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	Applications	to	Open	Quantum	Processes		

Light-harvesting	energy	transfer				PRL	110,	200402	(2013)	

Quantum	transport,	PRL	116,	196803	(2016)	

							Heat	transfer	in	Benzene			Sci.	Rep.	6,	28027	(2016)		
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Quantum	heat	pumps	NJP	18,	p	023003	(2016)		



Brownian	Motion	

Stochastic	trajectory	approach:		Langevin	Equation	of	Motion	(1908)				

Deterministic	probability	approach:		Fokker-Planck	Equation	(1905)				

m
d2x

dt2
= �⌘

dx

dt
+ f (t) .

Fluctuation-dissipation	relation:	 hfi (t) fj (t0)i = 2⌘i,jkBT � (t� t0) .

Stochastic	averaging:		A(t)=	<A[f(t)]>f(t)	

Ensemble	averaging:		A(t)=	<A(x)>P(t)	
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[D(x, t)P (x, t)] .

Later,	Kubo	et	al	showed	the	equivalence	between	HEOM	and	GLE	with	exponential	noise		



Dissipative Quantum Dynamics 

Deterministic probability approach:   

Ensemble averaging:  A(t)= <A(x)>ρ(t)

HEOM, MCTDH,  PIMC, QUAPI, etc.   

@⇢(t)

@t
= �iL⇢(t)

Stochastic trajectory approach:    

Stochastic averaging:  A(t)= <A[f(t)]>f(t)   [Each realization is unphysical, but the average is physical]

Quantum state diffusion, Stochastic Liouville equation, Stochastic path integral,  etc 

Fluctuation-dissipation relation: hf (t) f (t0)i = C(t)

@ (t)

@t
= �i[Ĥ + f(t)V̂ ] (t)
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exp(−Sbath[xc (t)])
1	Monte	Carlo	sampling	of	the	Gaussian	functional	
	
	
2.	Propagation	of	the	system	wave-function		

	 		
	 		

	
3.	Average	of	the	bath	configurations	

i ∂ψ
∂t

= [Hs +V (xc (t),q)]ψ

spin-boson	model	
	
Kondo	constant:	
	
	J (ω) = πK

2
ωe−ω /ωc

A	Novel	Method	for	Simulating	Quantum	Dissipative	Systems	
		J.	Cao,	L.	W.	Ungar,	and	G.	A.	Voth,	J.	Chem.	Phys.	104,	4189	(1996)	

~	



Stochastic	Liouville	Equation	for	Gaussian	Bath	

Goal:	Numerical	Implementation	and	Generalize	to	any	bath	models	

Fluctuation-dissipation relation: hf (t) f (t0)i = C(t)

SLE:		Stockburger	and	Grabert,	Phys.	Rev.	Lett.,	88:170407,	(2002):	Cao,	Ungar,	Voth,	JCP,	104,	6189	(1996)	

stochastic	RDM	

Replace	bath	with	stochastic	force	if		V	=	f(x)	A(q)	

s	



SLE \ SW 

															GHE	
						Generalized	hierarchy	equation	
	
1.  Bosonic	bath	
2.  Fermionic		bath	
3.  Spin	bath	(dual	Fermion)	
4.  non-Gaussian	bath	

SPI/SW	
Stochastic	path	integrals	

	
1.  Imaginary	time	–	thermal	distribution	
2.  Absorption	/	Emission	spectra	
3.  Multi-chromophor	Forster	rate		

	Hybrid	
																		Deterministic	+	Stochastic	
	
1.  stochastic-HEOM	(JCP139,13406,	2013)	
2.  Transfer	tensor	method		
						(PRL	112,	p11040,	2014)	



System	+	Bath	Quantum	Dynamics	

Spins	

Three	classes	of	bath	models	:	

Bosons	 Fermions	



Stochastically	Decoupled	Quantum	Dynamics	

Stochastic	decoupling	of	bilinear	coupling	AB	

d !ρb (t) = −i dt Hb , !ρb (t)[ ]+ 1
2
dW *B !ρb (t)+

1
2
dV * !ρb (t)B

d !ρs (t) = −i dt Hs , !ρs (t)[ ]− i
2
A !ρs (t)dW + i

2
!ρs (t)AdVdρ(t)

dt
= −i H ,ρ(t)[ ]

White	Noise	Statistics	 dWdW * = dVdV * = 2dt

reduced	density	matrix		

ρs (t) = !ρs (t)Trb !ρb (t)



Take	trace	and	obtain	
formal	solution	
	

Bath-induced	Dissipations	and	Multi-time	Correlation	Functions	

Analogous	to	the	
influence	functional.	

