3, Parametric effects
Oscillations in multilayer media

Neutrino-neutrino scattering and

collective transformations
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- V. Ermilova V. Tsarev, V. Chechin,
arametric enhancement e e e
Strong transition if there is a harmonic modulation of density profile

h (Xx) = <n> + n; cos wy X

Parametric resonance condition:
kog=A,(n), k=1,2 ..

2
Al‘\'\(<r\>) - é% [(COSZ@ - ZVE/AIT\Z)Z + gin220 ]%

is frequency of oscillations for P
the average density

Realized in astrophysical objects?

Without modulations




Parametric oscillations
E. Kh. Akhmedov , 1988

" Castle wall profile”
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Parametric enhancement of oscillations

" " Castle wall profile”
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Paramelrc ennancementinthe Earth 13 mode

N

mantle

mantle

In the Earth
2 3

mantle core

mantle




Parametric enhancement in the Earth,1-2 mode

mantle ;

. tan'0,, = 0450, ©=249°, E =0.20 GeV
e

/

mantle

L L l L L L L
0
position
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MSW-resonance
peaks 1-3 frequency
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Oscillograms: Lines - Parametric peak i
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Ve 2 vV, * vV, B i 0.2
0.1
0.03
Determination of 0.1 S
heutrino mass ordering '
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|ceCube searches for sterile neutrinos

M.G. Aartsen et al,
(IceCube Collaboration)
1605.01990 (hep-ex)

IC86, 2011 - 2012, 343,7 days,
20,145 muon events
(reconstructed tracks) with

parametric pFeonance E = 320 GeV - 20 TeV
enhancement enhancement
of oscillations 15
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The earth density profile

15.0

F PREM model A.M. Dziewonski
e D.L Anderson 1981

F\
Si

core
outer
core

" =
L
)
—_—
(=%

transition (phase transitions in
silicate minerals)

zohe
lower 1
mantle { crust

upper
mantle

08 1.0 R, = 6371 km




Oscillations in the Earth ...

Incoherent fluxes of mass states arrive at the Earth from

the Sun or SN. They split (decompose) into eigenstates in matter
and oscillate.

Mixing of the mass states in matter

mass — *ym
U Upmns™ Y ‘ flavor mixing

matrix in matter
For the 1-2 mixing

e sin 20

\|(c032912 - £ )% +8in%20,, = & Sl 2B’

e = 2VE = 0.03 EIO P26 Ci3 = COS 613

Am,°
21 Me\/ g/Cm3

In low density regime ¢ determines smallness (size) of effects
sin20' ~ V

sin20' =




a A. Ioannisian, A. Smirnov, D. Wyler,
e lon Phys.Rev. D96 (2017) no.3, 036005
arXiv:1702.06097 [hep-ph]
Layers with slowly changing
density and density jump

/\ Ve Evolution matrix (matrix

\ \ of transition amplitudes)
-1 _
o S = UM, Iy DUy ks

layers
flavor mixing matrix,
at the detector

D, - describe the adiabatic evolution within layers:

- di -0.5i¢, ,0.5ip, : _ adiabatic phase
Dy = diag (e € ) e dxlHon - Hin) acquired in k layer
U, .1 - describes change of basis of eigenstates between k and k-1 layers
Upker = U(-A0y 1)

AB,_1 -change of the mixing angle in matter after k-1 layer




Oscillation waves

The lowest order plus waves emitted from different jumps

Pie ~ C13% C0s20,f + 13%5in26,T 2. 1 SiNAB; cos ¢after

initial wave sum over ‘ro’ral. phase
without density density acquired after
jumps jumps Jump j

VAVA VA

A

NN

superposition

th litud : €13°8iN20,,f sinAG;
e amphitu e of wave 13°51N€by," SINAY; of waves

sin AO; = ¢43%sin20,, AV, E




Oscillation waves

Approximate (lowest order in ¢) result
Uk,k-1 = I = iGZ Sln Aek_l

Inserting this expression into formula for S and taking the lowest
order terms in sinA6,_; ~ ¢

