


Propagation on the Earth



Strong transition if there is a harmonic modulation of density profile

P

V. Ermilova ,V. Tsarev, V. Chechin,  
Krat. Soob. Fiz. # 5, 26, (1986) 

n (x) = <n> + n1 cos wd x

Parametric resonance condition:

k wd = Dm(<n>) ,  k = 1, 2 …  

is frequency  of oscillations for 
the average density

Without modulations

x

Dm(<n>) =           [(cos2q – 2VE/Dm2)2  + sin22q ]½    Dm2

2 E

Realized in astrophysical objects?



``Castle wall profile’’
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Parametric oscillations
E. Kh. Akhmedov , 1988

``Castle wall profile’’
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In the Earth
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MSW-resonance
peaks 1-2 frequency

1 - Pee

Parametric peak
1-2 frequency

MSW-resonance
peaks 1-3 frequency

Parametric 
Ridges due to
1-3 frequency
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Oscillograms: Lines 
of equal probability 
in the  E – qz plane

ne  nm + nt

Determination of 
neutrino mass ordering 
With ORCA, PINGU 



IC86, 2011 – 2012, 343,7 days, 
20,145 muon events 
(reconstructed tracks) with
E = 320 GeV – 20 TeV

About 4 times bigger 
statistics is available

M.G. Aartsen et al, 
(IceCube Collaboration)
1605.01990 (hep-ex)

Resonance 
enhancement
of oscillations

parametric 
enhancement



Low energies 
higher resolution
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(phase transitions in 
silicate minerals)

liquidsolid

Fe

Si

PREM model A.M. Dziewonski
D.L Anderson 1981

Re = 6371 km



Incoherent fluxes of mass states arrive at the Earth from 
the Sun or SN. They split (decompose) into eigenstates in matter 
and oscillate.    

Mixing of the mass states in matter

Umass = UPMNS
+ Um

For the 1-2 mixing 

e sin 2q12

(cos2q12 - e )2  + sin22q12
sin 2q‘ = = e sin 2q12

m

In low density regime e determines smallness (size) of effects

e =            = 0.03 E10 r2.6
2V E 
Dm21

2

flavor mixing 
matrix in matter

c13 = cos q13

sin 2q‘ ~ V

of low energy 
neutrinos



n1 ne

Uk,k-1 - describes change of basis of eigenstates between k and k-1 layers 

S = Um
n Pk DkUk,k-1

0   1   2   3                                      n-1  n

Layers with slowly changing 
density and density jump

flavor mixing matrix,  
at the detector     

layers

Evolution matrix (matrix 
of transition amplitudes)

Dk - describe the adiabatic evolution within layers: 

Dk = diag (e         ,  e         )  -0.5ifk fk =  dx(H2m - H1m) adiabatic phase
acquired in k layer

Uk,k-1 = U(-Dqk-1 )

Dqk-1 -change of the mixing angle in matter after k-1 layer

0.5ifk

A. Ioannisian, A. Smirnov, D. Wyler,  
Phys.Rev. D96 (2017) no.3, 036005 
arXiv:1702.06097 [hep-ph] 



P1e ~ c13
2 cos2qn

f + c13
2sin2qn

f  Sj = 0 ...n-1 sinDqj cos fj
after

initial wave 
without density 
jumps

the amplitude of wave: c13
2sin2qn

f  sinDqj

~ Dqj

superposition 
of waves

The lowest order plus waves emitted from different jumps 

sum over 
density 
jumps

total phase 
acquired after 
jump j

sin Dqj = c13
2sin2q12 DVj

E 
Dm21

2



Approximate  (lowest order in e) result

Uk,k-1 = I – is2 sin Dqk-1

~Inserting this expression into formula for S and taking the lowest 
order terms in sinDqk-1 ~ e

P1e = |Se1|
2 ~ cos2qn

f + sin2qn
f Sj = 0 ...n-1 sinDqj cos fj

after

sum over
density 
jumps

total phase 
acquired after 
jump j

the 1-2 angle
in matter  

near detector

sinDqj ~ c13
2sin2q12 DVj

E 
Dm21

2 DVj - jth density jump

for uniform
sphere

**



n1
ne

0   1   2   3                                      n-1  n

A. Ioannisian, A. Smirnov, 
D. Wyler,  Phys.Rev. D96 
(2017) no.3, 036005 
arXiv:1702.06097 [hep-ph] 

dip: cancellation 
of waves

nadir angle

co
re

ADN =           - 1
N (h) 