Trb !ρb (t) = exp − 1
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forward		/	backward	path	
In	terms	of	noise	realization	

The	fluctuation	and	dissipation		
kernels	as	well	as	higher	order	
responses	encoded	in	bath’s	
multi-time	correlation	functions.	
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Bath-induced	fluctuating	field	
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Bath-induced	fluctuations	

Bath-induced	Dissipations	and	Multi-time	Correlation	Functions	

Only	first	two	terms	exist	for	
Gaussian	bath	models.	
	
Multi-time	correlation	
functions	convoluted	with	
the	noise	histories.	

Analogous	to	the	
influence	functional.	
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Stochastic	Liouville	Equation	(SLE)	

A	simple	outline	to	obtain	SLE,			

Stockburger	and	Grabert,	Phys.	Rev.	Lett.,	88:170407,	2002	

All distinguishing properties of various bath models are now hidden under the details of the noise:  
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc. 

Two-Time Statistics 
Bath’s	two-time	correlation	function	(boson	case)	



Stochastic	Liouville	Equation	(SLE)	

A	simple	outline	to	obtain	SLE,			

All distinguishing properties of various bath models are now hidden under the details of the noise:  
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc. 

Two-Time Statistics Boson	(complex-valued)	vs		Fermion	(Grassmann-valued)	

correlation	functions	with	Bose-Einstein	or	Fermi-Dirac	statistics.	

Boson	

Fermion	

Hsieh	and	Cao,	JCP	148,	p014103	(2018)	



Stochastic	Liouville	Equation	(SLE)	

A	simple	outline	to	obtain	SLE,			

All distinguishing properties of various bath models are now hidden under the details of the noise:  
Complex-valued vs Grassmann-valued , Gaussian vs non-Gaussian etc. 

Two-Time Statistics 
Four-Time Statistics  etc. 

...	



Deterministic	Solutions	for	SLE	

1.		Formal	Averaging	over	Stochastic	Variables	

2.		Define	Auxiliary	Density	Matrices	(ADM),		m	=	0	is	RDM	

3.		Deterministic	Equations	of	Motions	



Deterministic	Solutions	for	SLE	

To	turn	the	above	into	a	closed	hierarchy,	
	
1.  A	suitable	decomposition	of	stochastic	field	B(t)	:	exponentials,	orthonormal	

basis	etc.	

2.  A	correspondingly	refined	definition	of	auxiliary	density	matrices	

Hsieh	and	Cao,	JCP	148,	p014103	(2018)	



Orthonormal	Function	Expansions	of	Correlation	Functions	

t	

C R
(t
)	

Single	variable	for	Gaussian		

φ1(t)	

φ2(t)	

φ3(t)	

t	

χ1,R	

χ2,R	

χ3,R	

α (t) = χ jφ j (t)
j=1

K

∑ d
0

T

∫ sw(s)φi (s)φ j (s) = δ ijC(t)	



From	Stochastic	to	Hierarchical	Equations	

nj	=	0,1,2,3…		for	bosons	
nj	=	0	/	1		for	fermions	

	
1.  A	suitable	basis	set:	orthonormal	function	basis	(e.g.	exponential	functions)	
	

		
	
	
	
2.					Decomposition	of	stochastic	field	B(t)		

	
	
	
3.			Correspondingly	a	refined	definition	of	auxiliary	density	matrices	(ADM)	

α (t) = χ jφ j (t)
j=1

K

∑ d
0

T

∫ sw(s)φi (s)φ j (s) = δ ijC(t)	

Hsieh	and	Cao,	JCP	148,	p014103	(2018)	



	Extended	Hierarchy	Equation	for	Boson	Bath		

exponential	decay:		HEOM	(Tanimura)	
related	development:		Stochastic	derivation	of	HEOM	(Shao)	
extended-HEOM	(Wu):	quantum	phase	transition	in	subohmic	spin-boson	model,	PRB	95,	p214308	(2017)		

Hsieh	and	Cao,	JCP	148,	p014103	(2018)	



Hierarchy	Equation	for	Fermions		

finite-tiers	for	Fermions	
correlation	functions	beyond	exponential	forms	
application:	dual	fermion	representation	of	spins	
	
	
Hsieh	and	Cao,	JCP	148,	p014103	(2018);	Early	work	on	Fermion	bath:	Yan,	Yu,	Strunz,		etc.		

Pauli	exclusion	and		
negative	sign	due	to	anti-
commutativity	



Spin-Based	Quantum	Devices	

Nitrogen-Vacancy	Spins	in	Diamond	

Applications:		
	
quantum	computing	and		
room-temperature	ultra-	
precision	magnetic	sensors.	
	
Source	of	Spin	Noises:	
1/r3	dipolar	coupling	to	101~102	impurity	spins.	

Spin-Based	Qubit	in	Gated	QM	Dots	

Source	of	Spin	Noises:	
	
Hyperfine	coupling	and	104~106	
nuclear	spins	



Casting	Spin	Bath	as	Fermionic	Bath		
Dual	Fermion	Representation	

C-fermion:		Jordan-Wigner	Transformation.		Represent	spin	algebra	with	fermions		
	
D-fermion:	Correct	the	minus	sign	of	fermion	representations	for	multiple	spins.	
	

