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Introduction

How to characterize anomalies in general ?

Perturbative anomaly:

y . chiral fermion in d-dimensions

0 : gauge transformation 6A, = D, a

— -5 —
z,=IDyle™  (S=7r"0, +A))

oZ,#0 anomaly
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Introduction

Perturbatively, a well-known characterization is
by the anomaly descent equations.

Gauge

5logZ, = i p 7 anomaly
transformation 4 4 in d-dimensions
GOibg to dI'h = 51 : Chern-Simons
1-higher dim. in d + 1-dimensions
Going to o =1, : Anomaly d + 2-form
- 0 . +
2-higher dim. dtl in d + 2-dimensions
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Introduction

The gauge invariant anomaly d + 2-form

Ly ~ tr(F) 22 4 (F = dA + A?)

Perturbatively, it contains all information about anomalies.

Chern-Simons d + 1-form
0) df2
Id+1 tr(AF“<) + ...
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Introduction

Anomaly inflow makes clear the physical meaning
of the anomaly descent equations.

Y :d+ 1-dim. spacetime with boundary 0Y = W
W . d-dim. boundary of Y with the fermion y
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Introduction

The total system has

Z(Y) = 2, (W)exp(iCSyy (Y ) (CSdH = — Ia(fg)_)l
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Introduction

The total system has

Z(Y) = 2, (W)exp(iCSyy (Y ) (CSdH = — Ic(g?r)l

i~'51log Z(Y) = i~ '61og Z(W) + 6CS, (Y)

_ () _ 0)
_J Id 5J Id+1
%% Y

R
14 JY
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Introduction

Z(Y) = Z,(W)exp(iCS,,,(Y))

ologZ(Y) =0

- _

The anomaly of y is cancelled by the gauge variation
of Chern-Simons in d + 1-dimensions:

Anomaly inflow from the bulk d + 1-dimensions to
boundary d-dimensions.

Anomalous chiral fermion is well-defined if
It is coupled to a 1-higher dimensional theory.
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Introduction

Perturbatively, using the Chern-Simons is OK.
However, how can we treat nonperturbative anomaly?

Nonperturbatively, there exist many global anomalies.

Example 1

d = 4 chiral fermion in a doublet rep. of SU(2) gauge field

iIs anomalous, although there is no perturbative anomaly.
[Witten, 1982]
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Introduction

Example 2

d = 3 majorana fermions with time-reversal symmetry is
anomalous if the number is not a multiple of 16.

(Topological superconductors). [Hsieh-Cho-Ryu,2015]

[Witten,2015]
Example 3

d = 11 gravitino in M-theory is anomalous.

(Cancelled in a very subtle way by the 3-form field.)

[Witten, 19906]
[Freed-Hopkins,2019]

Example 4
Are you sure that the standard model is anomaly free
beyond perturbation theory? [Freed,2006]

[Garcia-Etxebarria-Montero,2018]
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Introduction

| discuss a non-perturbative anomaly inflow formula
including global anomalies, which involves

Atiyah-Patodi-Singer (APS) »n-invariant

instead of Chern-Simons invariant CS,_ ;.
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Remark

The formula was already expected in the past based on
what is called the Dai-Freed theorem. [Witten,2015]

But there was no explicit derivation of the formula.

The Dai-Freed theorem has a physical derivation.
[KY,2010]

The idea there can give a concrete physical derivation

of the non-perturbative anomaly inflow formula.

[Witten-KY,2019]
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Massive fermion

Let us consider a massive fermion ¥ in d + 1-dimensions

L =— ‘P(y”DM + m)¥

It is considered on a spacetime Y with boundary W
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Spacetime with boundary

; > T
0

Near the boundary, the spacetime Y is of the form
YD (—e, O] X W

T € (—¢, 0]: coordinate orthogonal to the boundary
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Near the boundary

Near the boundary, the Dirac operator in d 4+ 1-dim.
Is represented as

0
y”DﬂzyT(d[+9W) ( T=E )
Dy = Z?’T?’”Dﬂ

UFT

(No gauge field in the 7 direction, and no t dependence.)

We impose a local boundary condition
L: A-yH¥Y| _,=0
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Localized chiral fermion
Dirac equation (y*D, + m)¥ =0 :

(0, + Dy +my" ) ¥ =0

Boundary condition :

L:(1—y)¥]| _, =0

These equations admit a localized solution
It the mass parameter is negative: m < 0
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Localized chiral fermion

L:(1—y)¥|_, =0

Solution for m < 0 :

¥ z)(exp(_mT)a

\_

(1 o yf))( — Oa

Dwx =0

W,

Recall: 7 < 0. Exponentially localized near r = 0

No such localized solution for m > 0.
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Localized chiral fermion

e The operator &, is a Dirac operator on boundary W.

e v’ can be regarded as a generalized chirality operator
on the boundary W, because of the anticommutation

V' Dy + Dyy® =0

Example

d + 1 = 5 gamma matrices y!, v%,v>, y*, 7> .