D

Day –Night asymmetry

Interference of waves

Integration above 11 MeV



Consequence of finite energy 
resolution /reconstruction function



SK Collaboration (Abe, K. et al.) 
arXiv:1606.07538 [hep-ex] 

no enhancement 
for core crossing 
trajectories 

SK-IV solar zenith angle dependence

ADN = -3.3  +/- 1.1 %

oscillatory 
pattern dip

Explained by 
the attenuation 
effect

Generic features:



freg = - ½  sin22q12 dx V(x) sin fm(x xf) 

xf

x0

For potential with jumps  explicit integration in freg reproduces 
the result of  sum of waves emitted from the jumps 

where the phase acquired from the point x to the final point of 
trajectory

Matter effect (regeneration factor) 

freg = P1e - P1e
0 = P1e - cos2q12

determines the day-night asymmetry

In the integral form:

fm(x xf) (E)  =    dx D12
m(x)

xf

x

A. Ioannisian and A Y S, 
PRL 93, 241801 (2004), 
hep-ph/0404060



latt = ln

ln is the oscillation length

Sensitivity to remote structures 
d  > latt is suppressed

The better energy resolution, 
the deeper structures can be seen

<freg > = ½  sin22q dx F(xf - x) V(x) sin fm(x xf) 
xf

x0

<freg > =   dE’ R(E, E’) freg(E’)  

Integration with the energy resolution function R(E, E’): 

Attenuation factor

Gaussian R(E, E’)  
with width sE

Attenuation length

E
psE

sE =  2      1                0.5 MeV

E = 11 MeV

A. Ioannisian, A. Y. Smirnov,   
Phys.Rev.Lett., 93, 241801 (2004),   
0404060 [hep-ph] 

F(d)

latt

changing order of integration



A.N. Ioannisian,  A. Yu. Smirnov 
Phys.Rev. D96 (2017) no.8, 083009 
arXiv:1705.04252 [hep-ph] 

Effect of remote structures does not disappear completely. 
Even for very  large distances:  it survives at the e2 level 

n1  ne - channel Remote structures are attenuated by e2 ; 
near structures are seen at e 

ne  n1 - channel Near structures are attenuated by e2 ; 
remote structures are seen at e 

T-symmetry

Three layer case: first layer prepare 
incoherent state.  Attenuation happens. 
Applications for flavor – flavor transitions 

Info about remote structure is still somehow stored. 

ne  ne - channel



The oscillation phase acquired  
along the attenuation length: 

E
psE

f = 2p = 2p
latt

ln

Difference of phases with DE

Df = 2p
DE
psE

For DE = psE Df = 2p

integration over the energy 
resolution interval leads to 
averaging of oscillations 

Ad
P0

P1

Averaging – loss of coherence

P0  P1

converges to its projection 
onto  axis  of eigenstates Ad

A.N. Ioannisian,  A. Yu. S.
Phys.Rev. D96 (2017)  no.8, 
083009, 1705.04252 [hep-ph] 

latt is the distance over which 
oscillations observed with 
the energy resolution sE are averaged 



sE = 0.5 MeV

sE = 1  MeV

Relative excess of the night events
integrated over E > 11 MeV
Sensitivity of DUNE experiment 
40 kt,  5 years 

ADN = N – D 
D

A. Ioannisian, 
B. A.Y.S., D. Wyler

1702.06097 [hep-ph] 

core

dip

Small 
jumps

jumps



Nadir angle
But 0.1% effect

A. Ioannisian, AYS

Core mantle

sE /E ~ 0.2% latt ~ 104 km sE determined by the width 
of the  Be- line

Another possibility:  use high energy  (GeV scale) neutrinos





Oscillations 
inside the Earth

Collective flavor 
trasformation



Can it be coherent? 

nene

ne

ne

nb nb nb

nb

Z0
Z0

J. Pantaleone

Refraction in 
neutrino gases

nn

nbnb

ne

V =  2 GF (1 – ve vb ) nb

ne

ne

ne

nb

nb

u-channel

t-channel (p)

(q)

(p)

(q)

