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How to characterize anomalies in general ?

Zχ = ∫ [Dχ]e−S

Introduction

 2

  : gauge transformation  δ δAμ = Dμα

(S = χ̄γμ(∂μ + Aμ)χ)
δZχ ≠ 0

  : chiral fermion in  -dimensionsχ d

Perturbative anomaly:

: anomaly
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δ log Zχ = i∫ I(1)
d

dI(1)
d = δI(0)

d+1

Gauge  
transformation

: anomaly  
  in  -dimensionsd

Going to  
1-higher dim.

: Chern-Simons 
  in  -dimensionsd + 1

Perturbatively, a well-known characterization is  
by the anomaly descent equations.

Going to  
2-higher dim. dI(0)

d+1 = Id+2
: Anomaly  -form 
  in  -dimensions

d + 2
d + 2
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The gauge invariant anomaly  -form d + 2

Id+2 ∼ tr(F)(d+2)/2 + …

Perturbatively, it contains all information about anomalies.

Chern-Simons  -formd + 1
I(0)
d+1 ∼ tr(AFd/2) + …

(F = dA + A2)



/ 56

Introduction

 5

Anomaly inflow makes clear the physical meaning 
of the anomaly descent equations.

    :  -dim. spacetime with boundary   

   :  -dim. boundary of   with the fermion   
Y d + 1 ∂Y = W

W d Y χ

W Y

χ

CSd+1 = − ∫Y
I(0)
d+1
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W Y

χ

CSd+1 = − ∫Y
I(0)
d+1

The total system has
Z(Y ) = Zχ(W)exp(iCSd+1(Y )) (CSd+1 = − ∫ I(0)

d+1)
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i−1δ log Z(Y ) = i−1δ log Zχ(W) + δCSd+1(Y )

= ∫W
I(1)
d − δ∫Y

I(0)
d+1

= ∫W
I(1)
d − ∫Y

dI(1)
d

= 0

Z(Y ) = Zχ(W)exp(iCSd+1(Y )) (CSd+1 = − ∫ I(0)
d+1)

The total system has
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Z(Y ) = Zχ(W)exp(iCSd+1(Y ))

δ log Z(Y ) = 0

The anomaly of   is cancelled by the gauge variation 
of Chern-Simons in  -dimensions: 
Anomaly inflow from the bulk  -dimensions to 
boundary  -dimensions.

χ
d + 1

d + 1
d

Anomalous chiral fermion is well-defined if 
it is coupled to a 1-higher dimensional theory.
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Perturbatively, using the Chern-Simons is OK. 

However, how can we treat nonperturbative anomaly? 

Nonperturbatively, there exist many global anomalies.

Example 1  
  chiral fermion in a doublet rep. of SU(2) gauge field 
is anomalous, although there is no perturbative anomaly.
d = 4

[Witten,1982]
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Example 2  
  majorana fermions with time-reversal symmetry is  
anomalous if the number is not a multiple of 16. 
(Topological superconductors).

d = 3

[Hsieh-Cho-Ryu,2015] 
[Witten,2015]

Example 3  
  gravitino in M-theory is anomalous.  
(Cancelled in a very subtle way by the 3-form field.)
d = 11

[Witten,1996] 
[Freed-Hopkins,2019]

Example 4  
Are you sure that the standard model is anomaly free 
beyond perturbation theory? [Freed,2006] 

[García-Etxebarria-Montero,2018]
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I discuss a non-perturbative anomaly inflow formula  
including  global anomalies, which involves 

Atiyah-Patodi-Singer (APS)  -invariant  

instead of Chern-Simons invariant  .

η

CSd+1
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The formula was already expected in the past based on  
what is called the Dai-Freed theorem. [Witten,2015]

But there was no explicit derivation of the formula.

The Dai-Freed theorem has a physical derivation.
[KY,2016]

The idea there can give a concrete physical derivation  
of the non-perturbative anomaly inflow formula.

