of the energies
depends on the sign of B. States with B > 0 decouple (their

energies go to infinity) . States with B < 0 survive; their energies

2C

approach ER = n + B

* For fixed charges, the entropy has, roughly, Cardy behavior, but
the coefficient of VE depends on the charges (through B). This is
an intermediate behavior between Cardy and Hagedorn. Our
construction provides a bulk dual to this theory.



Torus partition sum

As mentioned above, now that we have the spectrum of the theory,
in principle we can compute the partition sum by explicitly

evaluating the trace. However, using our construction one can get a
more useful formula.



The strategy is as before:

» For the large class of examples arising from long strings in AdSs,
we compute the partition sum of the long strings by
compactifying Euclidean time on a circle. This gives the partition
sum of the deformed CFT as a functional of that of the
undeformed CFT.

» Using universality, the expression one gets must be true for any
undeformed CFT.



Results:

For TT deformed CFT one finds

_ C d?T w2 _
Z(C,C,A)Zﬁ ; 7—22@ s | T—¢ Zoii (7, 7)
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where ( is the modulus of the target space torus, T the modulus of
the worldsheet one, H_.the upper half plane, and A the TT
coupling evaluated at the KK scale.

(see also Dubovsky et al)



For the general deformed CFT with all three couplings turned on:

Z(CaZa)\ae—i—a / d2 /d2 » T T XaX)ZinV(Ta ?7X7Y)
Hoy

where the kernel of the integral I is
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One can check explicitly that the integral formula gives the correct
spectrum of the deformed CFT (by construction), and is modular
invariant:

L1
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The string construction is also useful for calculating the partition
sum for the symmetric product of deformed CFT’s. It gives the
following. Define

_ d?
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where
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is the action of a map from the worldsheet torus with modulus 7 to
the target space torus with modulus ¢, and N = wimy —womjy is
the winding number of the map.



Then define

L1 L
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One can show that expanding

_ _
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=~ (Z, T, \) is the partition sum of the symmetric product of N TT
deformed CFTs.



The proof relies on our construction and on the fact that

ZN(Ci Z’ >‘) — TN [Zl(C! Z’ A)}

where T) is the Hecke operator
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Discussion

So far, most of the concrete results on these theories had to do with
their spectrum. It is interesting to consider other observables, such
as deformed correlation functions, entanglement entropy, etc. For
these, the string theory construction is not directly applicable, since
as we discussed earlier, the string deformation only agrees with TT
and generalizations for the spectrum in the long string sector.



Nevertheless, these deformations are closely related, so it is
interesting to compute such observables in string theory. This was
done, for correlation functions in AGIK (2017), and for the EE in CGIK

(2018).

Some insights were obtained from these analyses, but more work is
needed.

The main conclusion from the study of these theories so far is that
they are very rich and understanding them better is likely to teach us
a lot about field theory, string theory and holography.