Ple = |Se1 | 2 ~ c0329nf + sin26nf ZJ -0 -1 sinAQJ COS (I)Jaf’rer'
* PN P

the 1-2 angle sum over total phase

in matter density acquired after

for uniform N€ar detector jumps jump j

sphere

SiNAO; ~ ¢13°sin20;, AV, AE ~— AV - jth density jump




A. Ioannisian, A. Smirnoyv,
D. Wyler, Phys.Rev. D96
(2017) no.3, 036005
arXiv:1702.06097 [hep-ph]

Integration above 11 MeV

dip: cancellation
of waves

0.05

0.04 -
. ] ]
Day -Night asymmetry < oa

N _
ADN = T(n) -1 0.02

Interference of waves 0.01.

nadir angle
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1 SK Collaboration (Abe, K. et al.)
arXiv:1606.07538 [hep-ex]

SK-IV solar zenith angle dependence

8 v.J ' ' ' ' l
9 ADN = "3.3 +/" 1.1 %
=
0.48 - Su—
(4p]
o
- ; —
=0.46 - Ssc
% Sils 1]
= ] T -
S0.44 |1 ' : ' no enhancement
a — i _ i o for core crossing
Z ; | trajectories
0.42 | +— B | .
: : Explained by
_ | ] the attenuation
4L R S
0.4 — FE1 0 ] effect
= coso,

oscillatory

Generic features: pattern s




Integral formula

Matter effect (regeneration factor)

fr'eg = Ple - Pleo = Ple - COSZGIZ

determines the day-night asymmetry o
A. Ioannisian and AY S,
PRL 93, 241801 (2004),

In the integral form: hep-ph/0404060
5

freq = - 7 SiN%26y, fdx V(x) sin o™(x > X¢)

Xo

where the phase acquired from the point x to the final point of

trajectory
X

o™(x >x¢) (E) :/x dx Ag,™(x)

For potential with jumps explicit integration in f .., reproduces
the result of sum of waves emitted from the jumps




- A. Toannisian, A. Y. Smirnov,
en ua Ion e ec Phys.Rev.Lett., 93, 241801 (2004),
0404060 [hep-ph]

Integration with the energy resolution function R(E, E'):
Freg > :de' R(E, EY) f .4(E) changing order of integration

X
<Freg>= 32 sinZZG/ 'dx F(x¢ - x) V(x) sin ¢™(x >x;)
X

° » Attenuation factor

Gaussian R(E, E") Sensitivity to remote structures
with width o, d >4 iS Suppressed

£ =M Attenuation length

_ E

Aowy = |, —
att % nop

|, is the oscillation length

A%

The better energy resolution,

. 1[}10[} ' 2[}.0[} . ]
k) the deeper structures can be seen




. A.N. Ioannisian, A. Yu. Smirnov
a Phys.Rev. D96 (2017) no.8, 083009
arXiv:1705.04252 [hep-ph]
Effect of remote structures does not disappear completely.

Even for very large distances: it survives at the ¢ level

Info about remote structure is still somehow stored.

2
v, > v, - channel Remote structures are attenuated by €2 ;
near structures are seen at ¢

2
v, > v, - channel Near structures are attenuated by &
remote structures are seen at ¢

T-symmetry

v, > v, - channel Three layer case: first Iayer' prepare
incoherent state. Attenuation happens.
Applications for flavor - flavor transitions




Attenuation and decoherence

The oscillation phase acquired
along the attenuation length:

(1):27:&“31:277: E

|V yfezs
Difference of phases with AE
A(I) = 27 £

O

For AE=no;  Ap = 2n

» integration over the energy
resolution interval leads to
averaging of oscillations

» Mot+ IS the distance over which
oscillations observed with

the energy resolution o, are averaged

Averaging - loss of coherence
Po =2 P,

converges to its projection
onto axis of eigenstates A,

A.N. Ioannisian, A. Yu. S.
Phys.Rev. D96 (2017) no.8,
083009, 1705.04252 [hep-ph]




A. Ioannisian,
B. AY.S., D. Wyler

1702.06097 [hep-ph]

—
L

Small
jumps

04 06 08 1.0 1.2
n

Relative excess of the night events
integrated over E > 11 MeV
Sensitivity of DUNE experiment
40 kt, 5 years




1n05: no afenuation o the Earth core

o determined by the width

of the Be- line

\"I

Aot ~ 10% km

op /E ~0.2%

A. Ioannisian, AYS
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Oscillations
inside the Earth



VV-scattering

Refraction in
heutrino gases

+-channel /ve(p) elastic forward scattering

- coherent

Vb Vo(q) V=26 (l-v. v ),
v, velocities

u-channel v (p) J. Pantaleone
Momentum exchange = flavor exchange

ve(q) Vi = - flavor mixing
Vi Can it be coherent?