[Witten-KY,2019]
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Massive fermion
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Let us consider a massive fermion   in  -dimensionsΨ d + 1

ℒ = − Ψ̄(γμDμ + m)Ψ

It is considered on a spacetime   with boundary  Y W
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Spacetime with boundary
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W
Y

0
τ

Near the boundary, the spacetime   is of the formY

Y ⊃ (−ϵ, 0] × W
τ ∈ (−ϵ, 0] : coordinate orthogonal to the boundary
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Near the boundary
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Near the boundary, the Dirac operator in  -dim. 
is represented as

d + 1

γμDμ = γτ (∂τ + 𝒟W)
𝒟W = ∑

μ≠τ

γτγμDμ

(No gauge field in the   direction, and no   dependence.)τ τ

( ∂τ =
∂
∂τ )

We impose a local boundary condition
𝖫 : (1 − γτ)Ψ |τ=0 = 0
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Localized chiral fermion
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Dirac equation   : (γμDμ + m)Ψ = 0

(∂τ + 𝒟W + mγτ) Ψ = 0

Boundary condition :

These equations admit a localized solution 
if the mass parameter is negative:  m < 0

𝖫 : (1 − γτ)Ψ |τ=0 = 0
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Localized chiral fermion
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(∂τ + 𝒟W + mγτ) Ψ = 0

Solution for   :m < 0

Ψ = χ exp(−mτ), (1 − γτ)χ = 0, 𝒟W χ = 0

No such localized solution for  . m > 0

Recall:  . Exponentially localized near  τ ≤ 0 τ = 0

𝖫 : (1 − γτ)Ψ |τ=0 = 0



/ 56

Localized chiral fermion
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•The operator   is a Dirac operator on boundary  .𝒟W W

•  can be regarded as a generalized chirality operator 
on the boundary  , because of the anticommutation
γτ

W

γτ𝒟W + 𝒟Wγτ = 0

Example 
  gamma matrices   .  

The 5th gamma matrix   is the chirality in  

d + 1 = 5 γ1, γ2, γ3, γ4, γ5

γ5 = γτ d = 4



/ 56

Localized chiral fermion
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Solution for   :m < 0

Ψ = χ exp(−mτ), (1 − γτ)χ = 0, 𝒟W χ = 0

These equations mean that   is χ

•Massless on   :   W 𝒟W χ = 0

•Chiral fermion :  γτ χ = + χ
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ℒ = − Ψ̄(γμDμ + m)Ψ

WY

0
τ

  : localized chiral fermion on the boundary   
  : no localized chiral fermion
m < 0 W

m > 0

𝖫 : (1 − γτ)Ψ |τ=0 = 0
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Pauli-Villars regulator
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We regularize the massive fermion theory   by 
a Pauli-Villars regulator with mass parameter  . 

Ψ
M

We don’t want the Pauli-Villars field to have a localized 
massless mode near the boundary. So we take

M > 0 : no localized mode from the Pauli-Villars
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Bulk path integral on  Y
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We have seen that two choices   and   are 
significantly different. How can we see it in the bulk?

m < 0 m > 0

Answer:

The path integral of the   theory produces  
the APS  -invariant, which is equivalent to  
Chern-Simons invariant   at the perturbative level.

m < 0
η

CSd+1

The theory   does not have   nor  . m > 0 η CSd+1
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For a while, let us consider spacetime    
without boundary.

Y

Z(Y ) = ∫ [DΨ]e−S = ∏
λ

−iλ + m
−iλ + M

  : eigenvalues of the Dirac operator  λ iγμDμ

S = − ∫ Ψ̄(γμDμ + m)Ψ

Denominator : Pauli-Villars
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The absolute value   is not so important as long as 

it is very large. Let us take   for simplicity.

|m |

m = ± M

Z(Y ) = ∏
λ

−iλ + M
−iλ + M

= 1

m = + M

Nothing in  -dim. bulk  d + 1 Y
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m = − M

Z(Y ) = ∏
λ

−iλ − M
−iλ + M

= ∏
λ

exp(−iπs(λ))

s(λ) = −
1
π

arg ( −iλ − M
−iλ + M )

−1 < s(λ) ≤ 1

: pure phase
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APS  -invariantη
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s(λ) = −
1
π

arg ( −iλ − M
−iλ + M ) ≃ sign(λ) + 𝒪(λ/M)

sign(λ) =
λ

|λ |
(λ ≠ 0), ( sign(0) = 1 )

Atiyah-Patodi-Singer (APS)  -invariantη

η(Y ) = ∑
λ

sign(λ)reg = lim
M→∞ ∑

λ

s(λ)
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Bulk partition function on  Y
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m = − M

Z(Y ) = ∏
λ

exp(−iπs(λ))

= exp(−iπη(Y )) (M → ∞)

The partition function   is given by the  -invariant.Z(Y ) η



/ 56

Relation to Chern-Simons

 30

An explicit 1-loop computation shows that perturbatively

Z(Y ) = exp(iCSd+1) (perturbatively)

Alternatively, the APS index theorem shows that if 
  is a boundary of some  -dim. manifold  , Y d + 2 X

exp(−iπη(Y )) = exp(−i∫X
Id+2)

  : the anomaly  -form which appears in 
        the anomaly descent equations.
Id+2 d + 2
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Bulk path integral on  Y
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Perturbatively, or if   for some  Y = ∂X X

exp(−iπη(Y )) = exp(iCSd+1)

But   contains information of nonperturbative,  

global anomalies.