Momentum exchange = flavor exchange
 flavor mixing

elastic forward scattering
 coherent

velocities



ne

nb

nb

J. Pantaleone
S. Samuel
V.A. Kostelecky

ne

nt

ne

backgroundco
h
e
re

nt

projection

projection

|nib     = Fie  |ne + Fit  | nt

Coherence if the background 
is a mixture of flavor states:

na

Vet ~ Si Fie
*Fit 

Fit 

Fie
* 

for ith particle of background 

This generates  flavor non - diagonal potential

Fie  - (Fit -)  amplitude to find 
ne ( nt )  in  ith bkgr. neutrino 

also diagonal

|ne     = Fie* |nb + Fit* | na

Inverting

ne   + nb  nt + nbtransition

with  amplitude ~ Fie
*Fit and unchanged background

 summation over background neutrinos is coherent 



Contribution to the Hamiltonian in the flavor basis

Hnn =  2 GF Si (1 – ve vb ) 
|Fie|2

FieFit
*

Fie
*Fit 

|Fit|
2

Fie =  Pbe Fit = Pbtwhere  

Vn 2Vn e
if

2Vn e
-if         - Vn

Hnn = ½    

The Hamiltonian in symmetric form:

Vn ~  2 GF n(1 – ve vb) Pbe Vn ~   2 GF n(1 – ve vb)   PbePbt

ne

nt

The effective coupling constants in V include probabilities 

where



Vn ~ Vn
0 (1 – PB

et )  

- cos2q wp + Ve + Vn sin2q wp + 2Vn e
if

sin2q wp + 2Vn e
-if                 cos2q wp - Ve - Vn

H = ½  

Vn ~ Vn
0 PB

et (1 – PB
et )  

ne

nt

Neutrino 
potentials

PB
et (x) – effective transition probability of the background neutrinos   

Ve >>  Vn >> w

f = Arg [Fe Ft *] 

includes the vacuum contribution: wp = Dm2/2E and
usual matter potential Ve

In the central parts of collapsing star

if ne is produced



dx

(x, t) p, wpprobe neutrino

k - 3 momentum

k, wk
l

.

Production point -
the point of last 
inelastic collision

a = e, t  -flavor at the production 

Production region

l – length of trajectory from production 
(x0, t0) to interaction point (x, t) 

(x0, t0) 

(x, t), k and l determine (x0, t0) 

 (a, l, k)  characterize a given mode  

interaction point

.



Vn = dk dl  [Vn
e (k, l) - Vn

t (k, l)] (1 – Pet (k, l) )  

- cos2q wp + Ve + Vn sin2q wp + 2Vn e
if

sin2q wp + 2Vn e
-if                   cos2q wp - Ve - Vn

H = ½  

Vn eif = dk dl  [Vn
e (k, l) - Vn

t (k, l)] eif(k,l) Pet (k, l) (1 – Pet (k, l))  

Vn
a (k, l) =  2 GF nn

a (k, l) (1 – vp vk ) 

ne

nt

a = e, t

Potentials

where

nn
a (k , l) - number density of neutrinos emitted from (x0, t0)  

and arriving at the point (x, t) 

After integration



Vr(t) = Ve + Vn - cos2q wp + df‘/dt

sin2q wp + 2Vn e
if = V’ e-if’

Off-diagonal term: introduce real V’ and the phase f‘ as

Transformation of the fields

y = Uy’ U = diag (e 0.5 if’,  e-0.5if’ )

Vr(t)       V’ (t) 
V’(t)     - Vr(t)

Hamiltonian for y’ 

H = ½  

it does not change flavor probabilities.

V’ (t) is def. in (*) 

(*) 

Probe neutrino propagation in external neutrino potentials
(as in the case of NSI but) with non-trivial time dependence



d Fp

d t  

Evolution equation for the probe particle

i = H (Fib
x) Fp

x = ct – point along the np trajectory

Total Hamiltonian depends on the wave functions of all background 
neutrinos Fib

x which cross the probe neutrino trajectory in a point  x

To find Fib
x one needs to solve the corresponding evolution equation 

for each nib

i =  H (Fjb
y) Fib

d Fib

d t  y = ct along the nib trajectory

Here H depends on the wave functions of all background neutrinos 
Fjb

y which cross the nib trajectory in a point y

The equation should be integrated over y from the nib production 
point to  x

 Huge number of coupled equations



Stationary case: pattern 
does not depend on time

np nib

njb

x

y

Modes involved are 
characterized by (x0,  k,  a)
a = e, t -flavor at production
x0 - production point
k - momentum 