The 5th gamma matrix y° = y* is the chirality in d = 4
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Localized chiral fermion

Solution form < 0 :

W= yexp(-mr), (1—yy=0, Dyy=0

These equations mean that y is

e Masslesson W: D,y =0

e Chiral fermion : y'y =+y
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Summary of localized modes

< =-Y(*D, + m)¥ L:(1-y)¥]| _,=0
@ '
. T
0
( N

m < 0 : localized chiral fermion on the boundary W
m > 0 : no localized chiral fermion

\_ J
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Pauli-Villars regulator

We regularize the massive fermion theory ¥ by

a Pauli-Villars regulator with mass parameter M.

We don’t want the Pauli-Villars field to have a localized
massless mode near the boundary. So we take

(- )

M > 0 : no localized mode from the Pauli-Villars
\_ Y,
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Bulk path integral on Y

We have seen that two choices m < 0 and m > 0 are
significantly different. How can we see it in the bulk?

~
Answer:

The path integral of the m < 0 theory produces
the APS y-invariant, which is equivalent to

Chern-Simons invariant CS,, ; at the perturbative level.

The theory m > 0 does not have  nor CS,, ;.
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Bulk path integral on Y

For a while, let us consider spacetime Y
without boundary.

S =— ‘i’(y”Dﬂ + m)¥

" —IiA+m
Z(Y)= [[D¥]e™ = I I :
] . —iA+ M

4 : eigenvalues of the Dirac operator iy”D,

Denominator : Pauli-Villars
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Bulk path integral on Y

The absolute value |m| is not so important as long as

it is very large. Let us take m = £ M for simplicity.

m=+M

i+ M
Z(Y>=1:I—i/1+M =

Nothing in d 4+ 1-dim. bulk Y
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Bulk path integral on Y

m=—-M
—iA—M
20 = [1=— = [T exp(=imsa)
A

. —iA

. pure phase

) 1 <—i/1—M)
s(A) = ——ar
T 5 —iA+M

—1<s() <1
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APS n-invariant

(2) : <_i’1_M> ion(1) + O(A/M)
S = — — dar ~ S191N
7T 5 —IA+M S

A
sign(A) = T (A #£ 0), ( sign(0)=1)

4 )
Atiyah-Patodi-Singer (APS) n-invariant

n(Y) =) sign(d),, = lim D s(2)
*

A
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Bulk partition function on Y

4 )

2(Y) = | | exp(~izs(2))
A

9 = exp(—izn(Y)) (M — o0) y

The partition function Z(Y) is given by the n-invariant.
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Relation to Chern-Simons

An explicit 1-loop computation shows that perturbatively

Z(Y) = exp(iCS,y1) (perturbatively)

Alternatively, the APS index theorem shows that if

Y is a boundary of

some d + 2-dim. manifold X,

exp(—irn(Y)) = exp(—iJ 1. 5)

1, ., : the anoma
the anoma

X

y d + 2-form which appears in
y descent equations.
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Bulk path integral on Y

Perturbatively, or if Y = dX for some X
exp(—inn(Y)) = exp(iCS,, )

But # contains information of nonperturbative,

global anomalies.
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Path integral with local b.c.

Let us return to the path integral on a spacetime Y
with boundary W, with local boundary condition L

L:A=-y)Y| _,=0

0
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Wick rotation

We can change our point of view :
Perform Wick rotation to see 7 = if as a Wick rotated time.

@W ——

> T Y

A

1% T =1t
time

space
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Transition from empty to W

A
L4 T =1t

Euclidean time

This can be seen as a transition amplitude from
nothing to W. This gives a physical state

\Y)e Xy

Z w . Hilbert space on W
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Local b.c. as a physical state

The local boundary condition L can also be seen
as defining some physical state after Wick rotation:

L:(1-— y’”)‘P\Tzo = ()
‘ Wick rotation
L) € Zy

This is specified by
(LIA=y)¥ =0
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Path integral as state overlap

The partition function with the boundary condition L is
now computed as a state overlap

s , )
Z(Y,L) = | [D¥P]e™

— (LY
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Domination of ground state

A
T =1t
Euclidean time

Near the boundary,
YD (—e, O] X W

Euclidean time evolution in this region

e~ = |QNQ|  (e|m] - o)

| Q) : the ground state
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Splitting bulk and boundary

V) x [€)  (e|m] — o0)

Z(Y,L)=(L|Y)
= (L))
) { ) 4
Determined by Determined by

boundary W bulk Y
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Chiral fermion partition function

Z(Y,L) = (L|Q)Q|Y)

It turns out by explicit computation that for m < 0

~

\_

~

(L|Q) = Z(W) : partition function of boundary
chiral fermion y

|1(Q]|Y)| =1 :pure phase
(up to local counterterm)

),

The path integral of the massive fermion in d + 1-dim.

with local boundary condition really produces the
d-dim. chiral fermion partition function, up to phase.
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Anomaly as phase ambiguity

Z(Y,L) = (L1Q)Q[Y)

LIQ=2zW) KQIV)|=1

e Z,(W) has ambiguity, because |(2) has phase ambiguity.
(Unavoidable due to Berry phase of [L2) )

e The ambiguity is cancelled in the product (L|Q){Q|Y) .