η
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Path integral with local b.c.
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WY

0
τ

𝖫 : (1 − γτ)Ψ |τ=0 = 0

Let us return to the path integral on a spacetime   
with boundary  , with local boundary condition  

Y
W 𝖫
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Wick rotation
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τ

We can change our point of view : 
Perform Wick rotation to see   as a Wick rotated time.τ = it

space

Y

τ = it
time

Y

W

W
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Transition from empty to  W
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τ = it
Euclidean time

Y

This can be seen as a transition amplitude from 
nothing to  . This gives a physical stateW

W

|Y⟩ ∈ ℋW

  : Hilbert space on  ℋW W
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Local b.c. as a physical state
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𝖫 : (1 − γτ)Ψ |τ=0 = 0

The local boundary condition   can also be seen 
as defining some physical state after Wick rotation:

𝖫

|𝖫⟩ ∈ ℋW

This is specified by
⟨𝖫 | (1 − γτ)Ψ = 0

Wick rotation
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Path integral as state overlap

 37

The partition function with the boundary condition   is 
now computed as a state overlap

𝖫

Z(Y, 𝖫) = ∫ [DΨ]e−S

= ⟨𝖫 |Y⟩
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Domination of ground state

 38

Y

τ = it
Euclidean time

Near the boundary, 
Y ⊃ (−ϵ, 0] × W

Euclidean time evolution in this region

e−ϵH → |Ω⟩⟨Ω | (ϵ |m | → ∞)

  : the ground state|Ω⟩
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Splitting bulk and boundary
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Z(Y, 𝖫) = ⟨𝖫 |Y⟩
= ⟨𝖫 |Ω⟩⟨Ω |Y⟩

|Y⟩ ∝ |Ω⟩ (ϵ |m | → ∞)

Determined by 
boundary  W

Determined by 
bulk  Y
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Chiral fermion partition function
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Z(Y, 𝖫) = ⟨𝖫 |Ω⟩⟨Ω |Y⟩
It turns out by explicit computation that for  m < 0

⟨𝖫 |Ω⟩ = Zχ(W) : partition function of boundary 
  chiral fermion  χ

|⟨Ω |Y⟩ | = 1 : pure phase  
  (up to local counterterm)

The path integral of the massive fermion in  -dim. 
with local boundary condition really produces the                  
 -dim. chiral fermion partition function, up to phase.

d + 1

d
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Anomaly as phase ambiguity
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Z(Y, 𝖫) = ⟨𝖫 |Ω⟩⟨Ω |Y⟩

⟨𝖫 |Ω⟩ = Zχ(W) |⟨Ω |Y⟩ | = 1

•  has ambiguity, because   has phase ambiguity.Zχ(W) |Ω⟩

•The ambiguity is cancelled in the product   .⟨𝖫 |Ω⟩⟨Ω |Y⟩

This explains why the chiral fermion must be coupled to 
the bulk in 1-higher dimensions.

(Unavoidable due to Berry phase of   )|Ω⟩
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APS boundary condition
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The phase ambiguity of   is inconvenient. 

Let us try another state instead of  .

|Ω⟩

|Ω⟩

Definition
  : a state which would be the ground if  |𝖠𝖲𝖯⟩ m = 0

This has no phase ambiguity if we take the ratio 
between the physical fermion and Pauli-Villars field. 
Because   is independent of mass parameter.|𝖠𝖲𝖯⟩

(Physical interpretation of APS boundary condition.)
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This definition of  breaks down when  

the   theory has a degenerate ground state.
|𝖠𝖲𝖯⟩

m = 0

This happens when we vary background fields on  .W

Let us consider the case that   is possible.|𝖠𝖲𝖯⟩
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New splitting