Specific limits of integration 
for each point 

Discretize parameters – numerical solutions 

Modes with the same set (x0, k, a) evolve in the same way





R. S. L. Hansen, A. Yu. S. 
1801.09751 [hep-ph] 

wp wk

bp
bk

sinbp

sinbk
Ab =  

Still coherent 
flavor exchange

Flux of collinear background neutrinos  no nn– interactions
in the flux

Background 
neutrinos

Probe 
neutrino

Vn = Vn
0 (1 – 2 Pet)  Vn = Vn

0 Pet (1 – Pet )  Vn
0 =  2 GF nn (1 – vp vk ) 

fm = Arg [Fe Ft *] = Ab Dm tPet = sin22qm sin2½ Ab Dm t  

level splitting
Potentials – periodic functions 
of time  parametric effects

ne
ne

Dm2

2 E 
w =



Vr and  V’  as functions of the time  for 
different values of x.   Ab = 1.1001, wp = wk

Vn
0

Ve
x =

H = ½  
Vr(t)       V’ (t) 
V’(t)     - Vr(t)

Combining different terms in the
Hamiltonian (in rotating frame) 

Ve = 103 wk

including usual matter potential
Ve which dominates

Neutrino to matter potential 
ratio 

and vacuum terms



Dependence of the depth of 
parametric oscillations on wk /wp

Vn
0 = 100 wp

Ab = 1.1001, Vn
0 = 100 wp

G / wk = sin 2q x (1 + Ab ) 

Width of the resonance

- cos2q wp + Ve + Vn
0 = Ab Dm

Frequency of 
oscillations of the 
probe neutrino
determined by the 
averaged density

Frequency of 
modulations
of the 
potentials

Parametric resonance condition:

proportional to x



Far from source, diverging flux,  
nn interactions in the flux are 
negligible.  

External probe neutrino

The angle between the probe 
and flux neutrinos changes  
Ab and neutrino density change

This case is reduced to the case 
of varying density

Realization of simplified 
example

neutron 
star

np

nb





Above the neutrinosphere collective effects can be completely 
described by evolution of individual neutrinos in external potentials 
produced by usual matter and other neutrinos.

Flavor diagonal Vn(t) and flavor changing Vn(t) potentials are generated

All possible collective oscillations effects are consequences of 
particular time dependences of the potentials

The problem is reduced to determination of time dependences 
of the potentials 

Consider effects of inelastic interactions in certain approximations



Since it is not feasible to perform explicit computations of these 
potentials, the approach is  

Extract certain properties of the potentials from their general 
expressions 

Assumptions and conjectures on the time dependence of 
potentials can be introduced

Some integrations in the potentials  which correspond to averaging 
over energy or over neutrino production point can be done 
explicitly (approximations) using  general form of potentials

Construct  potentials using various limits, existing numerical 
results,  simplified solvable examples 

**



Potentials are integrals of oscillation amplitudes 
which have oscillatory dependence on time.  

Therefore potentials are also expected to be oscillatory 
functions of time determined by intrinsic frequencies
of the system 

Ve ,  Vn,   wp,  wk

Ve >  Vn >>  w

Furthermore, there is the hierarchy of frequencies



Find potentials and their time dependences or general conditions for 
potentials which can lead to effects found in certain simplified 
models 

Check how realistic are these conditions in realistic supernova

As parametric effect for negligible
w  transition is the same for 
neutrinos and antineutrinos

As parametric  effect with increasing 
amplitude of periodic modulations 



Phase velocity cancellation

Vr(t) = Ve + Vn - cos2q wp - df/dt

Rotation of the fields that eliminates the phase from the off-diagonal 
terms leads to appearance of phase velocity in the diagonal terms

if df/dt ~ Ve + Vn strong cancellation  matter suppression is removed

Oscillations with maximal depth and frequency 1/Vn

Parametric enhancement

Vn and Vn - periodic functions 

Parametric resonance  if the frequency  of modulations of 
potentials  coincides with eigenfrequency of the probe neutrino



in the flavor field

Exponential grow of the transition probabilities

1. Phase velocity cancellation

2. Parametric enhancement 
induced  by modulations of 
the neutrino potentials with 
growing amplitude

2qm

Dqm /Dt ~  qm

Two conditions:

The cone angle and transition
probability increase exponentially 

Pet ~ (2qm)2

Vn

x





New effects of flavor transformations in the presence of new 
physics can emerge and should be explored.  
Neutrino probes of the Dark Universe 