J. Pantaleone

Coherence of flavor exchange - ="

Coherence if the background
is a mixture of flavor states:
for ith particle of background

<

©
-3
o

C—
®
O
=
o
S

o

|Vib> - (Die |Ve> + (Dir |VT>

®;, - (®,. -) amplitude to find

coherent

background v, (v.) in ith bkgr. neutrino

[spro\]ec +ion - Inverting
|Ve> = (Die* |Vb> + (Dir* | Va ?

transition v, + vy 2 v. + vy
with amplitude ~ ®,,"®,. and unchanged background

- summation over background neutrinos is coherent
This generates flavor non - diagonal potential V,. ~ 3 @O,
also diagonal




Neutring term in the Hamiltonian

Contribution to the Hamiltonian in the flavor basis

(Die ’ (I)ie*q)ir
va:\]—ZGin(l-Vevb) [ | J

D 0;. " ;|

ie =it

where cDie:\lP_be ;. = | Py,

The Hamiltonian in symmetric form:

V, 2V, et
2V et -V,
where

V, ~2 Gen(l-ve vp) Poe  V, ~ {2 Gen(l - v, V) | PocPy

The effective coupling constants in V include probabilities




Total Hamiltonian

(_ cos26 o, + V,+V, sin26 o, + 2V, eit

\

sin26 o, + ZVV e 0 cos2b o, - V, - V,
_/

-

includes the vacuum contribution: ®, = Am2/2E and
usual matter potential V,

Neutrino V,~VD0(1-PE ) if v, is produced
POT@HTIGIS VV ~ VVOV PBer (1 - PBer) (I) - Ar'g [(De (Dr*]

P8, (x) - effective transition probability of the background neutrinos

In the central parts of collapsing star V. > V> o




Summation over background neutrinos

Production region

inferaction point

a = e, t -flavor at the production
k - 3 momentum

| - length of trajectory from production

Production point - (%o, to) to interaction point (x, 1)

the point of last
inelastic collision

- (a, |, k) characterize a given mode
(x, t), k and | determine (x,, 15)




Total Hamiltonian and potentials

After integration

a cos20 w, + V, + V, sin20 o, + ZVV e‘d’\ A

H= 3

\Sin29 ®p * 2V, eit cos2b o, - V, - V/V Vv,

Potentials

V, = [Jak [dI [V, (1) - Vi (kDI - Pac(k, 1)

V eit = fdk fdl [V (k, 1) - V.7 (k, D] et\P, (k, T) (1 - P,.(k, 1))

where

Viak D=\26Gen2k, D(1-v,v) a=ze,r
n? (k, |) - number density of neutrinos emitted from (x,, 15)
and arriving at the point (x, t)




Removing the phase

Off-diagonal term: introduce real V' and the phase ¢' as
sin20 o, + 2V, et = V' e® *)
Transformation of the fields

v = Uy’ U = diag (05 1#", e05i¢" )
it does not change flavor probabilities.

Hamiltonian for '

H:%[vr(f) v (f)]
V() - Vi)

Vr() = V, + V, - cos20 o, + do'/dt V' (1) is def. in (*)

Probe neutrino propagation in external neutrino potentials
(as in the case of NSI but) with non-trivial time dependence




The problem

Evolution equation for the probe particle

(¥ — ~t - nni :
i%_Tp_ = H () D, x = ct - point along the v, trajectory

Total Hamiltonian depends on the wave functions of all background
neutrinos @, X which cross the probe neutrino trajectory in a point x

To find ;)X one needs to solve the corresponding evolution equation
for each v,

. d @,
| ?—.l_—b = H(®pY) Dy, y = ct along the v, trajectory

Here H depends on the wave functions of all background neutrinos
®,.Y which cross the v;, trajectory in a point y