Phys.	Rev.	Lett.	91:207204,	2003.	



The	Effective	Two-Bath	Model	

Dual-Fermion	Mapping	

General	Strategy:	
1.  Stochastically	decouple	C-Fermions	and	derive	SLE	for	D-

Fermions	and	Central	spins.	
2.  Trace	out	the	D-Fermions	in	SLE.	
3.  Formally	average	out	the	C-Fermions	to	obtain	the	spin	equation.	

Hsieh	and	Cao,	JCP	148,	p014103	(2018)	



time	

<σ
x>

	

Spin	Bath:	Fermionic	Mapping		

2-tier	

25-
tier	

50-
tier	

20-
tier	



Condensed Phase Chemistry: 
Anharmonic Environment

anharmonic bath model

H = ε
2
σ z + Δσ x +

1
2
Pk
2 + Dk (1− e

−α kXk )2⎛
⎝⎜

⎞
⎠⎟k>0

∑
+σ z gkXk

k>0
∑

Effective spin bath when only 2 
bound states in each bath 
oscillator. 

Eν ,k =ω k ν + 1
2

⎛
⎝⎜

⎞
⎠⎟ −

α k
2

2
ν + 1

2
⎛
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⎞
⎠⎟
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H = ε
2
σ z + Δσ x +

Ωk

2
σ k

z +
k>0
∑ σ z !gkσ k

x

k>0
∑

spin bath model

Condensed	Phased	Dynamics:	
Spin	Bath	as	an	Anharmonic	Environment	



Generalized	Hierarchy	Equation	(GHE)	:	Anharmonic	Bath	

1.  [AN]	Block	matrix	accounts	for	the	(N+1)-th	cumulant	expansion	of	the	influence	
functional.		In	case	of	Gaussian	bath,	only	[A1]	contains	non-zero	elements.	

2.  N-th	order	cumulant	contributions	only	emerge	at	(N-1)-th	tier	with	closed	system	
dynamics	at	zero-th	tier.	

3.  When	dealing	with	the	Gaussian	bath,	the	present	approach	reduces		to	the	
extended	Hierarchical	Equations	of	motions.	

(3-layers	of	hierarchy)	



Spin	Bath:	4-th	Order	Corrections	

exact	
4th	order	
2nd	order	

Hsieh	and	Cao,	JCP	148,	p014104	(2018)	



Summary		

Paper	I		[JCP	148,	p014103	(2018)]	
	
The	 family	 of	 hierarchy	 equations	 provides	 a	 numerically	 exact	 description	 for	 generic	
quantum	environments.	Specifically,	we	derived	hierarchy	equations	 for	Grassmann	noise	
and	non-Gaussian	noise	from	the	stochastic	Liouville	Equation.	

	
Paper	II	[JCP	148,	p014104	(2018)]	

	
Spin	 bath	 is	 treated	 in	 two	 different	 approaches.	 	 Physical	 spins	 (such	 as	 nuclear	 spins)	
should	be	 treated	 in	 the	dual-fermion	approach	and	go	deep	down	 the	hierarchical	 tiers.		
Spin	 bath	 (as	 anharmonic	 condensed	 environment)	 is	 more	 conveniently	 handled	 by	
generalized	hierarchy	equation	(GHE)	approach,	which	goes	beyond	the	linear	response	and	
the	Gaussian	assumption.		



															Hybrid	
																		Deterministic	+	Stochastic	
	
1.  stochastic-HEOM	
2.  Transfer	tensor	method		
						(PRL	112,	p11040,	2014)	

SLE \ SW 

															GHE	
						Generalized	hierarchy	equation	
	
1.  Bosonic	bath	
2.  Fermionic		bath	
3.  Spin	bath	(dual	Fermion)	
4.  non-Gaussian	bath	

SPI/SW	
Stochastic	path	integrals	

	
1.  Imaginary	time	–	thermal	distribution	
2.  Absorption	/	Emission	spectra	
3.  Multi-chromophor	Forster	rate		



1-Dimension	(Gaussian	integral):	

Hubbard-Stratonovich Transformation 

N-Dimensions:	

exp

✓
a
q2

4

◆
=

Z
d⇠

r
1

a⇡
exp

✓
�1

a
⇠2 � q⇠

◆

exp

0

@1

4

X

i

X

j

qiaijqj

1

A =

Z Y

i

d⇠i

✓
1

det(a⇡)

◆1/2

exp

0

@�
X

i

X

j

⇠ia
�1
ij ⇠j �

X

i

qi⇠i

1

A

Infinite-Dimensions:	 Influence	Functional	(non-local)	