Theory of the neutrino flavor transformations  will play the key role 
in future developments in neutrino physics:

establishing mass hierarchy,
measurements of CP phase,
searches for sterile neutrinos, 
oscillation tomography of the Earth, 
understanding supernova neutrinos
searches for new physics    

Theory of neutrino flavor transformation is to a large extent 
elaborated.  Still theory of collective transformations in realistic  
supernovae  is missing.  Some subtle aspects – to be clarified. 
Some small effects become accessible  and  important with new 
experimental  precision.



f (t, x ) ~                 cos (mf t )2 r (x)   
mf

gf f ni nj +  …

Ultra-light scalar DM

Couples to neutrinos

A. Berlin, 1608.01307 [hep-ph]

Neutrinos propagating in this field will experience  variation of mixing 
with frequency given by mf

give contribution to neutrino mass and modifies  mixing

For  mf = 10-22 eV, the modulation length lmod = 2p/mf = 1017 cm   

Parametric resonance: lmod = ln

 mass states oscillate

dm (t) =  gf f (t)   Dqm (t) =  gf f (t) / Dmij

For solar mass splitting Eres = 3 x 103 PeV (10-22 eV/mf ) 

Eres = 3 PeV for mf = 10-19 eV

Modulating mass?



P =   dw Pw

Negative frequencies 
for antineutrinos

+ inf

- inf

Collective vector

Ensemble of neutrino polarization vectors Pw

B =  (sin 2q ,  0,  cos2q) 

Vacuum mixing term

m = 2 GF nn (1 – cos qnn)

Usual matter
potential

L =  (0,  0,  1) 

The term describes
collective effects 

dt Pw  = (- wB + lL + mP) x Pw

l  = V = 2 GF new = D m2 /2E



n1m

projection
propagation

in the Earth

P2e

propagation

in the Sun

n2m

n3m

nen1

n2

n3

ne

|Ue3|
2

|Ue1
m|2 P1e

|Ue2
m|2

|Ue3
m|2 nearly decouples

and between the 

Sun and the Earth

adiabatic 
conversion

oscillations 
in multi-layer 
medium

Pee =  Si| Uei
m(n0)| 

2 Pie

mixing at the 
production
point n0

Pie = | Uei| 
2during the day scale invariant 



ne ne

n3

n2

nf = U23Id n

Id = diag (1, 1, eid )

ne

nm

nt

nm

nt

ne

n2

n3
~

Propagation 
basis

~

~

~

~

projection projectionpropagation

A(ne  nm) = cosq23 Ae2e
-id +   sinq23Ae3

Ae3

Ae2

CP appears in 
projection only

For instance:

A22 A33 A23

nf = U23Id U13 U12 nmass

n~



Vn ~ Vn
0 (1 – PB

et )  

- cos2q wp + Ve + Vn sin2q wp + 2Vn e
if

sin2q wp + 2Vn e
-if                 cos2q wp - Ve - Vn

H = ½  

Vn ~ Vn
0 PB

et (1 – PB
et )  

ne

nt

Potentials

PB
et (x) – effective transition probability of the background  neutrinos   

Ve >>  Vn >> w

Hdiag ~ Ve Hnon-diag ~ Vn
0  Pb

et < Vn
0 f ~   dt DH

DH ~ Ve df/dt ~ Ve

if w << Vn ,   H depends on potentials only – evolution of 
neutrinos and antineutrinos is the same  bi-polar oscillations

PB
et = Pet 

non-linearity



1. Resonance oscillations

Ve + Vn + df‘/dt - cos2q wp ~ 0Vr << V’

If there is no significant modulations of the non-diagonal element

or   df‘/dt ~ - Ve - Vn

The system oscillate with maximal depth and frequency ~ V’

2. Adiabatic conversion

Performing series of transformations  of fields  - exclude 
fast time variations in Vr and V’

In new frame Vr and V’ may satisfy adiabatic condition 
strong transition if Vr changes from  Vr >> V’ to Vr << V’

~         ~
~      ~ ~      ~ 

**



3. Parametric enhancement,  resonance

Potentials are modulated by periodic functions,  so that the mixing 
angle in medium tan2qm = - V’/ Vr varies with a period Tq

2p

<Vr >2 + <V’>2

Parametric enhancement if the frequency  of modulations 
coincides with eigenfrequency of the system 1/Tp

Tq = Tp

Tp = 

<Vr > , <V’> - potentials averaged over modulations

Large transition probability develops over many periods

**



Consequence of finite energy resolution /reconstruction function