The equation should be integrated over y from the v, production

point fo x




The problem

Stationary case: pattern
does not depend on time

Modes involved are
characterized by (x5, k, a)
a = e, t -flavor at production
Xo - production point

k - momentum

Specific limits of integration
for each point

Modes with the same set (X, k, a) evolve in the same way

Discretize parameters - numerical solutions




Solvahle
Exaifiple



L u L
Neutrinos in neutrino fux @ -
1801.09751 [hep-ph]

Flux of collinear background neutrinos - ho vv- interactions
in the flux

Probe
Background neutrino

neutrinos Still coherent
flavor exchange

_ Am?
©=2FE

Bp Bk

V,=V2o(@-2P,) V,=VOYP. (1-P.) VOo={26en,(1-v,v)

P..= sin220, sin?zA At O = Arg [©, D *]= A At

A,- sinp 15@ splitting | . ,
SinPy Potentials - periodic functions

of time > parametric effects




Potentials: time dependence
Combining different terms in the g

Hamiltonian (in rotating frame) 2000y

\/r(-|-) V' (1-) 2000p
=3 |\ 1500}
H=2 vy - vrh) 1000F
500}

: . . 0 ' ' .
including usual matter potential 0.000 0.005 0.010 0.015 0.020

V., which dominates
Ve = 103 O]

1.0
08¢

and vacuum terms igj ;
04}

0.2t

M M [:I.[:I ] ] |
Neutrino fo matter potential 0000 00 i i 00
fup
V0

V. and V' as functions of the time for
different values of &. A;= 11001, o, = o




Parametric resonance

Dependence of the depth of
parametric oscillations on oy /o,

A, = 11001, V2= 100 o,
V.0 = 100 o,

Parametric resonance condition:

- c0s20 w, + V. + V.0 = Ay A,
A\ ~ J w_/

L) 1)

Freguef\CY of Frequency of
oscillations of the modulations

probe neutrino
determined by the of the
averaged density

potentials

—  Full solution
--  Analytic

10
ety

Width of the resonance
[/ =sin20& (1+Ay)

proportional to &




Diverging flux

-

§
neu’rron

star

Realization of simplified
example

Far from source, diverging flux,
vv interactions in the flux are
negligible.

External probe neutrino

The angle between the probe
and flux neutrinos changes

A, and neutrino density change

This case is reduced to the case
of varying density




A effective
theory




Effective theory of collective oscillations
Above the neutrinosphere collective effects can be completely

described by evolution of individual neutrinos in external potentials
produced by usual matter and other neutrinos.

Flavor diagonal V(1) and flavor changing V. (t) potentials are generated

Consider effects of inelastic interactions in certain approximations




Effective theory approach
Since it is not feasible to perform explicit computations of these
potentials, the approach is

Some integrations in the potentials which correspond to averaging
over energy or over neutrino production point can be done

explicitly (approximations) using general form of potentials

Assumptions and conjectures on the time dependence of
potentials can be introduced




Properties of potentials

Potentials are integrals of oscillation amplitudes
which have oscillatory dependence on time.

Therefore potentials are also expected to be oscillatory
functions of time determined by intrinsic frequencies
of the system

Ve, VV, (Dp, Wy

Furthermore, there is the hierarchy of frequencies

Vo> V,>» o




Inverse problem:

Find potentials and their time dependences or general conditions for
potentials which can lead to effects found in certain simplified
models

Synchronized oscillations

0 As parametric effect with increasin
Fast flavor transitions 2z perometric effect with nereasing
Bi-polar oscillations  4s parametric eftect for negiiivi

® - transition is the same for
opectral spllfs

neutrinos and antineutrinos
Check how realistic are these conditions in realistic supernova




Two effects of enhancement

Rotation of the fields that eliminates the phase from the off-diagonal
terms leads to appearance of phase velocity in the diagonal terms

Vi(t) = V, + V, - cos20 o, - d¢/dt

if do/dt ~V,+V, strong cancellation > matter suppression is removed
Oscillations with maximal depth and frequency 1/V,

Parametric enhancement

V, and V,, - periodic functions

Parametric resonance if the frequency of modulations of
potentials coincides with eigenfrequency of the probe neutrino