Time-local	and	linear	Auxiliary	field	
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Hubbard-Stratonovich	transformation	

Stochastic Unraveling of Bath Entanglement 

Stockburger,	Grabert,	Phys.	Rev.	Lett.	88,	170407	(2002)	



Full Real-Time Dynamics 

Stochastic	unraveling	of	the	influence	functional	leads	to:	
1.  Monte-Carlo	wave-function	for	mixed	states	

J.	Stockburger	and	H.	Grabert,	PRL,	88,	170407,	2002.	
2.  Non-Markovian	quantum	state	diffusion	(NMQSD)	for	pure	states	

L.	Diosi,	N.	Gisin,	and	W.	Strunz,	PRA,	58,	1699,	1998.	

3.  Stochastic	sampling	of	harmonic	baths	
						J.	Cao,	L.	W.	Ungar,	and	G.	A.	Voth,	J.	Chem.	Phys.	104,	4189,	1996		

Etc....	

These	methods	are	formally	exact	but	do	not	converge	well	numerically	



Divergence of real-time simulation and Solutions 

1)	Hybrid	Approach:	combine	stochastic	dynamics	and	deterministic	equation		

	s-HEOM	[Moix	and	Cao,	JCP	139,	134106,	(2013)]:		use	a	fictitious	temperature		

	as	a	reference	and	sample	the	difference	using	stochastic	path	integrals.		

	

2)	Combination	with	transfer	tensor	method	(PRL	112,	p11040,	2014)	
		

The complex noise 
leads to divergence 
at long times



Hybrid Stochastic-Deterministic Dynamics 

Proposal	of	simple	partition:	
1.  Treat	real	fluctuations	stochastically	

	 	Generalized	Haken-Strobl	Model	

2.  Treat	dissipation	deterministically	
	 	HEOM	or	QUAPI	

Best	of	both	methods:	
•  HEOM	and	QUAPI	are	difficult	at	low	T	
•  Complex	noise	from	dissipative	part	ruins	pure	stochastic	methods	



⇢̇0(t) = �iĤ(t)⇥⇢0(t)� iq̂
⇥
⇢1(t)

⇢̇n(t) = �iĤ(t)⇥⇢n(t)� n!c⇢n(t)� iq̂
⇥
⇢n+1(t)� n�!cq̂

�
⇢n�1(t)

Simple Partition 

Simple	Stochastic	Hierarchy	Equations	of	Motion:	
1.  Hubbard-Stratonovich	transformation	of	Cr	
2.  Hierarchy	development	of	Ci		

Ĥ(t) = Ĥs + ⇠(t)q̂ h⇠(t)⇠(t0)i = Cr(t� t0)/~

Advantages:	
1.  T-independent	hierarchy	
2.  Very	efficient	Monte	Carlo	

convergence		

Disadvantages:	
1.  Drude-Lorentz	spectral	density	
2.  Density	matrix	not	wave-functions	



Real-time Path Integral  
Real-Time	Propagator:	

Influence	Functional:	

U(x0, y0;x, y; t) =

Z
D[xs]D[ys]e

i
~ (Ss[xs]�Ss[ys])� 1
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0 � t00) [x(t00) + y(t00)]

Fluctuations:	
1.  Purely	Real	
2.  Increase	with		T/h	

Dissipation:	
1. 	Complex	force	
2. 	T-Independent	

Cr(t) =

Z 1

0

d!

⇡
J(!) coth(~�!/2) cos(!t) Ci(t) =

Z 1

0

d!

⇡
J(!) sin(!t)



Stochastic HEOM 

solution:			
Restore	quantum	fluctuations		
with	real	noise	from	a	reference	T’	

J.	Moix	and	J.	Cao,	JCP,	139,	134106,	2013:		Related	work	by	Strunz,	Shao,	etc.			



Example	I.	TLS	Energy	Transfer	Rates	

� = 50 cm�1

J = 20 cm�1

� = 20 cm�1

!c = 53 cm�1

P1(t) =
�eq + e�(1+�eq)kt

1 + �eq

�eq = P eq
1 /P eq

2

Need	higher	order	correction	to	FGR			

J.	Moix	and	J.	Cao,	JCP,	139,	134106,	2013		



Example II: Concurrence Dynamics 

!0 = 1.5J

!c = 3J

�J = 50

Two	Qubit	Hamiltonian:	

Hsb =
2X

k=1

�
x
k

X

j

ckj(bkj + b
†
kj)

C = max
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Concurrence:	

λ:	sorted	eigenvalues	of	spin-flipped	
state:	

Hs = !0 (�
z
1 + �

z
2) + J�

x
1�

x
2

J.	Moix	and	J.	Cao,	JCP,	139,	134106,	2013		



Conclusion

A family of hierarchy equations are obtained from the SLE.

The hybrid stochastic-deterministic approach is promosing 
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