 44

Z(Y, 𝖫) = ⟨𝖫 |Ω⟩⟨Ω |Y⟩
space

=
⟨𝖫 |Ω⟩⟨Ω |𝖠𝖯𝖲⟩

|⟨Ω |𝖠𝖯𝖲⟩ |2 ⋅ ⟨APS |Y⟩

Using |Y⟩ ∝ |Ω⟩ (ϵ |m | → ∞)

Determined by 
boundary  W

Determined by 
bulk  Y
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⟨APS |Y⟩ = ∏
λ

−iλ − M
−iλ + M

= exp(−iπη(Y ))

Bulk contribution   is computed in the same way 
as before: for  ,

⟨APS |Y⟩
m = − M < 0

Now the eigenvalues   of   are computed under the  
APS boundary condition.

λ iγμDμ

(Mathematically, APS boundary condition guarantees that 
 the Dirac operator have real eigenvalues.)
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⟨𝖫 |Ω⟩⟨Ω |𝖠𝖯𝖲⟩
|⟨Ω |𝖠𝖯𝖲⟩ |2 = |Zχ(W) | = |Det(𝒟+

W) |

Massive fermion   is a free theory. 

Its quantization on   is straightforward.

ℒ = − Ψ̄(γμDμ + m)Ψ

W

The result for  :m < 0

  : Dirac operator acting on the chiral fermion  𝒟+
W χ
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The anomaly inflow formula
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Combining the previous results, we finally get

Z(Y, 𝖫) = |Det(𝒟+
W) |exp(−iπη(Y ))

Nonperturbative anomaly inflow formula

•Left-hand-side: 
 -dim. massive fermion partition function with  
the local boundary condition  
d + 1

𝖫

•Right-hand-side:
 -dim. chiral fermion partition function  
coupled to  -dim. bulk topological phase
d

d + 1
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The anomaly inflow formula
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Z(Y, 𝖫) = |Det(𝒟+
W) |exp(−iπη)

We cannot separate the bulk and boundary contributions. 

This decomposition is like polar coordinate  z = reiθ ∈ ℂ

  : not smooth around points  |Det(𝒟+
W) | |Det(𝒟+

W) | = 0

  : not well-defined when APS b.c. fails.exp(−iπη)

Therefore, bulk and boundary must be combined.
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General case
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Completely general chiral fermion:

1. The discussion so far was Dirac fermion. But 
Majorana fermion is more general.                         
(Any complex number can be decomposed into two 
real numbers.) 

2. I started from  -dimensions and then find a 

localized  -dim. fermion. It is possible to start from 
arbitrary  -dim. fermion and find a massive  -
dim. fermion.

d + 1

d

d d + 1
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General formula

Z(Y, 𝖫) = |Pf(𝒟+
W) |exp (−iπη(Y )/2)

•  : Pfaffian (which is relevant for majorana)Pf

•  is multiplied by  η 1/2

We claim that this is the general anomaly inflow formula 
for arbitrary chiral fermions.  (Details omitted)
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Z(Y, 𝖫) = |Pf(𝒟+
W) |exp (−iπη(Y )/2)

General anomaly of a chiral fermion is characterized by  
the  -dependence of the partition functionY

Z(Y, 𝖫)
Z(Y′�, 𝖫)

= exp (−iπ(η(Y ) − η(Y′�))/2)
= exp (−iπη(Y )/2)

Take another  Y′�

  : closed manifold obtained by gluing   and  Y Y Y′�
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 53

Y
Y′�

glue them together : closed manifold  Y

exp (−iπ(η(Y ) − η(Y′�)/2)) = exp (−iπη(Y )/2)
Gluing theorem of the  -invariant (locality of   )η η
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Anomaly
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Z(Y, 𝖫) = Z(Y′�, 𝖫)
We can regard   as a definition of the chiral 
fermion partition function on the boundary  .

Z(Y, 𝖫)
W

If   for any closed manifold  , exp (−iπη(Y )/2) = 1 Y

The obstruction for such a definition : Anomaly

exp (−iπη(Y )/2)

(There are some important details which I omit here. 
Please see our paper.)

  : closed manifoldsY
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Z(Y, 𝖫) = |Zχ(W) |exp (−iπη(Y )/2)

Partition function of 
massive fermion on   
with local boundary 
condition  

Y

𝖫

Chiral fermion partition function  
on the boundary   W = ∂Y

Exponential of  -invariant 
in the bulk  

η
Y

•Non-perturbative anomaly inflow formula is given by
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