U LTL e
Instabilities and fast transition - - «c.er <

Exponential grow of the transition probabilities

Two conditions:

1. Phase velocity cancellation

2. Parametric enhancement
induced by modulations of
the neutrino potentials with
growing amplitude

AO, /AT ~ O,

The cone angle and transition
probability increase exponentially




I coichision




Theory of the neutrino flavor transformations will play the key role
in future developments in neutrino physics:

establishing mass hierarchy,

measurements of CP phase,

searches for sterile neutrinos,

oscillation fomography of the Earth,

understanding supernova neutrinos

searches for new physics

New effects of flavor transformations in the presence of new
physics can emerge and should be explored.
Neutrino probes of the Dark Universe




Fuzzy dark matter A. Berlin, 1608.01307 [hep-ph]

Modulating mass?
Ultra-light scalar DM

ot x )~ Y2 LX) oq (m, t)
m,

Couples to neutrinos gy ¢ ViVv; + .. - mass states oscillate

give contribution to neutrino mass and modifies mixing
om (1) = g, ¢ (1) ABy, (1) = g, ¢ (1) / Amy

Neutrinos propagating in this field will experience variation of mixing
with frequency given by m,

For m, =10-22 eV, the modulation length I, .4 = 2n/m, = 107 cm
Parametric resonance: |4 = |,

For solar mass splitting E..s = 3 x 103 PeV (1022 eV/m, )
B) E..=3PeVform,= 101 eV




tvolution equation

Ensemble of neutrino polarization vectors P,
Negative frequencies
for antineutrinos

d,P, = (- oB + AL+ puP) x P,
Vacuum mixing term Usual matter Collective vector
potential e inf
B= (sin20, O, cos20) L= (0, 0, 1) P=|do P,
- inf
o=Am?/2E A =V=\26gn,

H = \IE GF nv (1 = COS evv)

The term describes
collective effects




gn
ns ms and between the

Sun and the Earth

propagation propagation

rojection _
b In the Sun In the Earth

[
>

mixing at the
roduction U.[?
Ppoin‘r No ' Ve <:j nearly decouples

adiabatic oscillations
conversion in multi-layer
medium

Pee = Z“il Ueim(nO)l 2 Pie

during theday P, =|U,]|?2 scale invariant



Jv- oscilfations =
-\vi . d )
9

Propagation vi = UL ¥
basis
I, =diag (1,1, e®)

unchanged in
new basis

projection  propagation projection

CP appear's in AZZ A33 A23
projection only

For instance: A(v, 2 v,) = c0os0,; A8 + Sin0,3A.;




Total Hamiltonian and potentials

~N r

g cos2b o, + V, + V, sin20 o, + ZVV el

H

sin20 o, + 2V, et c0s20 o, - V, - V,

- /

Potentials V,~VDO(1-PE ) pB
V, ~V9PE, (1-PE)

et = Per

non-linearity
P8,.(x) - effective transition probability of the background neutrinos

Ve >> VV >>

Hdiag ~ ve Hnon-diag ~ VVO Pber <VVO d) ~ \/\df AH

AH~V, do/dt~V,

if o<« V,, Hdepends on potentials only - evolution of
neutrinos and antineutrinos is the same - bi-polar oscillations




Conditions for strong transformations

1. Resonance oscillations

Vr V' [> Ve +V, +do/dt - cos20 o, ~ 0
or d¢/dt~-V, -V,

The system oscillate with maximal depth and frequency ~ V'
If there is no significant modulations of the non-diagonal element

2. Adiabatic conversion

Performing series of transformations of fields - exclude
fast time variations in V" and V'

In new frame Vrand V/ may satisfy adigbati¢c condition,—>
strong transition if V" changes from Vr > V' to Vr« V'




XXk

. continued

Potentials are modulated by periodic functions, so that the mixing
angle in medium tan26,, = - V'/ V" varies with a period T,

Parametric enhancement if the frequency of modulations
coincides with eigenfrequency of the system 1/T,

To=T,

_ 27
Tp ) \I<Vf‘ >2 4 <\/'>2

<Vr>, <V'> - potentials averaged over modulations
Large transition probability develops over many periods




Solvable example

Consequence of finite energy resolution /reconstruction function