This explains why the chiral fermion must be coupled to
the bulk in 1-higher dimensions.
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APS boundary condition

The phase ambiguity of | Q) is inconvenient.

Let us try another state instead of |Q).

(" )

Definition
| ASP) : a state which would be the ground if m =0

< (Physical interpretation of APS boundary condition.) y

This has no phase ambiguity if we take the ratio
between the physical fermion and Pauli-Villars field.

Because | ASP) is independent of mass parameter.
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APS boundary condition

This definition of | ASP) breaks down when

the m = 0 theory has a degenerate ground state.

This happens when we vary background fields on W.

Let us consider the case that | ASP) is possible.
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New splitting

Using 1Y) | Q) (e|lm| = o0)

Z(Y,L) = (L|Q)Q|Y)

_ (LIQKQ|APS)

. (APS | Y)
[(Q|APS)|* <
/" | \
Determined by Determined by

boundary W bulk Y
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Bulk contribution

Bulk contribution (APS|Y) is computed in the same way
as before: form=-M < 0,

a . )
—iA—-—M
APS|Y) =
wsin=T15
L = exp(—izn(Y)) y

Now the eigenvalues 4 of iy”D, are computed under the
APS boundary condition.

(Mathematically, APS boundary condition guarantees that

the Dirac operator have real eigenvalues.)
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Boundary contribution

Massive fermion & = — ¥Y(y*D, + m)¥ is a free theory.

Its quantization on W is straightforward.

The result for m < 0:

( .

L | Q)(Q| APS
| (Q|APS) |
i Y

27, : Dirac operator acting on the chiral fermion y
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The anomaly inflow formula

Combining the previous results, we finally get

4 )
Nonperturbative anomaly inflow formula

Z(Y,L) = | Det(27,) | exp(—izn(Y))
\_ ),

¢ |eft-hand-side:

d + 1-dim. massive fermion partition function with
the local boundary condition L

* Right-hand-side:
d-dim. chiral fermion partition function

coupled to d + 1-dim. bulk topological phase
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The anomaly inflow formula

Z(Y,L) = | Det(27 w) | exp(—inn)

We cannot separate the bulk and boundary contributions.

This decomposition is like polar coordinate z = re? € C

| Det(27,) | : hot smooth around points |Det(27,) | =

exp(—inn) . not well-defined when APS b.c. fails.

Therefore, bulk and boundary must be combined.
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(General case

Completely general chiral fermion:

1. The discussion so far was Dirac fermion. But
Majorana fermion is more general.
(Any complex number can be decomposed into two
real numbers.)

2. | started from d + 1-dimensions and then find a
localized d-dim. fermion. It is possible to start from

arbitrary d-dim. fermion and find a massive d + 1-

dim. fermion.
50/ 56



(General case

General formula

\_

Z(Y,L) = |PE(D}) |exp (—inn(Y)/2)

J

e Pf . Pfaffian (which is relevant for majorana)

e 1 is multiplied by 1/2

We claim that this is the general anomaly inflow formula
for arbitrary chiral fermions. (Details omitted)
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Anomaly

General anomaly of a chiral fermion is characterized by
the Y-dependence of the partition function

Z(Y,L) = |PE(D}) |exp (—inn(Y)/2)
Take another Y’

ALD) (—iz(n(Y) — n(Y))/2)
72000 = exp (—in(y n

= exp (—inn(Y)/2)

Y : closed manifold obtained by gluing Y and Y’
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Anomaly

) {

glue them together : closed manifold Y

Gluing theorem of the n-invariant (locality of 7 )

exp (—in(n(Y) — n(Y)/2)) = exp (—izn(¥)/2)
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Anomaly

If exp (—izn(Y)/2) = 1 for any closed manifold ¥,
Z(Y, L) =Z(Y', L)

We can regard Z(Y, L) as a definition of the chiral

fermion partition function on the boundary W.

The obstruction for such a definition : Anomaly

( exp (—izn(Y)/2) Y : closed manifolds]

(There are some important details which | omit here.
Please see our paper.)
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Summary

®* Non-perturbative anomaly inflow formula is given by
a

Z(Y,L) = | Z(W)|exp (—izn(Y)/2)

_ I t ! y

Partition function of
massive fermion on Y

with local boundary
condition L

Exponential of n-invariant
in the bulk Y

Chiral fermion partition function
on the boundary W = 9dY
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